Why Space Mapping Works

J.W. Bandler, Q.S. Cheng, S. Koziel, and K.Madsen

Simulation Optimization Systems Research Laboratory McMaster University, www.sos.mcmaster.ca, bandler@mcmaster.ca

Bandler Corporation, www.bandler.com, john@bandler.com Technical University of Denmark, www.dtu.dk, km@imm.dtu.dk

SURROGATE MODELLING AND SPACE MAPPING FOR ENGINEERING OPTIMIZATION (SMSMEO-06) Technical University of Denmark, Lyngby, Denmark, November 9-11, 2006

Linking Companion Coarse (Empirical) and Fine (EM) Models (*Bandler et al., 1994-*)

Why **Does Space Mapping Work?**

because **space mapping** is a natural mechanism for the brain to relate objects or images with other objects, images, reality, or experience

"experienced" engineering designers (experts), knowingly or not, routinely employ (or have employed) **space mapping** to achieve complex designs

with virtually no mathematics, simple everyday examples illustrate **space mapping**, e.g., archery, stone-throwing, cheese-cutting, log-cutting, cake-cutting, shoe-selection, . . .

the following illustrations of the "cheese-cutting problem" are interpreted as if for implicit **space mapping**

Implicit, Input and Output Space Mappings

(Bandler et al., 2003)

Cheese-Cutting Problem Tutorial: <u>Input</u> Space Mapping

the "coarse" brick is idealized, the algorithm is non-expert

Space Mapping Design of Dielectric Resonator Multiplexers (*Ismail et al., 2003, Com Dev, Canada*)

10-channel output multiplexer, 140 variables, Aggressive SM

Cheese-Cutting Problem Tutorial: <u>Implicit</u> Space Mapping

the "coarse" brick is idealized, the algorithm is non-expert

Cheese-Cutting Problem Tutorial: <u>Implicit</u> Space Mapping

Implicit Space Mapping Design of Thick, Tightly Coupled Conductors (*Rautio, 2004, Sonnet Software*)

thick, closely spaced conductors on silicon (fine model)

"space-mapping" (top) layer (coarse model)

EPCOS LTCC/Feb 04 (Rautio, 2006, Sonnet Software)

Cheese-Cutting Problem Tutorial: <u>Output</u> **Space Mapping**

the "coarse" brick is idealized, the algorithm is non-expert

Space Mapping: a Glossary of Terms

(parameter/input) space mapping

(response) output space mapping¹

response surface approximation

mapping, transformation or correction of design variables

mapping, transformation or correction of responses

linear/quadratic/polynomial approximation of responses w.r.t. design variables

¹advocated by John E. Dennis, Jr., Rice University ¹Alexandrov's "high-order model management"

Space Mapping: (1) for Design Optimization, (2) for Modeling

Implicit, Input and Output Space Mappings

(Bandler et al., 2003)

High-Temperature Superconducting (HTS) Filter: Modeling + Optimization

Sonnet *em* fine model (*Westinghouse*, 1993)

Agilent ADS coarse model (*Bandler et al., 2004*)

Implicit and Output SM Modeling, with Input SM: HTS Filter

(Cheng and Bandler, 2006)

More Base Points for SM-based Modeling (*Bandler et al., 2001*)

 2^n more base points located at the corner of the region of interest with *n* design parameters

HTS Filter: Modeling Region of Interest

(Cheng and Bandler, 2006)

parameters	reference point (x^0)	region 1 size ($\boldsymbol{\delta}_1$)	region 2 size $(\boldsymbol{\delta}_2)$	region 3 size (δ_3)	region 4 size (δ_4)	region 5 size (δ_5)
L_1	180	5	6	8	10	45
L_2	200	10	11	15	20	50
L_3	180	5	6	8	10	45
S_1	20	2	3	3	4	5
S_2	80	5	6	8	10	20
<i>S</i> ₃	80	10	11	15	20	20

HTS Filter: Implicit SM Modeling Surrogate Test Region 2

fine model (\circ) \boldsymbol{R}_{s} surrogate (—)

HTS Filter: Implicit SM Modeling + Surrogate Optimization (*Cheng and Bandler, 2006*)

$$\mathbf{x}_{f}^{*} = [172 \ 207 \ 172 \ 20 \ 90 \ 84]^{T}$$

SMF: User-friendly Space Mapping Software Engine (*Bandler Corp., 2006*)

SMF: for **SM**-based constrained optimization, modeling and statistical analysis

to make space mapping accessible to engineers inexperienced in the art

to incorporate existing space mapping approaches in one package

implementation: a GUI based Matlab package

SMF: Optimization Flowchart (*Bandler Corp., 2006*)

SMF Optimization of Probe-Fed Printed Double Annular Ring Antenna with Finite Ground (*Zhu et al.*, 2006)

fine model (FEKO)

coarse model (FEKO)

The Tuning Space Mapping Concept

tuning-augmented fine-model iterate

(physically-based, fine-model surrogate with internal tuning ports)

Tuning Methodology (Rautio, 2005, Sonnet Software)

circled ports are tuning ports: in series with inductors in shunt with capacitors

(courtesy Rautio, 2006)

Motorola LTCC Quad Band Receiver

(Rautio, 2006, Sonnet Software)

Port Tuned Combline Filter (*Swanson, 2006, M/A-COM*)

Port Tuned Combline Filter (*Swanson, 2006, M/A-COM*)

Recent Space Mapping Applications 1

"multifidelity optimization" (MFO) algorithm (Castro et al., 2005)

optimization in electromagnetics (*Echeverria et al., 2005*)

space mapping and defect correction (*Echeverria and Hemker, 2005*)

modeling thermally active components in new buildings (*Pedersen et al., 2005*)

design of electromagnetic actuators (*Encica et al., 2005*)

Recent Space Mapping Applications 2

fast automated design of waveguide filters (Ros et al., 2005)

linear inverse SM algorithm to design linear and nonlinear RF and microwave circuits (*Rayas-Sánchez et al., 2005*)

optimization of planar coupled-resonator microwave filters (*Amari et al., 2006*)

response surface space mapping for electromagnetic optimization (*Dorica and Giannacopoulos, 2006*)

multifidelity optimization with variable dimensional hierarchical models (*Robinson et al., 2006*)

Space Mapping Applications 3: 2006 IEEE IMS Int. Microwave Symposium Workshop on Microwave Component Design Using Space Mapping Technology

RF design closure—companion modeling and tuning methods (J.C. Rautio, Sonnet Software, Inc., USA)

optimization of engineering designs (S. Koziel, McMaster University, Canada)

more efficient EM simulation and optimization using port tuning (*D. Swanson, M/A-COM, USA*)

ANN based microwave component modeling (Q.J. Zhang, Carleton University, Canada)

Space Mapping Applications 4: 2006 IEEE IMS Int. Microwave Symposium Workshop on Microwave Component Design Using Space Mapping Technology

efficient CAD tools of waveguide filters (V.E. Boria-Esbert, Universidad Politécnica de Valencia, Spain)

microwave switches and multiplexers (*M. Yu, Com Dev, Canada*)

LTCC RF component design (Ke-Li Wu, Chinese University of Hong Kong, China)

SM-based Modeling with Variable Weight Coefficients (VWC) (*Koziel et al., 2006*)

concept: use local fine model information

SM-based Interpolation (*Koziel et al., 2006*)

assumption: the fine model is available on a structured grid

define an interpolated fine model as

$$\overline{\boldsymbol{R}}_{f}(\boldsymbol{x}^{(i+1)}) = \boldsymbol{R}_{f}(\boldsymbol{s}(\boldsymbol{x}^{(i+1)})) + \boldsymbol{R}_{s}^{(i)}(\boldsymbol{x}^{(i+1)}) - \boldsymbol{R}_{s}^{(i)}(\boldsymbol{s}(\boldsymbol{x}^{(i+1)}))$$

where snapping function s(.) is defined as

$$s(\boldsymbol{x}) = \left\{ \overline{\boldsymbol{x}} \in \overline{X}_f : || \boldsymbol{x} - \overline{\boldsymbol{x}} || = \min_{\boldsymbol{z} \in \overline{X}_f} || \boldsymbol{z} - \overline{\boldsymbol{x}} || \land \forall_{\boldsymbol{y} = \arg\min_{\boldsymbol{z} \in \overline{X}_f} || \boldsymbol{z} - \overline{\boldsymbol{x}} ||, \, \boldsymbol{y} \neq \overline{\boldsymbol{x}}} \, \overline{\boldsymbol{x}} \prec \boldsymbol{y} \right\}$$

Space Mapping Technology: Our Current Work

new space mapping frameworks, optimization algorithms, and convergence proofs

methodologies for device and component model enhancement (with Q.J. Zhang, Carleton University)

SMF: user-friendly software engine for optimization and modeling with sockets to drive popular simulators http://www.bandler.com/SMF/ (*Bandler Corporation, 2006*)

M.B Steer, J.W. Bandler, and C.M. Snowden, "Computer-aided design of RF and microwave circuits and systems," *IEEE Trans. Microwave Theory Tech.*, vol. 50, no. 3, pp. 996-1005, Mar. 2002.

J.W. Bandler and S.H. Chen, "Circuit optimization: the state of the art," *IEEE Trans. Microwave Theory Tech.*, vol. 36, no. 2, pp. 424-443, Feb. 1988.

J.W. Bandler, W. Kellermann, and K. Madsen, "A superlinearly convergent minimax algorithm for microwave circuit design," *IEEE Trans. Microwave Theory Tech.*, vol. 33, no. 12, pp. 1519-1530, Dec. 1985.

J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, "Space mapping: the state of the art," *IEEE Trans. Microwave Theory Tech.*, vol. 52, no. 1, pp. 337-361, Jan. 2004.

J.W. Bandler, R.M. Biernacki, S.H. Chen, P.A. Grobelny, and R.H. Hemmers, "Space mapping technique for electromagnetic optimization," *IEEE Trans. Microwave Theory Tech.*, vol. 42, no. 12, pp. 2536-2544, Dec. 1994.

J.W. Bandler, R.M. Biernacki, S.H. Chen, R.H. Hemmers, and K. Madsen, "Electromagnetic optimization exploiting aggressive space mapping," *IEEE Trans. Microwave Theory Tech.*, vol. 43, no. 12, pp. 2874-2882, Dec. 1995.

J.W. Bandler, Q.S. Cheng, N.K. Nikolova, and M.A. Ismail, "Implicit space mapping optimization exploiting preassigned parameters," *IEEE Trans. Microwave Theory Tech.*, vol. 52, no. 1, pp. 378-385, Jan. 2004.

Q.S. Cheng, S. Koziel, and J.W. Bandler, "Simplified space mapping approach to enhancement of microwave device models," *Int. J. RF and Microwave Computer-Aided Engineering*, 2006.

Q.S. Cheng and J.W. Bandler, "An implicit space mapping technique for component modeling," in *Proc. 36th European Microwave Conf.*, Manchester, UK, Sept. 2006.

J.W. Bandler, Q.S. Cheng, D.M. Hailu, and N.K. Nikolova, "A space-mapping design framework," *IEEE Trans. Microwave Theory Tech.*, vol. 52, no. 11, pp. 2601-2610, Nov. 2004.

S. Koziel, J.W. Bandler, and K. Madsen, "Space mapping optimization algorithms for engineering design," in *IEEE MTT-S Int. Microwave Symp. Dig.*, San Francisco, CA, June 2006.

S. Koziel and J.W. Bandler, "Space-mapping-based modeling utilizing parameter extraction with variable weight coefficients and a data base," in *IEEE MTT-S Int. Microwave Symp. Dig.*, San Francisco, CA, June 2006.

S. Koziel, J.W. Bandler, A.S. Mohamed, and K. Madsen, "Enhanced surrogate models for statistical design exploiting space mapping technology," in *IEEE MTT-S Int. Microwave Symp. Dig.*, Long Beach, CA, June 2005, pp. 1609-1612.

S. Koziel, J.W. Bandler, and K. Madsen, "Space-mapping based interpolation for engineering optimization," *IEEE Trans. Microwave Theory Tech.*, vol. 54, no. 6, pp. 2410-2421, June 2006.

Q.S. Cheng and J.W. Bandler, "An automated space mapping framework," in *Frontiers in Applied Computational Electromagnetics (FACE 2006)*, Victoria, BC, Canada, 2006.

SMF, Bandler Corporation, P.O. Box 8083, Dundas, ON, Canada L9H 5E7, 2006.

M. A. Ismail, D. Smith, A. Panariello, Y. Wang, and M. Yu, "EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," *IEEE Trans. Microwave Theory Tech.*, vol. 52, no. 1, pp. 386-392, Jan. 2004.

J.C. Rautio, "A space-mapped model of thick, tightly coupled conductors for planar electromagnetic analysis," *IEEE Microwave Magazine*, vol. 5, no. 3, pp. 62-72, Sep. 2004.

J.P. Castro, G.A. Gray, A.A. Guinta, and P.D. Hough, "Developing a computationally efficient dynamic multilevel hybrid optimization scheme using multifidelity model interactions," Technical Report SAND2005-7498, Sandia National Laboratories, Livermore, CA, Nov. 2005.

D. Echeverria, D. Lahaye, L. Encica, and P.W. Hemker, "Optimisation in electromagnetics with the space-mapping technique," *COMPEL The International Journal for Computation and Mathematics in Electrical and Electronic Engineering*, vol. 24, no. 3, pp. 952-966, 2005.

D. Echeverria and P.W. Hemker "Space mapping and defect correction," *CMAM The International Mathematical Journal Computational Methods in Applied Mathematics* vol. 5, no. 2, pp. 107-136, 2005.

F. Pedersen, "Modeling thermally active building components using space mapping," *SIAM Conference on Optimization*, Stockholm, Sweden, May 2005.

L. Encica, D. Echeverria, E. Lomonova, A. Vandenput, P. Hemker, and D. Lahaye, "Efficient optimal design of electromagnetic actuators using space-mapping," in *6th World Congress on Structural and Multidisciplinary Optimization*, Rio de Janeiro, Brazil, 30 May-03 June 2005.

J.V.M. Ros, P.S. Pacheco, H.E. Gonzalez, V.E.B. Esbert, C.B. Martin, M.T. Calduch, S.C. Borras, and B.G. Martinez, "Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm," *IEEE Trans. Microwave Theory Tech.*, vol. 53, no. 4, pp. 1130-1142, Apr. 2005.

J.E. Rayas-Sánchez, F. Lara-Rojo, and E. Martínez-Guerrero, "A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits," *IEEE Trans. Microwave Theory Tech.*, vol. 53, pp. 960-968, Mar. 2005.

S. Amari, C. LeDrew, and W. Menzel, "Space-mapping optimization of planar coupled-resonator microwave filters," *IEEE Trans. Microwave Theory Tech.*, vol. 54, no. 5, pp. 2153-2159, May 2006.

M. Dorica and D.D. Giannacopoulos, "Response surface space mapping for electromagnetic optimization," *IEEE Trans. Magn.*, vol. 42, no. 4, pp. 1123-1126, Apr. 2006.

T.D. Robinson, M.S. Eldred, K.E. Willcox, and R. Haimes, "Strategies for multifidelity optimization with variable dimensional hierarchical models," in *Proceedings of the 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference* (2nd AIAA Multidisciplinary Design Optimization Specialist Conference), Newport, Rhode Island, May 1-4, 2006.

W. Yu and J.W. Bandler, "Optimization of spiral inductor on silicon using space mapping," in *IEEE MTT-S Int. Microwave Symp. Dig.*, San Francisco, CA, June 2006.

J. Zhu, J.W. Bandler, N.K. Nikolova, and S. Koziel, "Antenna design through space mapping optimization," in *IEEE MTT-S Int. Microwave Symp. Dig.*, San Francisco, CA, June 2006.

