The New Space Mapping Algorithms (since 2000)

Kaj Madsen, John Bandler and Slawomir Koziel

Bandler Corporation, www.bandler.com, john@bandler.com, koziels@mcmaster.ca
Technical University of Denmark, www.imm.dtu.dk, km@imm.dtu.dk
Objectives of Space Mapping

- Optimization of very expensive models
- Construct easy-to-calculate surrogate models

We assume two models of a physical object are available:

- an accurate fine model (expensive)
- a simpler coarse model (cheap)
Type of Problem Considered

Minimize w.r.t. \(x \in \mathbb{R}^n \) the absolute values of the deviations between response \(r(x; t_i) \) and specifications \(y_i \)

\[
f_i(x) = r(x; t_i) - y_i, \quad i = 1, \ldots, m
\]

Find \(x^* \in \arg\min_x \{ H(f(x)) \} \)
Original SM for Optimization

(Bandler et al., 1995)

Physical problem

\[c \quad \quad \quad \quad \quad \quad f \]

coarse model

fine model

Connect similar responses

\[f(x) \approx c(P(x)) \]
Original SM for Optimization

Problem: \(\text{minimize } H(f(x)) \)

SM strategy: \(\text{minimize } H(c(P(x))) \)

SM methodology:

For \(i = 0, 1, 2, \ldots \), find estimates \(P^{(i)} \) of \(P \) and
\(\text{minimize } H(c(P^{(i)}(x))) \)
Original SM: Basic Algorithm

Find initial estimate $x^{(0)}$ to x^*

for $i = 0,1,2, \ldots$ do

- calculate $f(x^{(i)})$
- find $P(x^{(i)})$

 based on previous points find an estimate $P^{(i)}$ of P

 minimize $H(c(P^{(i)}(x)))$ to find $x^{(i+1)}$

endo
Initialization

Find the coarse model solution z^*
Find the Space Mapping P

- by connecting similar responses

coarse model

\[c \]

fine model

\[f \]
Parameter Extraction: Find $x^{(0)}$

$$z^{(0)} = P(x^{(0)}) \equiv \arg \min_{z} \left\{ \left\| f(x^{(0)}) - c(z) \right\| \right\}$$
Find $x^{(1)}$

Intuition: $x^{(1)} = x^{(0)} + (z^* - z^{(0)})$
We assume \(f(x) \approx c(P(x)), \) i.e., \(P(x^*) = z^* \)

\[
P(x) \approx P(x^{(0)}) + J_P(x^{(0)})(x - x^{(0)})
\]

\[
P^{(0)}(x) \equiv P(x^{(0)}) + B^{(0)}(x - x^{(0)}) , \quad B^{(0)} = I
\]

\[
x^{(1)} = \arg\min \left\{ H(c(P^{(0)}(x))) \right\}
\]

\[
P^{(0)}(x) = z^* \implies P(x^{(0)}) + (x - x^{(0)}) = z^*
\]

\[
\implies z^{(0)} + (x - x^{(0)}) = z^*
\]

\[
\implies x^{(1)} = x = x^{(0)} + (z^* - z^{(0)})
\]
Original SM Algorithm

\[x^{(0)} = z^* \]

for \(i = 0, 1, 2, \ldots \) (while not STOP) do

\[f(x^{(i)}) \]

\[z^{(i)} = P(x^{(i)}) \equiv \arg \min_z \left\{ \| f(x^{(i)}) - c(z) \| \right\} \]

compute \(P^{(i)} \) from \(P(x^{(i)}) \) and \(B^{(i)} \)

\[x^{(i+1)} = \arg \min_x \left\{ H(c(P^{(i)}(x))) \right\} \]

enddo

Bandler, Biernacki, Chen, Hemmers, Madsen (1995)
i’th Iteration: Estimate P

Assume P has been computed at $x^{(0)}, x^{(1)}, \ldots, x^{(i)}$

$$P(x) \approx P(x^{(i)}) + J_P(x^{(i)})(x - x^{(i)})$$

$$P^{(i)}(x) \equiv P(x_f^{(i)}) + B^{(i)}(x - x^{(i)})$$

where $B^{(i)} \approx J_P(x^{(i)})$ is, e.g., a Broyden update
Traditional Taylor-based Optimization

At the iterate $x^{(i)}$ minimize $H(s_T^{(i)}(x))$

where $s_T^{(i)}$ is a first order Taylor estimate of f at $x^{(i)}$

Combined surrogate:
\[s_{comb}^{(i)}(x) = \eta_i s_T^{(i)}(x) + (1 - \eta_i) s_{SM}^{(i)}(x), \quad 0 \leq \eta_i \leq 1 \]

Bandler, Bakr, Madsen, Søndergaard (2001)
Approximation Errors

Taylor error at \(x^{(i)} \)

\[
\left\| f(x) - f^{(i)}(x) \right\| \leq C_T \cdot \left\| x - x^{(i)} \right\|^2
\]

SM error at \(x^{(i)} \)

\[
\left\| f(x) - c(P^{(i)}(x)) \right\| \leq \varepsilon + \left\| J_c(P^{(i)}(x^{(i)})) \right\| \cdot C_{SM} \cdot \left\| x - x^{(i)} \right\|^2
\]
Approximation Errors

Space Mapping

Local (Taylor)
Convergence Theory

Convergence has been proved for the combination of the Space Mapping with a traditional algorithm. Vicente (2003), for the least squares objective. Madsen, Søndergaard (2004), for a general objective.
i’th Surrogate Model

Assume P has been computed at $x^{(0)}, x^{(1)}, \ldots, x^{(i)}$

$$s_{SM}^{(i)}(x) \equiv c\left(B^{(i)}(x - x^{(i)}) + P(x^{(i)}) \right)$$
Input Surrogate Model

(Bandler et al., 1994)

Surrogate: \(s(x, p) \equiv c(Bx + d), \quad p = (B,d) \)

Assume \(f \) has been computed at \(x^{(0)}, x^{(1)}, \ldots, x^{(i)} \)

\[
p^{(i)} \in \arg \min_p \left\{ \sum_{k=0}^{i} w_k \| f(x^{(k)}) - s(x^{(k)}, p) \| \right\}
\]

\[
s^{(i)}(x) \equiv s(x, p^{(i)})
\]

\[
x^{(i+1)} = \arg \min_x H(s^{(i)}(x))
\]
Output Surrogate Model
(*Bandler et al.*, 2003)

Surrogate: \[s(x, p) \equiv Ac(x) + b, \quad p = (A, b) \]

Assume \(f \) has been computed at \(x^{(0)}, x^{(1)}, \ldots, x^{(i)} \)

\[p^{(i)} \in \arg \min_p \left\{ \sum_{k=0}^i w_k \| f(x^{(k)}) - s(x^{(k)}, p) \| \right\} \]

\[s^{(i)}(x) \equiv s(x, p^{(i)}) \]

\[x^{(i+1)} = \arg \min_x H(s^{(i)}(x)) \]

(*John Dennis, private communication, 2002*)
Implicit Surrogate Model

(Bandler et al., 2001)

Surrogate: \(s(x, x_p) \equiv c(x, x_p) \)

Assume \(f \) has been computed at \(x^{(0)}, x^{(1)}, \ldots, x^{(i)} \)

\[
x^{(i)}_p \in \arg \min_{x_p} \left\{ \sum_{k=0}^{i} w_k \left\| f(x^{(k)}) - s(x^{(k)}, x_p) \right\| \right\}
\]

\[
s^{(i)}(x) \equiv s(x, x^{(i)}_p)
\]

\[
x^{(i+1)} = \arg \min_x H(s^{(i)}(x))
\]
Output/Implicit Surrogate Model

Output SM surrogate (additive): \[s(x, d) \equiv c(x) + d \]

\[d^{(i)} \in \arg \min_d \left\{ \sum_{k=0}^{i} w_k \| f(x^{(k)}) - (c(x^{(k)}) + d) \| \right\} \]

Implicit SM surrogate: Let \[s(x, x_p) = c(x) + x_p \]

\[x_p^{(i)} \in \arg \min_{x_p} \left\{ \sum_{k=0}^{i} w_k \| f(x^{(k)}) - (c(x^{(k)}) + x_p) \| \right\} \]

Thus: Additive Output SM is a special case of Implicit SM
Input / Implicit Surrogate Model

Input SM surrogate: \[s(x, p) \equiv c(Bx + d), \quad p = (B, d) \]

\[p^{(i)} \in \arg \min_{p} \left\{ \sum_{k=0}^{i} w_k \| f(x^{(k)}) - s(x^{(k)}, p) \| \right\} \]

Implicit SM surrogate:

\[s(x, x_p) \equiv c(Bx + d), \quad x_p = (B, d) \]

\[x_p^{(i)} \in \arg \min_{x_p} \left\{ \sum_{k=0}^{i} w_k \| f(x^{(k)}) - s(x^{(k)}, x_p) \| \right\} \]

Thus: Input SM can be considered a special case of Implicit SM
Space Mapping for Modelling

Star Distribution for SM-based Modelling

(Bandler et al., 2001)
Input/Output Surrogate Model
(Bandler et al., 2003)

Input surrogate: \(s(x, B, d) \equiv c(Bx + d) \)

Output surrogate: \(s(x, A, b) \equiv Ac(x) + b \)

Assume \(f \) has been computed at \(x^{(0)}, x^{(1)}, \ldots, x^{(N)} \)

\((A^{(i)}, B^{(i)}, c^{(i)}, d^{(i)})\)

\[= \arg \min_{(A,B,c,d)} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - (A \cdot c(Bx^{(k)} + d) + b) \| \right\} \]

\[s^{(i)}(x_f) \equiv A^{(i)}c(B^{(i)}x + c^{(i)}) + d^{(i)} \]
Space Mapping-based Modelling

\[x \in X_R \equiv [x_{\text{mid}} - \delta, x_{\text{mid}} + \delta], \quad \delta = [\delta_1, \delta_2, \ldots, \delta_N] \]

\[(A^{(i)}, B^{(i)}, b^{(i)}, d^{(i)})\]

\[= \arg \min_{(A,B,b,d)} \left\{ \sum_{k=0}^{N} w_k \| f(x^{(k)}) - (A \cdot c(B x^{(k)} + d) + b) \| \right\} \]

\[s^{(i)}(x) \equiv A^{(i)} c(B^{(i)} x + d^{(i)}) + b^{(i)}\]

\[w_k \equiv w_k(x, C, \lambda) = \frac{\exp\left(-\frac{\| x - x^{(k)} \|^2}{C\lambda^2}\right)}{\sum_{j=1}^{N} \exp\left(-\frac{\| x - x^{(j)} \|^2}{C\lambda^2}\right)} \quad \lambda = \frac{2}{n \cdot N^{1/n}} \sum_{i=1}^{n} \delta_i\]
The SM based modelling technique is arbitrarily accurate:

Theorem

Let \(X_B \equiv \{ x^{(0)}, x^{(1)}, \ldots, x^{(N)} \} \).

Suppose certain regularity conditions are satisfied. Let \(\varepsilon > 0 \) be given. Then there exists \(\eta > 0 \) such that:

\[
\forall x \in X_R \quad \exists x^{(k)} \in X_B : \| x - x^{(k)} \| < \eta
\]

then \(\| f(x) - s(x) \| < \varepsilon \) for any \(x \in X_R \)

provided \(C > 0 \) is sufficiently small.

Koziel, Bandler, Madsen (2006)
Convergence Theory

Convergence of the different variations of the Space Mapping has been proved under certain regularity and Lipschitz conditions.

(Koziel, Bandler, Madsen (2005))

(Koziel’s talk at 16.45 tomorrow)
Conclusions

• Space Mapping provides powerful surrogate models (mapped coarse models) applicable in optimization as well as in modelling.

• Space Mapping has been successfully applied to numerous engineering problems.

• The Input SM, Output SM, and Implicit SM Space Mapping algorithms originate from engineering practice. They are similar in theory, however they perform differently in practice.

• Space Mapping is provably convergent.

• Space Mapping requires skilled engineers for designing the coarse models.