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Objectives of Space Mapping

• Optimization of very expensive models

We assume two models of a physical 
object are available:

• an accurate fine model (expensive)

• a simpler coarse model (cheap)

• Construct easy-to-calculate surrogate models
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Type of Problem Considered

Minimize w.r.t.                the absolute values of the deviations 
between response r(x;ti) and specifications yi

fi(x) = r(x;ti) − yi,     i = 1, …, m    

R nx∈

{ }* arg min ( ( ))
x

x H f x∈Find
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Original SM for Optimization 
(Bandler et al., 1995)

Physical problem
f

fine model
c

coarse model

Connect similar responses

. x*
. z*

P

( ) ( ( ))f x c P x≈
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Original SM for Optimization

Problem:       minimize  H( f(x) )

SM strategy: minimize H( c(P(x )) ) 

SM methodology:  

For i = 0,1,2, …, find estimates P(i) of P and 

minimize H( c(P(i)(x)) )
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(0) *

( )

( )

( )

( ) ( 1)

Find initial estimate to
for 0,1, 2, ... do

calculate ( )

find ( )

based on previous points find an estimate of
minimize ( ( ( )) ) to find

enddo

i

i

i

i i

x x
i

f x

P x

P P
H c P x x +

=

Original SM: Basic Algorithm
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.

c
coarse model

f
fine model

. (0) *x z=
*z

Find the coarse model solution *z

Initialization
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.

f
fine model

c
coarse model

– by connecting similar responses

.
P

( )ix

Find the Space Mapping P

( )iz
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Parameter Extraction: Find

.
P.

(0)x
(0)z

{ }(0) (0) (0)( ) arg min ( ) ( )
z

z P x f x c z= ≡ −

(0)x
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P
.

.
. (0)x

(0)z

*z

(1)x

(1)x.

(1) ( 0 ) * ( 0 )( )x x z z= + −Intuition:

Find



SMSMEO-06

* *( ) ( ( )), . ., ( )f x c P x i e P x z≈ =

{ }(1) (0)arg min ( ( ( )) )
x

x H c P x=

(0) (0) (0)

(0) (0) (0) (0) (0)

( ) ( ) ( )( )

( ) ( ) ( ) ,
PP x P x J x x x

P x P x B x x B I

≈ + −

≡ + − =

(0) * (0) (0) *

(0) (0) *

(1) (0) * (0)

( ) ( ) ( )

( )

( )

P x z P x x x z

z x x z

x x x z z

= ⇒ + − =

⇒ + − =

⇒ = = + −

We assume
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{ }

{ }

(0) *

( )

( ) ( ) ( )

( ) ( ) ( )

( 1) ( )

for 0,1, 2, ... (while ) do
calculate    ( )

( ) arg min ( ) ( )

compute from   ( ) and

arg min ( ( ( )) )

enddo

i

i i i

z
i i i

i i

x

x z
i not STOP

f x

z P x f x c z

P P x B

x H c P x+

=
=

= ≡ −

=

Bandler, Biernacki, Chen, Hemmers, Madsen (1995)

Original SM Algorithm
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Assume  P has been computed at (0 ) (1) ( ), , ... , ix x x

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

i i i
P

i i i i
f

P x P x J x x x

P x P x B x x

≈ + −

≡ + −

where ( ) ( )( )i i
PB J x≈ is, e.g., a Broyden update

i’th Iteration: Estimate P
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( ) ( )where is a first order Taylor estimate of ati i
Ts f x

Traditional Taylor-based Optimization

( )At the iterate minimizeix ( )( ( ))i
TH s x

( ) ( ) ( )

Combined surrogate:
( ) ( ) (1 ) ( ) , 0 1i i i

comb i T i SM is x s x s xη η η= + − ≤ ≤

Bandler, Bakr, Madsen, Søndergaard (2001)
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Taylor error at

SM error at

( )ix

2( ) ( )( ) ( )i i
Tf x f x C x x− ≤ ⋅ −

( )ix
2( ) ( ) ( ) ( )( ) ( ( )) ( ( ))i i i i

c SMf x c P x J P x C x xε− ≤ + ⋅ ⋅ −

Approximation Errors
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Convergence Theory

Convergence has been proved for the combination 
of the Space Mapping with a traditional algorithm. 
Vicente (2003), for the least squares objective.
Madsen, Søndergaard (2004), for a general objective.
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Assume  P has been computed at (0 ) (1) ( ), , ... , ix x x

( ) ( ) ( ) ( )( ) ( ( ) ( ) )i i i i
SMs x c B x x P x≡ − +

i’th Surrogate Model
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Assume  f has been computed at (0 ) (1) ( ), , ... , ix x x

( ) ( )( ) ( , )i is x s x p≡

Input Surrogate Model 
(Bandler et al., 1994)

{ }( ) ( ) ( )
0

arg min || ( ) ( ) ||ii k k
kkp

p w f x s x , p
=

∈ −∑

( ) ( ) ( )s x, p c Bx+d , p = B,d≡Surrogate:

( 1) ( )arg min ( ( ))i i

x
x H s x+ =
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Assume  f has been computed at (0 ) (1) ( ), , ... , ix x x

( ) ( )( ) ( , )i is x s x p≡

Output Surrogate Model 
(Bandler et al., 2003)

{ }( ) ( ) ( )
0

arg min || ( ) ( ) ||ii k k
kkp

p w f x s x , p
=

∈ −∑

( ) ( ) ( )s x, p Ac x +b, p = A,b≡Surrogate:

( 1) ( )arg min ( ( ))i i

x
x H s x+ =

(John Dennis, private communication, 2002)
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Assume  f has been computed at (0 ) (1) ( ), , ... , ix x x

( ) ( )( ) ( , )i i
ps x s x x≡

Implicit Surrogate Model 
(Bandler et al., 2001)

{ }( ) ( ) ( )
0

arg min || ( ) ( ) ||
p

ii k k
p k pkx

x w f x s x ,x
=

∈ −∑

( ) ( , )p ps x,x c x x≡Surrogate:

( 1) ( )arg min ( ( ))i i

x
x H s x+ =
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Output/Implicit Surrogate Model 

{ }( )
0

arg min || ( ) ( ( ) ) ||ii (k) (k)
kkd

d w f x c x d
=

∈ − +∑

( , ) ( )s x d c x d≡ +

( , ) ( )p ps x x c x x= +

Output SM surrogate (additive):

Implicit SM surrogate: Let

{ }( )
0

arg min || ( ) ( ( ) ) ||
p

ii (k) (k)
p k pkx

x w f x c x x
=

∈ − +∑

Thus: Additive Output SM is a special case of Implicit SM
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Input / Implicit Surrogate Model 

{ }( )
0

arg min || ( ) ( , ) ||ii (k) (k)
kkp

p w f x s x p
=

∈ −∑

( ) ( ) ( )s x, p c Bx+d , p = B,d≡

( , ) ( ), ( , )p ps x x c Bx d x B d≡ + =

Input SM surrogate:

Implicit SM surrogate: 

{ }( )
0

arg min || ( ) ( , ) ||
p

ii (k) (k)
p k pkx

x w f x s x x
=

∈ −∑

Thus:   Input SM can be considered a special case of Implicit SM
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Space Mapping for Modelling

Star Distribution for SM-based Modelling
(Bandler et al., 2001)

R
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Assume  f has been computed at ( 0 ) (1) ( ), , ... , Nx x x

( ) ( ) ( ) ( ) ( )( ) ( )i i i i i
fs x A c B x c d≡ + +

Input/Output Surrogate Model
(Bandler et al., 2003)

{ }
( ) ( ) ( ) ( )

( ) ( )
0( )

( , , , )

arg min || ( ) ( ( ) ) ||

i i i i

i k k
kkA,B,c,d

A B c d

w f x A c B x d b
=

= − ⋅ + +∑

( , ) ( )s x,B d c B x+d≡

Output surrogate:

Input surrogate:

( , ) ( )s x, A b Ac x +b≡
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( ) ( ) ( ) ( ) ( )( ) ( )i i i i is x A c B x d b≡ + +

Space Mapping-based Modelling

{ }
( ) ( ) ( ) ( )

( ) ( )
0( , , , )

( , , , )

arg min || ( ) ( ( ) ) ||

i i i i

N k k
kkA B b d

A B b d

w f x A c B x d b
=

= − ⋅ + +∑

( ) 2

2

( ) 2

2
1

exp
( , , )

exp

k

k k jN

j

x x
C

w w x C
x x

C

λ
λ

λ=

⎛ ⎞−
−⎜ ⎟
⎝ ⎠≡ =
⎛ ⎞−
−⎜ ⎟
⎝ ⎠

∑

1 2[ , ], [ , , ... , ]R mid mid Nx X x xδ δ δ δ δ δ∈ ≡ − + =

1/ 1

2 n
in in N

λ δ
=

=
⋅ ∑
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Theorem 

Suppose certain regularity conditions are satisfied.

Let  ε > 0 be given.  Then there exists η > 0 such that:

The SM based modelling technique is arbitrarily accurate:

( ) ( )If :
then ( ) ( ) for any

k k
R B

R

x X x X x x
f x s x x X

η
ε

∀ ∈ ∃ ∈ − <
− < ∈

provided C > 0 is sufficiently small.

{ }(0) (1) ( )Let , , ... , .N
BX x x x≡

Koziel, Bandler, Madsen (2006)
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Convergence Theory

Convergence of the different variations of the 
Space Mapping has been proved under certain 
regularity and Lipschitz conditions.
(Koziel, Bandler, Madsen (2005))

(Koziel’s talk at 16.45 tomorrow) 
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• Space Mapping provides powerful surrogate models (mapped coarse 

models) applicable in optimization as well as in modelling

• Space Mapping has been successfully applied to numerous engineering 

problems

• The Input SM, Output SM, and Implicit SM Space Mapping algorithms 

originate from engineering practice. They are similar in theory, however 

they perform differently in practice

• Space Mapping is provably convergent

• Space Mapping requires skilled engineers for designing the coarse 

models

Conclusions


