

The New Space Mapping Algorithms (since 2000)

Kaj Madsen, John Bandler and Slawomir Koziel

Bandler Corporation, www.bandler.com, john@bandler.com, koziels@mcmaster.ca Technical University of Denmark, www.imm.dtu.dk, km@imm.dtu.dk

Objectives of Space Mapping

- Optimization of very expensive models
- Construct easy-to-calculate surrogate models

We assume two models of a physical object are available:

- an accurate fine model (expensive)
- a simpler coarse model (cheap)

Type of Problem Considered

Minimize w.r.t. $x \in \mathbb{R}^n$ the absolute values of the deviations between response $r(x;t_i)$ and specifications y_i

 $f_i(x) = r(x;t_i) - y_i, \quad i = 1, ..., m$

Find
$$x^* \in \arg\min_x \{H(f(x))\}$$

Original SM for Optimization

(Bandler et al., 1995)

Original SM for Optimization

Problem: minimize H(f(x))SM strategy: minimize H(c(P(x)))SM methodology: For i = 0, 1, 2, ..., find estimates $P^{(i)}$ of P and minimize $H(c(P^{(i)}(x)))$

Original SM: Basic Algorithm

Find initial estimate $x^{(0)}$ to x^* for i = 0, 1, 2, ... do calculate $f(x^{(i)})$ find $P(x^{(i)})$ based on previous points find an estimate $P^{(i)}$ of Pminimize $H(c(P^{(i)}(x)))$ to find $x^{(i+1)}$ enddo

Initialization f С fine model coarse model • Z^{*} • $x^{(0)} = z^*$

Find the coarse model solution z^*

Find the Space Mapping *P* С fine model coarse model $Z^{(i)}$ $x^{(i)}$ P

– by connecting similar responses

Parameter Extraction: Find $x^{(0)}$

$$z^{(0)} = P(x^{(0)}) \equiv \arg\min_{z} \left\{ \left\| f(x^{(0)}) - c(z) \right\| \right\}$$

Find $x^{(1)}$

Intuition: $x^{(1)} = x^{(0)} + (z^* - z^{(0)})$

We assume
$$f(x) \approx c(P(x))$$
, *i.e.*, $P(x^*) = z^*$
 $P(x) \approx P(x^{(0)}) + J_P(x^{(0)})(x - x^{(0)})$
 $P^{(0)}(x) \equiv P(x^{(0)}) + B^{(0)}(x - x^{(0)})$, $B^{(0)} = I$

$$x^{(1)} = \arg\min_{x} \left\{ H(c(P^{(0)}(x))) \right\}$$

$$P^{(0)}(x) = z^{*} \implies P(x^{(0)}) + (x - x^{(0)}) = z^{*}$$

$$\implies z^{(0)} + (x - x^{(0)}) = z^{*}$$

$$\implies x^{(1)} = x = x^{(0)} + (z^{*} - z^{(0)})$$

Original SM Algorithm

$$x^{(0)} = z^*$$

for $i = 0, 1, 2, ...$ (while not STOP) do
calculate $f(x^{(i)})$
 $z^{(i)} = P(x^{(i)}) \equiv \arg\min_{z} \left\{ \left\| f(x^{(i)}) - c(z) \right\| \right\}$
compute $P^{(i)}$ from $P(x^{(i)})$ and $B^{(i)}$
 $x^{(i+1)} = \arg\min_{x} \left\{ H(c(P^{(i)}(x))) \right\}$
enddo

Bandler, Biernacki, Chen, Hemmers, Madsen (1995) SMSMEO-06

i'th Iteration: Estimate *P*

Assume *P* has been computed at $x^{(0)}, x^{(1)}, \dots, x^{(i)}$

$$P(x) \approx P(x^{(i)}) + J_P(x^{(i)})(x - x^{(i)})$$
$$P^{(i)}(x) \equiv P(x_f^{(i)}) + B^{(i)}(x - x^{(i)})$$

where $B^{(i)} \approx J_P(x^{(i)})$ is, e.g., a Broyden update

Traditional Taylor-based Optimization

At the iterate $x^{(i)}$ minimize $H(s_T^{(i)}(x))$ where $s_T^{(i)}$ is a first order Taylor estimate of f at $x^{(i)}$

Combined surrogate:

$$s_{comb}^{(i)}(x) = \eta_i s_T^{(i)}(x) + (1 - \eta_i) s_{SM}^{(i)}(x), \qquad 0 \le \eta_i \le 1$$

Bandler, Bakr, Madsen, Søndergaard (2001)

Approximation Errors

Taylor error at $x^{(i)}$

$$\left\| f(x) - f^{(i)}(x) \right\| \le C_T \cdot \left\| x - x^{(i)} \right\|^2$$

SM error at $x^{(i)}$

$$\|f(x) - c(P^{(i)}(x))\| \le \varepsilon + \|J_c(P^{(i)}(x^{(i)}))\| \cdot C_{SM} \cdot \|x - x^{(i)}\|^2$$

Convergence Theory

Convergence has been proved for the combination of the Space Mapping with a traditional algorithm. *Vicente (2003)*, for the least squares objective. *Madsen, Søndergaard (2004)*, for a general objective.

i'th Surrogate Model

Assume *P* has been computed at $x^{(0)}, x^{(1)}, \dots, x^{(i)}$

$$s_{SM}^{(i)}(x) \equiv c(B^{(i)}(x-x^{(i)}) + P(x^{(i)}))$$

Input Surrogate Model

(Bandler et al., 1994)

Surrogate: $s(x, p) \equiv c(Bx+d), \quad p = (B, d)$

Assume *f* has been computed at $x^{(0)}, x^{(1)}, \dots, x^{(i)}$

$$p^{(i)} \in \arg\min_{p} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - s(x^{(k)}, p) \| \right\}$$
$$s^{(i)}(x) \equiv s(x, p^{(i)})$$

 $x^{(i+1)} = \arg\min_{x} H(s^{(i)}(x))$

Output Surrogate Model

(Bandler et al., 2003)

Surrogate: $s(x, p) \equiv Ac(x) + b$, p = (A, b)

Assume *f* has been computed at $x^{(0)}, x^{(1)}, \dots, x^{(i)}$

$$p^{(i)} \in \arg\min_{p} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - s(x^{(k)}, p) \| \right\}$$
$$s^{(i)}(x) \equiv s(x, p^{(i)})$$

$$x^{(i+1)} = \arg\min_{x} H(s^{(i)}(x))$$

(John Dennis, private communication, 2002)

Implicit Surrogate Model

(Bandler et al., 2001)

Surrogate: $s(x, x_p) \equiv c(x, x_p)$

Assume *f* has been computed at $x^{(0)}, x^{(1)}, \dots, x^{(i)}$

$$x_{p}^{(i)} \in \arg\min_{x_{p}} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - s(x^{(k)}, x_{p}) \| \right\}$$
$$s^{(i)}(x) \equiv s(x, x_{p}^{(i)})$$

$$x^{(i+1)} = \arg \min_{x} H(s^{(i)}(x))$$

Output/Implicit Surrogate Model

Output SM surrogate (additive): $s(x,d) \equiv c(x) + d$ $d^{(i)} \in \arg\min_{d} \left\{ \sum_{k=0}^{i} w_k \| f(x^{(k)}) - (c(x^{(k)}) + d) \| \right\}$

Implicit SM surrogate: Let $s(x, x_p) = c(x) + x_p$

$$x_{p}^{(i)} \in \arg\min_{x_{p}} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - (c(x^{(k)}) + x_{p}) \| \right\}$$

Thus: Additive Output SM is a special case of Implicit SM

Input / Implicit Surrogate Model

Input SM surrogate: $s(x, p) \equiv c(Bx+d)$, p = (B, d)

$$p^{(i)} \in \arg\min_{p} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - s(x^{(k)}, p) \| \right\}$$

Implicit SM surrogate:

DTU

$$s(x, x_{p}) \equiv c(Bx + d), \quad x_{p} = (B, d)$$
$$x_{p}^{(i)} \in \arg\min_{x_{p}} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - s(x^{(k)}, x_{p}) \| \right\}$$

Thus: Input SM can be considered a special case of Implicit SM SMSMEO-06

Space Mapping for Modelling

Input/Output Surrogate Model

(Bandler et al., 2003)

Input surrogate: $s(x, B, d) \equiv c(Bx+d)$

Output surrogate: $s(x, A, b) \equiv Ac(x) + b$

Assume f has been computed at $x^{(0)}, x^{(1)}, \dots, x^{(N)}$ $(A^{(i)}, B^{(i)}, c^{(i)}, d^{(i)})$ $= \arg \min_{(A,B,c,d)} \left\{ \sum_{k=0}^{i} w_{k} \| f(x^{(k)}) - (A \cdot c(Bx^{(k)} + d) + b) \| \right\}$

$$s^{(i)}(x_f) \equiv A^{(i)}c(B^{(i)}x+c^{(i)})+d^{(i)}$$

Space Mapping-based Modelling $x \in X_R \equiv [x_{mid} - \delta, x_{mid} + \delta], \qquad \delta = [\delta_1, \delta_2, \dots, \delta_N]$ $(A^{(i)}, B^{(i)}, b^{(i)}, d^{(i)})$ $= \arg \min_{(A,B,b,d)} \left\{ \sum_{k=0}^{N} w_k \| f(x^{(k)}) - (A \cdot c(Bx^{(k)} + d) + b) \| \right\}$ $s^{(i)}(x) \equiv A^{(i)}c(B^{(i)}x+d^{(i)})+b^{(i)}$ $w_{k} \equiv w_{k}(x, C, \lambda) = \frac{\exp\left(-\frac{\|x - x^{(k)}\|^{2}}{C\lambda^{2}}\right)}{\sum_{i=1}^{N} \exp\left(-\frac{\|x - x^{(j)}\|^{2}}{C\lambda^{2}}\right)} \qquad \lambda = \frac{2}{n \cdot N^{1/n}} \sum_{i=1}^{n} \delta_{i}$

The SM based modelling technique is arbitrarily accurate:

Theorem Let $X_B = \{x^{(0)}, x^{(1)}, \dots, x^{(N)}\}$. Suppose certain regularity conditions are satisfied. Let $\varepsilon > 0$ be given. Then there exists $\eta > 0$ such that: If $\forall x \in X_R \quad \exists x^{(k)} \in X_B : ||x - x^{(k)}|| < \eta$ then $||f(x) - s(x)|| < \varepsilon$ for any $x \in X_R$ provided C > 0 is sufficiently small.

Koziel, Bandler, Madsen (2006)

Convergence Theory

Convergence of the different variations of the Space Mapping has been proved under certain regularity and Lipschitz conditions.

(Koziel, Bandler, Madsen (2005))

(Koziel's talk at 16.45 tomorrow)

Conclusions

- Space Mapping provides powerful surrogate models (mapped coarse models) applicable in optimization as well as in modelling
- Space Mapping has been successfully applied to numerous engineering problems
- The Input SM, Output SM, and Implicit SM Space Mapping algorithms originate from engineering practice. They are similar in theory, however they perform differently in practice
- Space Mapping is provably convergent
- Space Mapping requires skilled engineers for designing the coarse models

