Space Mapping Optimization Exploiting Exact Sensitivities

John W. Bandler and Ahmed S. Mohamed

Simulation Optimization Systems Research Laboratory McMaster University

Bandler Corporation, www.bandler.com john@bandler.com

presented at

Workshop on "Optimization Engines for Wireless and Microwave Computer Aided Engineering" Carleton University, Ottawa, ON, June 20, 2002

Outline

ASM for microwave circuit design

Gradient Parameter Extraction (GPE)

mapping update

proposed algorithm

examples

conclusions

Introduction

using full wave EM simulator (fine model) inside the optimization loop is prohibitive

Introduction

The Space Mapping Concept (*Bandler et al.*, 1994-) $R_f(x_f)$ x_{f} $R_c(x_c)$ \boldsymbol{x}_{c} fine coarse model model $\nabla \times H = j \omega D + J$ \boldsymbol{x}_{f} $R_f(x_f)$ $R_c(x_c)$ \boldsymbol{x}_{c} **D**=ε**E** $\neq C_3 = f(w,d)$ $\nabla \circ \boldsymbol{B} = 0$ $\nabla \times E = -j\omega B$ $\nabla \circ \boldsymbol{D} = \rho$ $B = \mu H$ \boldsymbol{x}_{f} $\boldsymbol{x}_c = \boldsymbol{P}(\boldsymbol{x}_f)$ \boldsymbol{x}_{c} such that $\boldsymbol{R}_{c}(\boldsymbol{P}(\boldsymbol{x}_{f})) \approx \boldsymbol{R}_{f}(\boldsymbol{x}_{f})$

Jacobian-Space Mapping Relationship (*Bakr et al., 1999*)

through PE we match the responses

 $\boldsymbol{R}_f(\boldsymbol{x}_f) \approx \boldsymbol{R}_c(\boldsymbol{P}(\boldsymbol{x}_f))$

by differentiation

$$\left(\frac{\partial \boldsymbol{R}_{f}^{T}}{\partial \boldsymbol{x}_{f}}\right)^{T} \approx \left(\frac{\partial \boldsymbol{R}_{c}^{T}}{\partial \boldsymbol{x}_{c}}\right)^{T} \cdot \left(\frac{\partial \boldsymbol{x}_{c}^{T}}{\partial \boldsymbol{x}_{f}}\right)^{T}$$

Jacobian-Space Mapping Relationship (Bakr et al., 1999)

given coarse model Jacobian J_c and space mapping matrix B we estimate

$$J_f(x_f) \approx J_c(x_c)B$$

given J_c and J_f we estimate (least squares)

$$\boldsymbol{B} \approx (\boldsymbol{J}_c^T \boldsymbol{J}_c)^{-1} \boldsymbol{J}_c^T \boldsymbol{J}_f$$

Gradient Parameter Extraction (GPE) (*Bandler et al., 2002*)

at the *j*th iteration

$$\boldsymbol{x}_{c}^{(j)} = \arg\min_{\boldsymbol{x}_{c}} \| [\boldsymbol{e}_{0}^{T} \quad \lambda \boldsymbol{e}_{1}^{T} \quad \cdots \quad \lambda \boldsymbol{e}_{n}^{T}]^{T} \|, \ \lambda \geq 0$$

where λ is a weighting factor and $E = [e_1 e_2 \dots e_n]$

$$\boldsymbol{e}_0 = \boldsymbol{R}_f(\boldsymbol{x}_f^{(j)}) - \boldsymbol{R}_c(\boldsymbol{x}_c)$$
$$\boldsymbol{E} = \boldsymbol{J}_f(\boldsymbol{x}_f^{(j)}) - \boldsymbol{J}_c(\boldsymbol{x}_c)\boldsymbol{B}$$

Mapping Update Using Exact Derivatives

$$\boldsymbol{B}^{(j)} = (\boldsymbol{J}_c^{(j)T} \boldsymbol{J}_c^{(j)})^{-1} \boldsymbol{J}_c^{(j)T} \boldsymbol{J}_f^{(j)T}$$

Mapping Update Using Hybrid Approach

finite difference initialization used

$$\boldsymbol{B}^{(0)} = (\boldsymbol{J}_{c}^{(0)T} \boldsymbol{J}_{c}^{(0)})^{-1} \boldsymbol{J}_{c}^{(0)T} \boldsymbol{J}_{f}^{(0)}$$

then update using Broyden formula

Mapping Update By Constraining *B* (*Bakr et al., 2000*)

$$\boldsymbol{B} = (\boldsymbol{J}_c^T \boldsymbol{J}_c + \eta^2 \boldsymbol{I})^{-1} (\boldsymbol{J}_c^T \boldsymbol{J}_f + \eta^2 \boldsymbol{I})$$

Notation

(Bandler et al., 1995)

$$f^{(j)} = x_c^{(j)} - x_c^*$$
$$h^{(j)} = x_f^{(j+1)} - x_f^{(j)}$$
$$B^{(j)}h^{(j)} = -f^{(j)}$$

Proposed Algorithm (*Bandler et al., 2002*)

- Step 1 set j = 1, B = I for the PE process
- Step 2 obtain the optimal coarse model design x_c^*
- Step 3 set $\mathbf{x}_{f}^{(1)} = \mathbf{x}_{c}^{*}$
- Step 4 if derivatives exist execute GPE otherwise, execute the traditional PE with $\lambda = 0$
- Step 5 initialize the mapping matrix B exploiting derivatives

Step 6 stop if

$$\left\|\boldsymbol{f}^{(j)}\right\| < \varepsilon$$

Proposed Algorithm (continued)

Step 7 evaluate $h^{(j)}$ using quasi-Newton step

$$\boldsymbol{B}^{(j)}\boldsymbol{h}^{(j)} = -\boldsymbol{f}^{(j)}$$

- Step 8 find the next $x_f^{(j+1)}$
- Step 9 perform GPE or PE as in Step 4

Step 10 if derivatives exist obtain $B^{(j)}$ using

$$\boldsymbol{B}^{(j)} = (\boldsymbol{J}_c^{(j)T} \boldsymbol{J}_c^{(j)})^{-1} \boldsymbol{J}_c^{(j)T} \boldsymbol{J}_f^{(j)T}$$

otherwise update $B^{(j)}$ using a Broyden formula

Proposed Algorithm (continued)

Step 11 set j = j+1 and go to Step 6

the result is the solution \overline{x}_{f} and mapping matrix **B**

Original Rosenbrock Function (Coarse Model) (*Bandler et al., 1999*)

$$R_{c}(\boldsymbol{x}_{c}) = 100(x_{2} - x_{1}^{2})^{2} + (1 - x_{1})^{2}$$

where $\boldsymbol{x}_{c} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$ and $\boldsymbol{x}_{c}^{*} = \begin{bmatrix} 1.0 \\ 1.0 \end{bmatrix}$

Shifted Rosenbrock Function (Fine Model) (Bandler et al., 1999) $R_f(\mathbf{x}_f) = 100((x_2 + \alpha_2) - (x_1 + \alpha_1)^2)^2 + (1 - (x_1 + \alpha_1))^2$ where $\mathbf{x}_f = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, $\begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -0.2 \\ 0.2 \end{bmatrix}$ hence $\mathbf{x}_f^* = \begin{bmatrix} 1.2 \\ 0.8 \end{bmatrix}$

Original Rosenbrock Function (Coarse Model Contour Plot) (*Bandler et al., 1999*)

Shifted Rosenbrock Function (*Bandler et al., 2002*) Single point PE (SPE): nonuniqueness exists

Shifted Rosenbrock Function (*Bandler et al., 2002*) Gradient PE (1st iteration)

Shifted Rosenbrock Function (*Bandler et al., 2002*) Gradient PE (2nd iteration)

Shifted Rosenbrock Function Results

(Bandler et al., 2002)

iteration	$oldsymbol{x}_{c}^{(j)}$	$oldsymbol{f}^{(j)}$	$B^{(j)}$	$\pmb{h}^{(j)}$	$oldsymbol{x}_{f}^{(j)}$	R_{f}
0	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$				$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	31.4
1	$\begin{bmatrix} 0.8\\ 1.2 \end{bmatrix}$	$\begin{bmatrix} -0.2\\ 0.2 \end{bmatrix}$	$\begin{bmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{bmatrix}$	$\begin{bmatrix} 0.2 \\ -0.2 \end{bmatrix}$	$\begin{bmatrix} 1.2\\ 0.8 \end{bmatrix}$	0
	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$				

Transformed Rosenbrock Function (Fine Model) (*Bandler et al., 2002*)

linear transformation of the original Rosenbrock function

$$R_{f}(\boldsymbol{x}_{f}) = 100(u_{2} - u_{1}^{2})^{2} + (1 - u_{1})^{2}$$

where $\boldsymbol{u} = \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix} = \begin{bmatrix} 1.1 & -0.2 \\ 0.2 & 0.9 \end{bmatrix} \boldsymbol{x}_{f} + \begin{bmatrix} -0.3 \\ 0.3 \end{bmatrix}$
 $\boldsymbol{x}_{f}^{*} = \begin{bmatrix} 1.2718447 \\ 0.4951456 \end{bmatrix}$

Transformed Rosenbrock Function (*Bandler et al., 2002*) Single point PE (SPE): nonuniqueness exists

Transformed Rosenbrock Function (*Bandler et al., 2002*) GPE (1st PE iteration)

Transformed Rosenbrock Function (*Bandler et al., 2002*) GPE (2nd PE iteration)

Transformed Rosenbrock Function (*Bandler et al., 2002*) GPE (3rd PE iteration)

Transformed Rosenbrock Function (*Bandler et al., 2002*) GPE (4th PE iteration)

Transformed Rosenbrock Function (*Bandler et al., 2002*) GPE (5th and 6th PE iteration)

Transformed Rosenbrock Results (Bandler et al., 2002)

iteration	$oldsymbol{x}_{c}^{(j)}$	$oldsymbol{f}^{(j)}$	$B^{(j)}$	$h^{(j)}$	$oldsymbol{x}_{f}^{(j)}$	R_{f}
0	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$				$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	108.3
1	$\begin{bmatrix} 0.526 \\ 1.384 \end{bmatrix}$	$\begin{bmatrix} -0.474\\ 0.384 \end{bmatrix}$	$\begin{bmatrix} 1.01 & -0.05 \\ 0.01 & 1.01 \end{bmatrix}$	$\begin{bmatrix} 0.447\\ -0.385 \end{bmatrix}$	$\begin{bmatrix} 1.447\\ 0.615 \end{bmatrix}$	5.119
2	$\begin{bmatrix} 1.185\\ 1.178 \end{bmatrix}$	$\begin{bmatrix} 0.185\\ 0.178 \end{bmatrix}$	$\begin{bmatrix} 0.96 & -0.12 \\ -0.096 & 1.06 \end{bmatrix}$	$\begin{bmatrix} -0.218\\ -0.187 \end{bmatrix}$	$\begin{bmatrix} 1.23 \\ 0.427 \end{bmatrix}$	4.4E–3
3	$\begin{bmatrix} 0.967 \\ 0.929 \end{bmatrix}$	$\begin{bmatrix} -0.033\\ -0.071 \end{bmatrix}$	$\begin{bmatrix} 1.09 & -0.19 \\ 0.168 & 0.92 \end{bmatrix}$	$\begin{bmatrix} 0.0429\\ 0.0697 \end{bmatrix}$	$\begin{bmatrix} 1.273\\ 0.4970 \end{bmatrix}$	1.8E–6
4	$\begin{bmatrix} 1.001\\ 1.001 \end{bmatrix}$	$\begin{bmatrix} 0.001\\ 0.001 \end{bmatrix} \begin{bmatrix} 0.001\\ 0.001 \end{bmatrix}$	1.10001 -0.1999 0.1999 0.9001	$\left[\begin{array}{c} -0.001\\ -0.002 \end{array}\right]$	$\begin{bmatrix} 1.2719\\ 0.4952 \end{bmatrix}$	5E–10

Transformed Rosenbrock Results (Bandler et al., 2002)

iteration	$oldsymbol{x}_{c}^{(j)}$	$oldsymbol{f}^{(j)}$	$B^{(j)}$	$h^{(j)}$	$oldsymbol{x}_{f}^{(j)}$	R_{f}
5	$\begin{bmatrix} 1.00002 \\ 1.00004 \end{bmatrix}$	$1\mathrm{E} - 4 \times \begin{bmatrix} 0.2\\ 0.4 \end{bmatrix}$	$\begin{bmatrix} 1.1 & -0.2 \\ 0.2 & 0.9 \end{bmatrix}$	$1E-4 \times \begin{bmatrix} 0.3\\0.5 \end{bmatrix}$	$\begin{bmatrix} 1.2718\\ 0.4951 \end{bmatrix}$	3E–17
6	$\begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}$	$1E - 8 \times \begin{bmatrix} 0.1\\0.3 \end{bmatrix}$	$\begin{bmatrix} 1.1 & -0.2 \\ 0.2 & 0.9 \end{bmatrix}$	$1E - 8 \times \begin{bmatrix} 0.2 \\ 0.3 \end{bmatrix}$	$oldsymbol{x}_{f}^{*}$	9E–29

$$\boldsymbol{x}_{f}^{*} = \begin{bmatrix} 1.27184466\\ 0.49514563 \end{bmatrix}$$

Bandstop Microstrip Filter with Quarter-Wave Open Stubs (*Bakr et al., 2000*)

Bandstop Microstrip Filter: Fine and Coarse Models (*Bakr et al., 2000*)

fine model:

coarse model:

 $OSA90/hope^{TM}$ ideal transmission line sections and empirical formulas

Optimization of the Bandstop Filter (*Bandler et al., 2002*)

finite differences estimate the fine and coarse Jacobians

use hybrid approach to update mapping

the final mapping is

	0.532	-0.037	0.026	0.017	-0.006
	-0.051	0.543	0.022	-0.032	0.026
B =	0.415	0.251	1.024	0.073	0.011
	0.169	-0.001	-0.022	0.963	0.008
	-0.213	-0.003	-0.045	-0.052	0.958

Optimization of the Bandstop Filter (continued) (*Bandler et al., 2002*)

initial and final designs

Parameter	$x_f^{(0)}$	$x_{f}^{(5)}$			
W_1	4.560	8.7464			
W_2	9.351	19.623			
L_0	107.80	97.206			
L_1	111.03	116.13			
L_2	108.75	113.99			
All values are in mils					

Optimization of the Bandstop Filter (*Bandler et al., 2002*)

initial coarse model OSA90TM response (-) initial fine response em^{TM} (•)

Optimization of the Bandstop Filter (*Bandler et al., 2002*)

initial coarse model OSA90TM response (–) final fine response em^{TM} (•)

Optimization of the Bandstop Filter (*Bandler et al., 2002*)

 $\|\mathbf{x}_{c} - \mathbf{x}_{c}^{*}\|_{2}$ versus iteration for the bandstop microstrip filter

iteration

Conclusions

new Aggressive Space Mapping techniques

Gradient Parameter Extraction (GPE) exploiting available Jacobians (exact or approximate)

consideration of mapping updates

available Jacobians can be used to build the mapping

Reference

 J.W. Bandler, A.S. Mohamed, M.H. Bakr, K. Madsen and J. Søndergaard, "EM-based optimization exploiting partial space mapping and exact sensitivities," *IEEE MTT-S Int. Microwave Symp.* (Seattle, WA, June 2002), pp. 2101-2104.

Mapping Update By Constraining *B* (Bakr et al., 2000)

to constrain the mapping matrix to be close to I

$$\boldsymbol{B} = \arg\min_{\boldsymbol{B}} \left\| \left[\boldsymbol{e}_1^T \cdots \boldsymbol{e}_n^T \eta \Delta \boldsymbol{b}_1^T \cdots \eta \Delta \boldsymbol{b}_n^T \right]^T \right\|_2^2$$

where η is a weighting factor, e_i and Δb_i are the *i*th columns of *E* and ΔB

$$\boldsymbol{E} = \boldsymbol{J}_f - \boldsymbol{J}_c \boldsymbol{B}$$
$$\Delta \boldsymbol{B} = \boldsymbol{B} - \boldsymbol{I}$$

analytical solution is

$$\boldsymbol{B} = (\boldsymbol{J}_c^T \boldsymbol{J}_c + \eta^2 \boldsymbol{I})^{-1} (\boldsymbol{J}_c^T \boldsymbol{J}_f + \eta^2 \boldsymbol{I})$$