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Introduction and Objectives

Design sensitivity analysis

sensitivity of the state variables 

sensitivity of the response (or objective) function

Objectives

obtain the response and its gradient in the design 
variable space through a single full-wave analysis

applications with frequency-domain solvers

feasibility of the approach
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The Adjoint Variable Method

the linear EM problem
( )Z x I = V

1[ ]Tnx x=x - design parameters

1[ ]TmI I=I - state variables

define a scalar function (response function, objective 
function)

( ), ( )f x I x
objective

1 2 n

f f ff
x x x

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

xsubject to ( )f∇x Z x I = V,
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The Adjoint Variable Method

state variable sensitivity 
(direct differentiation method, DDM)
E.J. Haug, K.K. Choi and V. Komkov, Design Sensitivity Analysis of Structural Systems, 1986
J.W. Bandler, Optimization, vol. 1, Lecture Notes, 1994
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The Adjoint Variable Method

response function sensitivity
(adjoint variable method, AVM)

1 ( )ef f f −  ∇ = ∇ +∇ ⋅ ∇ −∇ x x I x xZ V ZI

[ ]
11ˆ T TTf f
−−   = ∇ ⋅ = ∇   I II Z Z

[ ]ˆ TT f= ∇ IZ I

ˆ ( )e Tf f  ∇ = ∇ + ∇ −∇ x x x xI V ZI

ˆ , 1,2, ,Te

i i i i

ff i n
x x x x

 ∂∂ ∂ ∂
= + − = ∂ ∂ ∂ ∂ 

…V ZI I

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory



The Adjoint Variable Method

computational efficiency (single excitation mode)

FDA 1n +

DDM

AVM

LU-decompositions Back-substitutions

1n +

1

1 1

n
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The Adjoint Variable Method

feasibility  and accuracy of the AVM
finite-difference approximations within the AVM

ˆ , 1, ,Te

i i i i

ff i n
x x x x

 ∂∂ ∂ ∂
= + − = ∂ ∂ ∂ ∂ 

…V ZI I

the matrix sensitivity

[ ]ˆ Tf= ∇IV

, 1, ,
i i

i n
x x
∂

=
∂

…Z Z

[ ]ˆ TT f= ∇ IZ I

1

ˆ , ,
m

f f
I I

 
  

…V

the adjoint excitation
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Applications 

1. Input impedance of a dipole (Pocklington’s eqn., 
complex code)
sensitivity with respect to the normalized length

/nL L λ=
/in nR L∂ ∂ /in nX L∂ ∂ subject to =ZI V

(1) finite-difference approach (FDA):

( ) ( ) ( ) ( )

( )
( ) ( ) ( )k k k k

in n in n n in n
k

n n

Z L Z L L Z L
L L

∂ + −
∂

( ) ( )0.01k k
n nL L=
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Applications 

adjoint variable method (AVM):
the matrix sensitivity

( ) ( ) ( )

( ) ( )

( ) ( )k k k
ij ij n n ij n
k k

n n

Z Z L L Z L
L L

+ − ( ) ( )0.01k k
n nL L=

(2) complete re-meshing: full ∆Z matrix
(3,4) boundary layer: sparse ∆Z matrix
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( )kL

( ) ( )k kL L+

δ

δ δ+
Fig. 1. The dipole and the boundary layer concept (S. Amari, 2001).

0.005a λ=
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the adjoint excitation (analytical)

2
(1/ ) 1ˆ ˆ, 0 forin b

b j
b b b

Z IV V j b
I I I

∂ ∂
= = = − = ≠
∂ ∂

Fig. 2. Derivative of the input resistance of the dipole with respect to     .nL
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Fig. 3. Derivative of the input reactance of the dipole with respect to     .nL
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Applications 

2. Input impedance of a Yagi-Uda array

sensitivity with respect to 
the normalized separation 
distance driver-reflector and 
the normalized reflector 
length

1 1[ ]T
n nl s=x

1s
2s

3s
4s

5s

1l
2l

3l
4l

5l
6l

2a

z y
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0.0030.340.26070.4060.450.5243

2 /l λ /dl λ 1 /s λ /ds λ1 /l λ /a λ

3 4 5 6 2 3 4 5;d dl l l l l s s s s s= = = = = = = =

Fig. 4. The geometry of the Yagi-Uda array (initial design). 
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Fig. 5. Input resistance sensitivity with respect to s1n .
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Applications 

3. Gain of a Yagi-Uda array (Pocklington’s eqn., real 
code)

sensitivity with respect to the normalized 
separation distances

/ , 1, ,5ks s kλ= = …

/ kG s∂ ∂ subject to =ZI V,
Re{ }
Im{ }
 =   

I
I

I

ˆ , 1, ,5Te

nn ni ii

G i
s s

G
s

 ∂ ∂
= = ∂ ∂ 

∂
∂

…Z- I I

the gain sensitivity depends on      explicitlynis
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Applications 

V̂the adjoint excitation is a full vector

analytical

ˆ
Re( )

ˆ
Im( )

k
k

k m
k

GV
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GV
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∂
=
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∂
=
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ˆ
Re( )

ˆ
Im( )
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Applications 

Fig. 7. Gain and gain sensitivity of the Yagi-Uda array with respect to      .4ns
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Applications 

Fig. 8. Gain sensitivity of the Yagi-Uda array with respect to      ; finite-
difference approximation of        .

4ns
V̂
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Applications 

4. Optimization of the Yagi-Uda array for maximum 
gain and an input impedance of 73 Ω

design parameters

1 2 3 4 5[ ]T
n n n n ns s s s s=x

objective function

( ) ( )2 2 2( ) 0.5 Re{ } 73 Im{ } 0.5in inf Z Z G = − + − x

we start from a design already optimized for gain only
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Applications 

iteration
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Fig. 9. The progress of the objective function during the optimization of the 
input impedance and the gain of the Yagi-Uda array. 
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Applications 
TABLE I

DESIGN PARAMETERS, INPUT IMPEDANCE AND GAIN OF THE YAGI-UDA ARRAY DESIGN

1ns 2ns 3ns 4ns 5ns inR inX

13.750.3871.800.39660.40460.37710.41680.290613

13.770.9271.510.39370.40640.37490.41750.288412

13.59-1.2772.260.38250.40570.36850.41930.287411

13.45-1.0072.990.36270.42050.37770.40610.299910

13.250.9775.630.36450.36070.37940.43570.25319

13.415.4672.850.33620.48220.38440.39230.30628

12.91-5.7772.360.34320.46530.35350.39860.32147

12.87-5.9970.230.39090.42040.39530.37440.34506

13.9211.1865.850.40230.45190.42320.36130.30865

13.0813.2573.330.41580.45910.42290.37200.31584

11.19-16.2681.020.35440.41220.36390.42940.35443

11.08-23.5277.770.37650.38530.33010.40500.34552

15.08-4.1547.100.43530.44710.37350.34000.26071

G
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5. Optimization of a patch antenna for an input 
impedance of 50 Ω

design parameters

objective function

W

L

Tw

2.32
1.59 mm
5 mm
2.5 mm
15 mm
90 mm

14 mm

r
h
w
T
L
W
S

ε =
=
=
=
=
=
=

S[ ]TL W S=x

( ) ( )2 2( ) Re{ } 50 Im{ }in inf Z Z= − +x



Applications 
(0) [50  90  14] (mm)T=x (4) [51.51  96.39  15.004] (mm)T=x
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Fig. 10. The progress of the objective function during the optimization of the 
input impedance of the patch antenna. 

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory



Conclusions

The AVM is implemented into a feasible technique for 
the frequency-domain DSA of HF structures

reduction of the CPU time requirements for the 
DSA by a factor of n to (n+1)

improved accuracy and convergence

feasibility: does not require significant 
modification of existing codes

Factors affecting the accuracy
finite differences with the        matrix: insignificantix∂ Z
finite differences with        : significantkI f∂
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Conclusions

Applications of the DSA based on the AVM
optimization
modeling
statistical and yield analysis

Limitations

linear frequency-domain analysis
extension to nonlinear frequency-domain 
analysis is straightforward

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory


