ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY ANALYSIS WITH THE METHOD OF MOMENTS

N.K. Georgieva, S. Glavic, M.H. Bakr and J.W. Bandler

McMaster University, CRL223, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada

```
e-mail: talia@mcmaster.ca
tel: (905)525 9140 ext. }2714
fax: (905) 5234407
```


Outline

Introduction and Objectives
design sensitivity analysis
The Adjoint Variable Method
the direct differentiation method
the adjoint variable method
computational efficiency, feasibility, accuracy
Applications with Frequency-Domain Solvers
Conclusions
McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Introduction and Objectives

Design sensitivity analysis
sensitivity of the state variables
sensitivity of the response (or objective) function

Objectives
obtain the response and its gradient in the design variable space through a single full-wave analysis
applications with frequency-domain solvers
feasibility of the approach
McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

The Adjoint Variable Method

the linear EM problem

$$
Z(x) I=V
$$

$\boldsymbol{x}=\left[x_{1} \cdots x_{n}\right]^{T} \quad$ - design parameters
$\boldsymbol{I}=\left[I_{1} \cdots I_{m}\right]^{T} \quad$ - state variables
define a scalar function (response function, objective function)

$$
f(x, \bar{I}(x))
$$

objective

$$
\nabla_{\boldsymbol{x}} f \text { subject to } \boldsymbol{Z}(\boldsymbol{x}) \boldsymbol{I}=\boldsymbol{V}, \quad \nabla_{\boldsymbol{x}} f=\left[\frac{\partial f}{\partial x_{1}} \frac{\partial f}{\partial x_{2}} \cdots \frac{\partial f}{\partial x_{n}}\right]
$$

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

The Adjoint Variable Method

state variable sensitivity

(direct differentiation method, DDM)
E.J. Haug, K.K. Choi and V. Komkov, Design Sensitivity Analysis of Structural Systems, 1986
J.W. Bandler, Optimization, vol. 1, Lecture Notes, 1994

$$
\left.\begin{array}{l}
\nabla_{\boldsymbol{x}} \boldsymbol{I}=\boldsymbol{Z}^{-1}\left[\nabla_{\boldsymbol{x}} \boldsymbol{V}-\nabla_{\boldsymbol{x}}(\boldsymbol{Z} \overline{\boldsymbol{I}})\right] \\
\frac{\partial \boldsymbol{I}}{\partial x_{i}}=\boldsymbol{Z}^{-1}\left[\frac{\partial \boldsymbol{V}}{\partial x_{i}}-\frac{\partial \boldsymbol{Z}}{\partial x_{i}} \overline{\boldsymbol{I}}\right], i=1, \ldots, n \\
\nabla_{\boldsymbol{x}} f=\nabla_{\boldsymbol{x}}^{e} f+\nabla_{\boldsymbol{I}} f \cdot \nabla_{\boldsymbol{x}} \boldsymbol{I} \\
\nabla_{\boldsymbol{I}} f=\left[\frac{\partial f}{\partial I_{1}}\right.
\end{array} \cdots \frac{\partial f}{\partial I_{m}}\right] ; \nabla_{\boldsymbol{x}} \boldsymbol{I}=\left[\begin{array}{ccc}
\frac{\partial I_{1}}{\partial x_{1}} & \cdots & \frac{\partial I_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial I_{m}}{\partial x_{1}} & \cdots & \frac{\partial I_{m}}{\partial x_{n}}
\end{array}\right]
$$

The Adjoint Variable Method

response function sensitivity
(adjoint variable method, AVM)

$$
\begin{gathered}
\nabla_{x} f=\nabla_{x}^{e} f+\nabla_{\boldsymbol{I}} f \cdot \boldsymbol{Z}^{-1}\left[\nabla_{\boldsymbol{x}} \boldsymbol{V}-\nabla_{\boldsymbol{x}}(\overline{\boldsymbol{Z}})\right] \\
\hat{\boldsymbol{I}}=\left[\nabla_{\boldsymbol{I}} f \cdot \boldsymbol{Z}^{-1}\right]^{T}=\left[\boldsymbol{Z}^{T}\right]^{-1}\left[\nabla_{\boldsymbol{I}} f\right]^{T} \\
\boldsymbol{Z}^{T} \hat{\boldsymbol{I}}=\left[\nabla_{\boldsymbol{I}} f\right]^{T}
\end{gathered}
$$

$$
\nabla_{\boldsymbol{x}} f=\nabla_{\boldsymbol{x}}^{e} f+\hat{\boldsymbol{I}}^{T}\left[\nabla_{\boldsymbol{x}} \boldsymbol{V}-\nabla_{\boldsymbol{x}}(\overline{\boldsymbol{Z}} \overline{\boldsymbol{I}})\right]
$$

$$
\frac{\partial f}{\partial x_{i}}=\frac{\partial_{e} f}{\partial x_{i}}+\hat{\boldsymbol{I}}^{T}\left[\frac{\partial \boldsymbol{V}}{\partial x_{i}}-\frac{\partial \boldsymbol{Z}}{\partial x_{i}} \overline{\boldsymbol{I}}\right], i=1,2, \ldots, n
$$

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

The Adjoint Variable Method

computational efficiency (single excitation mode)

LU-decompositions Back-substitutions

FDA
$n+1$
$n+1$
DDM
1
n
AVM
1
1

Department of Electrical and Computer Engineering

The Adjoint Variable Method

feasibility and accuracy of the AVM
finite-difference approximations within the AVM
the matrix sensitivity

$$
\begin{aligned}
\frac{\partial f}{\partial x_{i}}=\frac{\partial_{e} f}{\partial x_{i}}+\hat{\boldsymbol{I}}^{T}\left[\frac{\partial \boldsymbol{V}}{\partial x_{i}}-\frac{\partial \boldsymbol{Z}}{\partial x_{i}} \overline{\boldsymbol{I}}\right], i=1, \ldots, n \\
\frac{\partial \boldsymbol{Z}}{\partial x_{i}} \simeq \frac{\Delta \boldsymbol{Z}}{\Delta x_{i}}, i=1, \ldots, n
\end{aligned}
$$

the adjoint excitation

$$
\begin{array}{ll}
\boldsymbol{Z}^{T} \hat{\boldsymbol{I}}=\left[\nabla_{\boldsymbol{I}} f\right]^{T} & \hat{\boldsymbol{V}} \\
=\left[\nabla_{\boldsymbol{I}} f\right]^{T} \\
& \hat{\boldsymbol{V}} \simeq\left[\frac{\Delta f}{\Delta I_{1}}, \ldots, \frac{\Delta f}{\Delta I_{m}}\right]
\end{array}
$$

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

1. Input impedance of a dipole (Pocklington's eqn., complex code)
sensitivity with respect to the normalized length $L_{n}=L / \lambda$

$$
\partial R_{i n} / \partial L_{n} \quad \partial X_{i n} / \partial L_{n} \text { subject to } \boldsymbol{Z I}=\boldsymbol{V}
$$

(1) finite-difference approach (FDA):

$$
\frac{\partial Z_{i n}\left(L_{n}^{(k)}\right)}{\partial L_{n}} \simeq \frac{Z_{i n}\left(L_{n}^{(k)}+\Delta L_{n}^{(k)}\right)-Z_{i n}\left(L_{n}^{(k)}\right)}{\Delta L_{n}^{(k)}} \quad \Delta L_{n}^{(k)}=0.01 L_{n}^{(k)}
$$

Applications

adjoint variable method (AVM):

the matrix sensitivity

$$
\frac{\Delta Z_{i j}}{\Delta L_{n}^{(k)}} \simeq \frac{Z_{i j}\left(L_{n}^{(k)}+\Delta L_{n}^{(k)}\right)-Z_{i j}\left(L_{n}^{(k)}\right)}{\Delta L_{n}^{(k)}} \quad \Delta L_{n}^{(k)}=0.01 L_{n}^{(k)}
$$

(2) complete re-meshing: full $\Delta \boldsymbol{Z}$ matrix
$(3,4)$ boundary layer: sparse ΔZ matrix

Fig. 1. The dipole and the boundary layer concept (S. Amari, 2001).

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

the adjoint excitation (analytical)

$\hat{V}_{b}=\frac{\partial Z_{\text {in }}}{\partial I_{b}}=\frac{\partial\left(1 / I_{b}\right)}{\partial I_{b}}=-\frac{1}{I_{b}^{2}}, \hat{V}_{j}=0$ for $j \neq b$

Fig. 2. Derivative of the input resistance of the dipole with respect to L_{n}.

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

Fig. 3. Derivative of the input reactance of the dipole with respect to L_{n}.

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

2. Input impedance of a Yagi-Uda array
sensitivity with respect to

$$
\boldsymbol{x}=\left[\begin{array}{ll}
l_{1 n} & s_{1 n}
\end{array}\right]^{T}
$$

the normalized separation distance driver-reflector and the normalized reflector length

l_{1} / λ	l_{2} / λ	l_{d} / λ	s_{1} / λ	s_{d} / λ	a / λ
0.5243	0.45	0.406	0.2607	0.34	0.003
$l_{3}=l_{4}=l_{5}=l_{6}=l_{d} ; s_{2}=s_{3}=s_{4}=s_{5}=s_{d}$					

Fig. 4. The geometry of the Yagi-Uda array (initial design).

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

Fig. 5. Input resistance sensitivity with respect to $S_{1 n}$.

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

Fig. 6. Input reactance sensitivity with respect to $S_{1 n}$.

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

3. Gain of a Yagi-Uda array (Pocklington's eqn., real code)
sensitivity with respect to the normalized separation distances

$$
s_{k}=s / \lambda, k=1, \ldots, 5
$$

$$
\partial G / \partial s_{k} \quad \text { subject to } \hat{\boldsymbol{Z}} \hat{\boldsymbol{I}}=\hat{\boldsymbol{V}}, \quad \hat{\boldsymbol{I}}=\left[\begin{array}{l}
\operatorname{Re}\{\boldsymbol{I}\} \\
\operatorname{Im}\{\boldsymbol{I}\}
\end{array}\right]
$$

the gain sensitivity depends on $s_{n_{i}}$ explicitly

$$
\frac{\partial G}{\partial s_{n_{i}}}=\frac{\partial_{e} G}{\partial s_{n_{i}}} \hat{\boldsymbol{I}}^{T}\left(\frac{\partial \boldsymbol{Z}}{\partial s_{n_{i}}} \overline{\boldsymbol{I}}\right), i=1, \ldots, 5
$$

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

the adjoint excitation \hat{V} is a full vector

analytical

$$
\begin{aligned}
& \hat{V}_{k}=\frac{\partial G}{\partial \operatorname{Re}\left(I_{k}\right)} \\
& \hat{V}_{k+m}=\frac{\partial G}{\partial \operatorname{Im}\left(I_{k}\right)}
\end{aligned}
$$

$$
k=1, \ldots, m
$$

finite differences

$$
\begin{aligned}
& \hat{V}_{k} \simeq \frac{\Delta G}{\Delta \operatorname{Re}\left(I_{k}\right)} \\
& \hat{V}_{k+m} \simeq \frac{\Delta G}{\Delta \operatorname{Im}\left(I_{k}\right)}
\end{aligned}
$$

Applications

Fig. 7. Gain and gain sensitivity of the Yagi-Uda array with respect to $s_{4 n}$.

McMaster	Department of Electrical and Computer Engineering
University	Computational Electromagnetics Laboratory

Applications

Fig. 8. Gain sensitivity of the Yagi-Uda array with respect to $s_{4 n}$; finitedifference approximation of \hat{V}.

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

4. Optimization of the Yagi-Uda array for maximum gain and an input impedance of 73Ω
design parameters

$$
\boldsymbol{x}=\left[\begin{array}{lllll}
s_{1_{n}} & s_{2_{n}} & s_{3_{n}} & s_{4_{n}} & s_{5_{n}}
\end{array}\right]^{T}
$$

objective function

$$
f(\boldsymbol{x})=0.5\left[\left(\operatorname{Re}\left\{Z_{i n}\right\}-73\right)^{2}+\left(\operatorname{Im}\left\{Z_{i n}\right\}\right)^{2}\right]-0.5 G^{2}
$$

we start from a design already optimized for gain only

Applications

Fig. 9. The progress of the objective function during the optimization of the input impedance and the gain of the Yagi-Uda array.

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

TABLE I

DESIGN PARAMETERS, INPUT IMPEDANCE AND GAIN OF THE YAGI-UDA ARRAY DESIGN

	$S_{1 n}$	$S_{2 n}$	$S_{3 n}$	$S_{4 n}$	$S_{5 n}$	$R_{i n}$	$X_{i n}$	G
$\mathbf{1}$	$\mathbf{0 . 2 6 0 7}$	$\mathbf{0 . 3 4 0 0}$	$\mathbf{0 . 3 7 3 5}$	$\mathbf{0 . 4 4 7 1}$	$\mathbf{0 . 4 3 5 3}$	$\mathbf{4 7 . 1 0}$	$\mathbf{- 4 . 1 5}$	$\mathbf{1 5 . 0 8}$
2	0.3455	0.4050	0.3301	0.3853	0.3765	77.77	-23.52	11.08
3	0.3544	0.4294	0.3639	0.4122	0.3544	81.02	-16.26	11.19
4	0.3158	0.3720	0.4229	0.4591	0.4158	73.33	13.25	13.08
5	0.3086	0.3613	0.4232	0.4519	0.4023	65.85	11.18	13.92
6	0.3450	0.3744	0.3953	0.4204	0.3909	70.23	-5.99	12.87
7	0.3214	0.3986	0.3535	0.4653	0.3432	72.36	-5.77	12.91
8	0.3062	0.3923	0.3844	0.4822	0.3362	72.85	5.46	13.41
9	0.2531	0.4357	0.3794	0.3607	0.3645	75.63	0.97	13.25
10	0.2999	0.4061	0.3777	0.4205	0.3627	72.99	-1.00	13.45
11	0.2874	0.4193	0.3685	0.4057	0.3825	72.26	-1.27	13.59
12	0.2884	0.4175	0.3749	0.4064	0.3937	71.51	0.92	13.77
$\mathbf{1 3}$	$\mathbf{0 . 2 9 0 6}$	$\mathbf{0 . 4 1 6 8}$	$\mathbf{0 . 3 7 7 1}$	$\mathbf{0 . 4 0 4 6}$	$\mathbf{0 . 3 9 6 6}$	$\mathbf{7 1 . 8 0}$	$\mathbf{0 . 3 8}$	$\mathbf{1 3 . 7 5}$

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

5. Optimization of a patch antenna for an input impedance of 50Ω
design parameters
$\boldsymbol{x}=[L W S]^{T}$

objective function

$$
f(x)=\left(\operatorname{Re}\left\{Z_{i n}\right\}-50\right)^{2}+\left(\operatorname{Im}\left\{Z_{i n}\right\}\right)^{2}
$$

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Applications

$$
\boldsymbol{x}^{(0)}=\left[\begin{array}{lll}
50 & 90 & 14
\end{array}\right]^{T}(\mathrm{~mm}) \quad \Rightarrow \quad \boldsymbol{x}^{(4)}=\left[\begin{array}{llll}
51.51 & 96.39 & 15.004
\end{array}\right]^{T}(\mathrm{~mm})
$$

Fig. 10. The progress of the objective function during the optimization of the input impedance of the patch antenna.

McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Conclusions

The AVM is implemented into a feasible technique for the frequency-domain DSA of HF structures
\Rightarrow reduction of the CPU time requirements for the DSA by a factor of n to $(n+1)$

- improved accuracy and convergence
\Rightarrow feasibility: does not require significant modification of existing codes

Factors affecting the accuracy
finite differences with the $\partial_{x_{i}} Z$ matrix: insignificant finite differences with $\partial_{I_{k}} f$: significant
McMaster
University

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

Conclusions

Applications of the DSA based on the AVM
\Rightarrow optimization

- modeling
- statistical and yield analysis

Limitations

\Rightarrow linear frequency-domain analysis
\Rightarrow extension to nonlinear frequency-domain analysis is straightforward

Department of Electrical and Computer Engineering
Computational Electromagnetics Laboratory

