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CHAPTER 1

INTRODUCTION

The computer is now beginning to be used as an efficient tool
in electrical network design. In the last few years the validity of a
design usually obtained by non-numerical methods was checked by special
analysis programs. Automatic design is proving to be faster and less
costly than manual trial and error methods. The need has now arisen for
efficient analysis programs to be used as routines in optimal design
or tolerance assignment packages. These routines have to be capable of
handling a general network topology, and fast execution is of crucial
importance. In order to overcome the limitation of network size
sparse-matrix techniques are used in the analysis of these large
networks. The computer storage requirement is dramatically reduced by
using these techniques. Efficient optimization algorithms have also
been developed giving sufficiently good results for practical purposes.
These algorithms usually demand the calculation or estimation of
gradients. The adjoint network concept has proved to be an efficient
approach for evaluating these gradients.

One aim of this thesis is to calculate group delay and its
sensitivities in a practical way, which can be implemented in any
general purpose design program. Investigations of analysis and design
techniques were done to be able to fit the implementation into a

general framework. A review of sparse-matrix techniques (Tewarson 1973)



used in storing the matrix describing the network (Berry 1971), setting
the pointers system, and performing the LU decomposition (Forsythe and
Moler 1967) is presented in Chapter 2. The calculation of the first-
order sensitivities, and second-order sensitivities using the adjoint
network (Director and Rohrer 1969) is discussed in Chapter 3. This
chapter presents an approach to the exact calculation of group delay and
its semsitivities with respect to component parameters based on the
adjoint network concept and applicable to linear, time-invariant
circuits. In general, no more than four analyses are required and the
computational effort is only moderately more than is necessary for a
single analysis. Section 3.7 discusses briefly recent optimization
techniques (Bandler and Charalambous 1972, Bandler, Charalambous, Chen
and Chu 1975) which can be used efficiently in network design. The

numerical results were obtained from the CDC 6400 computer.



CHAPTER 2

FORMULATION AND SOLUTION OF NETWORK EQUATIONS

2.1 Introduction

In solving a large sparse system of linear equations, sparse
matrix storage and solution techniques are preferably used. Efficient
storage in columnar arrays allows reduced memory requirements. Fast
execution can be achieved by performing only the nonzero operations.
Gaussian elimination, after scaling and interchanging the rows of the
matrix, is commonly used to obtain the solution of the linear system.

In frequency domain circuit analysis, using the admittance or
impedance matrix, a set of linear equations has to be solved. The
sparse techniques, because of their advantages, can be applied to

solving these equations.

2.2 Sparse Matrix Techniques

For the solution of the sparse system of equations

Ax =

~e

RO

(z2.1)

where
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the matrix A has to be stored efficiently.

2.2.1 Storage of the Sparse Matrix A

in

2n

a
nn

(2.2)

(2.3)

(2.4)

In sparse matrix techniques, storage is allocated for only the

nonzero terms of the matrix.

These terms are stored in a columnar array

C. A scheme for storing A organizes the array C into three sections

(Berry 1871):

N

hY

a) a section for the diagonal terms

b) a section for the nonzero off-diagonal terms of the upper triangular



portion of the matrix (ordered by rows)
c) a section for the nonzero off-diagonal terms of the lower triangular

portion of the matrix (ordered by columns).

Consider
a5 3, A ]
a1 2 %23 8y
431 833 833 83y
A= 32 43 %44 s 47 (2.5)
454 855 35¢
%65 266 267
374 476 377 278
4g7 %8s

The columnar array C of this matrix is shown in Table 2.1.
In Table 2.1
N is the maximum matrix order allowed
M is the maximum number allowed for the nonzero off-diagonal
terms in the upper triangular portion

is the maximum number allowed for the nonzero off-diagonal

(-

terms in the lower triangular portion.
For a sparse matrix of order 100, the number of memory
locations needed is 10000 if dense matrix techniques are used while

using the compact storage mentioned, approximately one percent of this



TABLE 2.1

THE ARRAY C OF THE MATRIX (2.5)

Section 1 Section 2 Section 3
C) = a4, CN+1) = a,, CN+M#+1) = a,.
C(2) = a,, CN+2) = a; 4 CN+M+2) = ag;
C(3) = a4 C(N+3) = ay, CN+M#3) = ag,
C4) = ay, C(N+4) a5, C(N+M+4) = a,,
C(5) = agg CN+5) = a, C(N+M+5) = a .
C(N+6) a,c C(N+M+6) = ac,
C(8) agg
cC(N) C(N+M) C (N+M+L)




memory may be required.
It is not always necessary to store one part of the matrix by
rows and the other part by columns. In some other storage schemes the

matrix can be stored only by rows or only by columns.

2.2.2 Setting the Pointers

A set of pointers to locate the terms in the array C is necessary
for the Gaussian elimination to be carried out. The structural
information about the A matrix is stored in a compact form by these
pointers. The diagonal terms of A do not need any pointers (we assume
that all the diagonal terms are nonzero) but only the locations of
nonzero off-diagonal terms have to be identified. Among the commonly

used pointers systems (Calahan 1972, Tewarson 1973) are:

a) The i-j System

In this system two arrays are needed to store the row and
column locations of each nonzero off-diagonal term. In a matrix of
order n which contains K nonzero off-diagonal terms 3K+n memory
locations will be needed to store all the information about the matrix.

An example of this pointers system is shown in Table 2.2.



TABLE 2.2

THE i-j POINTERS SYSTEM FOR THE MATRIX (2.5)

Row Indicator Column Indicator Term Identified
IR(1) =1 IC(1) = 2 a12
IR(2) = 1 ic(z) = 3 a13
IR(3) = 2 IC(3) = 1 3y,
IR(4) = 2 IC(4) = 3 2,z
IR(5) = 2 IC(5) = 4 Gy
IR(6) = 3 Ic(e) = 1 21
IR(7) = 3 IC(7) = 2 a7,
IR(8) = 3 IC(8) = 4 Gz

If the matrix is symmetric only the pointers of the upper
triangular portion have to be stored, since the lower triangular portion
will have the same pointers with the row and column indicators
- interchanged. In the case of structural and numerical symmetry 3K/2+n

memory locations will be enough to store the matrix.

b) The Threaded List

The pointers system consists of two integer arrays, the first
with dimension n, where n is the order of the matrix, and indicates the
first nonzero off-diagonal term which appears in each row (or columm,

depending on how the matrix is stored). The second array indicates the



column (or row) location of all nonzero off-diagonal terms in each row

(or column).

this pointers system is shown in Table 2.3.

Storage needed using this system is 2K+2n.

TABLE 2.3

An example of

THE THREADED LIST OF THE MATRIX (2.5) STORED BY ROWS

‘Row Locator

Column Identifier

Term Indentified

NR(1)
NR(2)
NR (3)
NR(4)
NR (5)
NR (6)
NR(7)
NR(8)

NR(9)

1 NC( 1)

3 NC( 2)

6 NC( 3)

9 NC( 4)

13 NC( 5)
15 NC( 6)
17 NC( 7)
20 NC( 8)
21 NC( 9)
NC(10)

412

213

a1

a3

374

331

433

434

342

343

Another system of pointers which deals with matrices stored by

rows (or columns) is the following.

The location of any nonzero term in the matrix is identified by

an integer IT.

An example of this pointers system is shown in Table 2.4.
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The row i of the term £ will be the least integor greater than or equal to

IT{L) /n.

THE ONE ARRAY SYSTEM FOR THE MATRIX (2.5)

TABLE 2.4

Integer Array Term Identified
IT(1) = 2 a1,
IT(2) = 3 a1,
IT(3) = 9 51
IT( 4) = 11 3z
IT( 5) = 12 N
IT( 6) = 17 dsq
IT( 7) = 18 25,
IT( 8) = 20 azy
IT( 9) = 26 a4
IT(10) = 27 37

The column j of the term % can be known from the relation

j = IT(L) - (i-1)n .

(2.6)
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2.3 Solving the Linear Equations

To obtain the solution vector x of (2.1) the matrix A is
decomposed by Gaussian elimination. The matrix is decomposed to a
unique lower trianguiar matrix L and a unique upper triangular matrix

g (Forsythe and Moler 1967), such that

LU = A 2.7)
where
- -
By 1 0
A
Ll by A5 1 (2.8)

nl n2 n3

Y11 Y12 U3z e Ugg
u22 u23 PP uzn
A
[,;] = u33 e usn (2.9)
0 )
u

In general the terms of (2.9) and (2.8) at the kth step of the

decomposition are



12

k-1
. = .= L Lou . , j 2k 2.10
Y% T % po1 KPP ) (2.10)
k-1
Qik = (aik - Pil lipupk}/ukk , i>k {(2.11)

and the LU decomposition proceeds in row-column steps. This is referred
to as the Doolittle method (Berry 1971). The matrix A can be

decomposed also to an L and U in which the u.. are equal to ones and the
diagonal terms of L are different from 1. The decomposition in this

case proceeds in column-row steps, and the terms of L and U are given by

k-1
- [ > .
Qik 2y z Ripupk , i 2k (2.12)
p=1
k-1
ukj = (akj - pzl Qkpupj]/lkk s J > k. (2.13)

This is referred to as the Crout method (Calaghan 1972, Forsythe and
Moler 1967). Recalling that the matrix é can be stored by rows and
columns, its LU decomposition is performed in row-column or column-row
steps, respectively. If it is stored by rows, the LU decomposition is

performed by rows such that at the kﬁﬁ step the kth row of L is given by

“kaakj'pf botos » 3512 .k (2.14)

and the kth row of U is given by Eq. (2.13). If the matrix is stored by
columns, the decomposition is performed by columns such that at the kth

step the kth column of U is given by



13

i-1
I 2. u k)/SLii , 1=1,2, ..., k-1 (2.15)

(a., -
ik =1 ipp

and the kth column of L is given by (2.12). During the decomposition
the L and U replace the matrix A, and (2.10) and (2.11) can be rewritten

as

= s >
ukj = akj s J 2k (2.16)

P
I

k-1 .
ik S %5k /ukk , 1>k. (2.17)

We have to note that all these methods evaluate only the nonzero
operations in the decomposition of the sparse matrix. At the kth step

of the decomposition a?j will be

kK _ k-1
aij = aij - Zikukj (2.18)

and if the a?}l is a zero term but the Rik and ukj are nonzero, a new
term will be introduced instead of a previous zero element. This new
nonzero off-diagonal term is called a fill-in. A sparse matrix might
be decomposed to an L and a Y which are not sparse because of the
fill-ins introduced. Reordering the rows of the matrix é appropriately,
the number of fill positions can be minimized and the sparsity of the
matrix can be preserved.

After the evaluation of L andbg, the forward and backward

substitution are executed. Equation (2.1) will be in the form of
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Lix = b . (2.19)

~

Replacing Ux by a vector z, where

1
z & 2, (2.20)
zZ
- n -
the forward substitution is solving the triangular system
Lz = b . (2.21)

Once the z vector is known the backward substitution is performed to

get the solution vector x by solving

Ux = z . (2.22)

In all these sparse matrix techniques besides avoiding the zero
operations, the inner products in the nonzero operations are
accumulated reducing the round-off errors and leading to a good

accuracy of the solutiomn.
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2.4 Schemes for Optimal Ordering (Tinney and Walker 1967)

a) The rows of the matrix are ordered according to the number of
nonzero off-diagonal terms before the elimination process starts. The
row with only one off-diagonal term is numbered first, the one with two
terms second, etc., and the one with the most terms, last.
b) At each ith step of the elimination the row selected to be operated
upon (its diagonal term will be the pivot) is the one with the fewest
nonzero terms. If more than one exists, select any one.
c) At each ith step of the process the row to be operated upon is the
one which will introduce the fewest fill-in positions. If more than one
row will introduce the same number of fill-ins, select ony one.

The first scheme needs a list of the number of nonzero terms in
each row of the matrix, and its advantages are its simplicity and speed.
The second scheme requires a simulation of the effects on the
accumulation of nonzero terms of the elimination process. This scheme
is better than the first scheme, but the third one is not much better
than the second to justify its additional time for its execution and
programming complexity. Combinations of these schemes can be used also

for reducing the number of fill-ins.

2.5 Applications of Sparse Matrix Techniques in Network Analysis

The techniques discussed previously for the solution of (2.1)
can be applied to solve the network equations. Suppose that the

analysis will be performed using the indefinite admittance matrix.
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The network equations will be

YV = 1 (2.23)

where

is the admittance matrix

2

is the voltage vector

1<

is the current excitation vector .

2 b

The matrix Y is set up such that each diagonal term y.. is the
sum of the admittances connected to node r, and each off-diagonal term
Ypo is the megative sum of the admittances connected between node r and

node s. An element with two terminals connecting nodes i and j will

create four nonzero terms in the Y matrix of which two are on the

row\\column
i j
o—— | i { Yii Vi 1
0 T
J | Vis Yii J}

Figure 2.1 A two-terminal element and the locations affected in Y

diagonal, as shown in Fig. 2.1. 1In the case of a three-terminal element,

nine terms in the Y matrix, with three on the diagonal, are introduced,

~

as shown in Fig. 2.2.
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ii ij ii

@ SRS H 733 REERET
LYY Vi Vit |

Figure 2.2 A three-terminal element and the locations affected in Y

The following form of (2.23) (Berry 1971, Jenkins and Fan 1971,

Sanchez-Sinencio and Trick 1974)

i ------------- ‘ !--—- = feme- (2.24)
L
| Ysk Yss | i_Y,SJ Is |
where
YKK is a matrix of nodal admittance terms corresponding to nodes
of unknown voltage
YSS is a matrix of nodal admittance terms corresponding to nodes
of grounded independent voltage sources
ZKS and ZSK are intersections of XKK and XSS
VK and IK are unknown voltage and independent current source vectors

associated with the YKK nodes
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VS and IS are voltage source and current source vectors associated

with the Y nodes

~SS
is obtained after renumbering the nodes such that all known node voltages
(defined by grounded voltage sources) are placed at the end of the
voltage vector, and the ground node is renumbered last. The submatrices
XSK and XSS can be ignored, the same as the terms associated with the

ground node, since V. is known and the product YKSVS can be transferred

into the current vector so that

Terlx = Ik 7 YksVs (2.25)
and YK is to be determined by Gaussian elimination. Note that the matrix
XKK is the one to be reordered. After the reordering, the set of
pointers is altered, taking into account the structural symmetry of the
matrix. The LU decomposition is simulated without numerical values,
setting pointers for new nonzero entries and assigning reference numbers
for the decomposition and for forward and backward substitutions.
According to the new set of pointers each element in the network is
assigned location numbers to indicate where that element's value is to
be entered in the new matrix.

The matrix is then loaded with the numerical values, the % and g

are found and the forward and backward substitutions executed to find the

solution vector V

K This step is repeated at each frequency point since

XKK is frequency dependent. Once the vector VK is known any network

response can be evaluated.
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Some limitations are imposed on the use of the nodal
admittance matrix. It cannot describe circuits which include certain
dependent sources, unless artificial dummy nodes and dummy components
are introduced. Due to these components the Y matrix will have some
zero coefficients on its diagonal, and care has to be taken in solving
the set of equations (Monaco and Tiberio 1974). Using the tableau
method (Hachtel, Brayton and Gustavson 1971) or the mixed method
(Branin, Hogsett, Lunde and Kugel 1971), where circuit branches are

classified as tree branches and links, this problem is not encountered.

2.5.1 Example 1: Node Renumbering

This example shows how the node numbers are renumbered due to
the reordering of the XKK matrix. Arbitrary node numbers were given to
the nodes of the circuit shown in Fig. 2.3 (Berry 1971). The XKK
matrix of this circuit is shown in Fig. 2.4a. Using the second scheme
in Section 2.4 to reorder the matrix the circled numbers in Fig. 2.3
were obtained. The XKK matrix corresponding to the renumbered circuit
is the one shown in Fig. 2.4b. The fill-ins have been reduced by a
number of two. Using a combination of the reordering schemes can lead

to a better reduction in the fill-ins (Berry 1971) but the implementation

in this case will be more sophisticated.
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Example 2: Branched Circuit

Branched circuité or multiport networks are frequently met in
the communications field. The reflection coefficient of the branched
circuit shown in Fig. 2.5 was calculated at the second load

resistance RL . The circuit consists of three air-filled lossless
2

transmission lines, of which one is not grounded. This circuit was
analyzed using the admittance matrix, and then by using the chain

matrix. Results obtained from both approaches are shown in Table 2.5.
Only one set of results appears since the responses from the two analyses

coincide to the number of figures tabulated.



23

.N ordwexe JOo 3TnNOATO payoueig §°z oanStg

w ¢ = w 9 = Ly = Iy
1=%=0=1;
aq Nq S

©




TABLE 2.5

REFLECTION COEFFICIENT OF THE CIRCUIT SHOWN IN FIGURE 2.5

Frequency
o]

GHz

0.6 0.456818
0.7 0.442740
0.8 0.427364
0.9 0.410963
1.0 0.393804
1.1 0.376140
1.2 0.358209
1.3 0.340237
1.4 0.322434

24



CHAPTER 3
FIRST- AND SECOND-ORDER SENSITIVITY CALCULATIONS

AND NETWORK DESIGN
3.1 Introduction

In the design of networks or in tolerance analysis the
sensitivity of a network output with respect to design parameters is
needed. The adjoint network is a well-known concept for evaluating
network sensitivities (Director and Rohrer 1969). This concept has
been used in the evaluation of the gradient vector of objective
functions related to any desired response of the network, where the
objective functions are formulated in either a least pth or a
minimax sense (Bandler and Seviora 1970). The group delay of a
network can be found by evaluating the network sensitivities
(Bandler 1973, Temes 1970). For some gradient optimization
techniques (Charalambous 1975) and sensitivity minimization
procedures, second-derivative information is required. This
information can be obtained using the adjoint network concept
(Richards 1969, Calahan 1972). We have to note that the adjoint
network method is not the only way of calculating sensitivities.
Perturbation techniques can be used although they may not be very
accurate and they could be time consuming. Some other techniques
have also been proposed to evaluate the network sensitivities

(Branin 1972). Higher-order network sensitivities can be deduced

25
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from a set of recursive formulas (Seth and Roe 1975). In this
chapter we will emphasize the computation of group delay and its

sensitivities using the adjoint network method.

3,2 First-Order Sensitivity

Let the n elements of a network N be described by a hybrid

matrix (Bandler and Seviora 1970), namely

;rzaj} PJ A5 ] !P‘L’aj}L

s izg H i , j=1,2, ...,1n. (3.1)
o 'li

PRI

f"A,‘i T vl ~

i Eaj 1 ( Xj Mj é { Yaj }

i §=i N % , 3=1,2, ...ym (3.2)
A T T | 2

| Y5 | Hz‘ SHRSE

where N and N are called interreciprocal.
Using Tellegen's theorem (Penfield, Spence and Duinker 1970)

and perturbing the parameter { in N, we may write

T T K T T T a4
v v 1 51, n 9V . ov.. |1 |
~a o ~b o “a B ~b 5 - r ~aj ~b ~aj
=23 UL ST RS S it BN Kk
W fatW oW Y3 bt Elme Tl | .
J=1 Eb)
n axzj axgj Pﬁiaj-i
SRR T B PO (3.3)
j=1 LV J
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where we assume, as shown in Fig. 3.1, an unindexed equation of the form
of (3.1) describing the complete network with subscript a denoting
voltage excited ports and b current excited ports.

Rearranging (3.3)

aj N 313; avg 9 . VL E)Ib 1
SRp L =BG o oy (=Bl blyi ~aj) | o ~aj ~bjy) ~ajly
U ~b "5 sa> " W | » 30 90 | o
j=1 ) v, .
L"’bJ ~b_’j
(3.4)

where we take V and Ib as fixed and independent. Differentiating (3.1)

w.r.t. Y, we obtain for j =1, 2, ..., n

: ov. oA, 1 T 7 T Tlav.. ]
~aj e A v . Y. A. ~a]
oY oy oy ~aj ~J  ~] oY
= + 3 (3'5)
BVb oM. 9Z. oL, .
—5J ~J =~ I . M. Z. _‘:P_J_
L9 | L% 3y | | ~bj L ~3 ~3 ) Lo
Equation (3.2} can be rewritten as
- - - . -
A T T A
I =Y., =M. -V
~a] ~3  ~] ~aj
= ,j=1, 2, esey 11 . (3.6)
T T o
-V, . -AT -7, I .
~bi Lo~ ~i 4 L ~bi

Substituting (3.5) in (3.4)
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Ezz aM!
v, . AL n v aig."Taj" noo. o W
W b3y Yao I lmp et o R IV, Lol aaT 5T
J‘-l "ij 3—1 ~! ~!
- oY Y |
VT oL YTt (9]
v (53 =2dg~d o ~J Y ~ady (3.7)
b db T ST g .J
~i %3] L ~bj
Rearranging (3.7)
BV 51" noovi. a1l 1. yoowT g
=Dt zE G oy (el bl ~aif o, |~i il T~adly
o b Y -~a 5=1 Y oY R AT ZT %
~DjJ .~ ~3JL ~DbJ
r or -
3YT oM.
~d
no.o. v aY Vs
+ L[V, L] ~al (3.8)
j=1 3 DI AT T 1 g
3 ~3f ) ~b]
oY 9§ [
Substituting (3.6) in (3.8), we get N
3Y. oM.
0 g A 312 A n T T W 'vaj
== - =2V = %[V, I.] ~ady, (3.9)
L T = T LRl UL
~j i) | ~bj
..aw aw_J L e
Letting ~ 7 q o -
Y, oM.
o o ~d
oy Y -
A T LT ~aj
G,. A v, 1. 3.10
v = Waj Loy AT azT| | T -109
=) ~Jp | ~DP]
oY oy | |
n
the RHS of (3.9) will be I G, ..
521 V3

Suppose that the variable parameters x have been perturbed in
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the original network N instead of the parameter y alone. Assuming that

each element has one variable parameter, (3.9) can be written in the

form
T/\ TA n
SV.I, - 81V = I G _.Ax. (3.11)
~b~b ~a~a  ._. Xj ]
j=1
or
To Ts T
SVyly - 81V, = G'hx (3.12)

where G is a vector of sensitivity components related to the parameters

X, A denotes a large change and § a first-order change.

3.3 Group Delay Computation

The group delay of a network excited by a frequency independent

source Vg at a certain radian frequency w is given by

. ., V. (w)
. _do(w) _ 1 0
FG(w) =g = - Im{vo{w) ™ + (3.13)

where

Vo(w) is the output voltage

¢(w) dis the phase difference between VG(w) and Vg.

The group delay was usually computed by perturbing the radian

frequency w by a small increment. Errors may result in the computation
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of the group delay due to inappropriate values chosen for the
increment. Exact computation of the group delay can be done
efficiently using the adjoint network corcept.

Examining (3.13) we find that to obtain the group delay one has

to find the sensitivity of VO with respect to the radian frequency w in

a similar way to computing the sensitivity of V, with respect to any

0

network parameter. The only difference between the parameter w and the
other parameters is that w is common throughout the network. In this

case the output voltage V. of the kth port is the response of interest,

0]

a current source of zero value can be associated with it, and replacing
¥ by w in (3.9), after setting all adjoint excitations except EO to zero,

(3.9} will be

. Vg
IO %— = 1 G(DJ ° (3.14)

i o3

j

The adjoint current excitation I can be chosen as I/VO and the group

0

delay can be expressed as

G .} . (3.15)

TG(w) = - Im{ 03

j

[[E e

1

For an admittance matrix representation, (3.10) is reduced to

A - an .
ij g - .Yj *é—w—yj (3.16)

Table 3.1 shows the expressions yielding sensitivities with respect to

radian frequency for some elements.
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TABLE 3.1

EXPRESSIONS FOR SENSITIVITIES WITH RESPECT TO w

Element ij
resistor 0
vV
inductor 5
jw L
¢capacitor - jCvv
1 —ed 4 1 1 A
short-circuited lossless R Vi T
.. .. T . 2
transmission line Z sin wtT
open-circuited lossless . A
P circuited lossle B Vi T
transmission 1ineT Z cos WwT

lossless transmission

1ine+

ICA N 9231

3 7 AT
1V1*Ys JOV VoV

y) *

Z sin wT Z sinwT tanwT

+

For transmission lines, Z is the characteristic impedance and T is the

delay time.
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3.4 Second-Order Sensitivity

Some optimization algorithms and sensitivity minimization
procedures need second-derivative information. Second-order
sensitivities can be found using the adjoint network concept. The
procedure of finding the second-order sensitivity of a certain
response is presented in the following derivation.

Using Tellegen's theorem we may write

n
I [v .V
j= ~aj ~bj LI

T T Ea‘ T .T %YJ ) T T Eaj]
i .
} ~bj]

. ~aj ~bj g
=1 V. .|
! ~bj]

n W
S L ]{fail . (3.17)
Applying the linear operator 32/3¢8w (Penfield, Spence and Duinker 1970,

Bandler and Seviora 1972), where ¢ and ¥ are variable parameters, and

recalling that Va and I, are fixed we have

ofvy L. o 3fvn ey [E
5650 b T 5950 va = LC Uso50 5950 ° éA %
j=1 I

E31

(3.18)

Differentiating (3.5) w.r.t. ¢
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r - - ~ - -
2y 5% | | 5Y. 24, 5V
"‘i ~J Vo ~J "'J Na)
39oyY ooy ~aj 3 oY od
. +
3°M. 3°7. M. 7. 31, .
~3 __~J I ~J _~] ~bJ
390y 3¢y | | ~bj | L9V S | | 99
Cov. oA, 1 [Tov.. ] T 7T e%v.. T
ol o) ~a Y 2]
3¢ 99 oy ~3 ~] 0¢aY
+ + 2 . (3.19)
M. 3Z. 51, . 5“1, .
o~ _~bj M. Z. __~bJ
0% 8¢ | | oY  ~3 ~3 | L o¢ov

LE: N n 32VT;. 8213;. E_E N
R el
L LV T I i
L"~bil
32yT 2L
; 5680 3630
ovT 1T
+ o {Iv. 1.
=1 8T R a%
_ | 9oy oday
8‘{; M.
Vi, p1r, |9V OV
4 i‘ ~a “P-l—é
9 30 7 5aT 5T
N R B
ETmrTe
S
aYL M
m —d =]
oVl o1l 9% 93¢
+ =55 5 T
L R P Y
25 %
3¢ 99 |
5 3 N N
a2v§j aqgj ?YT M;F {—Vaji
+ G o N Sad® Alad X ~ -~
5550 3050 'l T, }i $ .| (.20
~3 ~3) L ~bid




Using (3.6) which defines the adjoint network ﬁ, the summations in

(3.20) will be - - S _
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52yT 3! oYT am!
. . 5650 a¢§$" T BIE 50 50
g {[Vi. I..] . (=2l _=bjy
j=1 w3 P32 g2, T 9 39 Egz.agT
3950 3450 EBETE
_ o
5YL oM.
~3 o ~3
VL. axg. 9% 99 | | G
+ [22] _=~Bly 13 Mt (3.21)
A A YA 1
3 ~jf | ~Db]
3¢ 93¢ | | _

To evaluate (3.21) first-order sensitivities of voltages and currents
of element j with respect to ¢ and Y have to be found. Considering
the ports of the jth element as the ports of interest we can find the
first-order sensitivities needed. Examining (3.21) we find that the
hybrid matrix of the element j is differentiated with respect to ¢ and
with respect to Y. If the parameter ¢ does not belong to the jth
element the derivative of the hybrid matrix with respect to ¢ will be

zero. The same condition occurs with the parameter V.

3.4.1 Example

This example is to illustrate the procedure for computing the

second-order sensitivity of the output voltage V., for the circuit

0’

shown in Fig. 3.2, with respect to the characteristic impedance Z4 and

the length 24 of the second short-circuited lossless transmission line.

The parameter values are given in Table 3.2. If the nodal admittance



36

(S46T) nYD pue uay) ‘snoquelerey) ‘ISTpueq

Aq posn x93111F ssed-puBq UOTI09S-USASS oYl 7°¢ @Indiy

Ul

ndino indui
O O - O O - G O - O O-
(D C.
o 1y i .
- + 4+ +
pea ot Yo & L R s \ o OIANAN-
| & €7 °7




TABLE 3.2

PARAMETER VALUES OF THE SEVEN SECTION FILTER

Parameter Value
Z; = 2, 0.606585
Zy = Zg 0.303547
Zg = Zg 0.722287
Z4 0.235183
2.=8 =8 =8 , =82 =48 = SL+ 1.
ni n2 n3 n4 ns né n7
£y 2175 MHz
T =2 e =1

37
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matrix is used for the analysis, (3.20) is reduced to

52y 32y SV aY SV 3Y
0 ? - vy 4 Voo 4 4 ¢ - 4
3T,30, 10 s 3z, V4 T g, o, Ve TSR, 9T

4 A
V4 (3.22)

where

Y4 is the admittance of the short-circuited lossless

transmission line

V4 is the voltage across it in the original network

04 is the voltége across it in the adjoint network.
The other terms on the RHS of (3.20) have vanished since the
derivatives of the admittances of other elements with respect to 24
and £4 are zeros. The adjoint voltages are found by exciting the
output port with a current source EO =-1. The first-order semsitivities
8V4/BZ4 and 8V4/824 are found by exciting the network with a unity
current source across the second short-circuited lossless transmission

line. Table 3.3 shows the excitations for the three analyses.

Equation (3.22) will be, from formulas of Bandler and Seviora (1870},

(\2 ,\2 s 2A . 2./\
mc) Vg . 37Y, 6,3 VeV, oy - 3BV, 9‘1’4\7
92,08, ~ T "4 3Z 0%, 4 2 ok, 4 . 2 3Z, 4
4774 4774 Z4 tan84£4 4 24 sin 84£4 4
(3.23)

250 . . . .
where Vi is the voltage across the element in the second adjoint
network. Table 3.4 shows the node voltages in three analyses used to

evaluate the second-order sensitivity of VG at a frequency 1087.5 MHz.
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TABLE 3.3

EXCITATIONS OF THE CIRCUIT IN FIGURE 3.1

Source N ﬁ zﬁ
1 % 0 0
g
2 0 0 1
3 0 Io 0

The second-order sensitivity'32V0/824824 was also computed using the

formula ,
v, v,
5%V Byl wpz Myl
0 4*02, 4
5T 50~ i (3.24)
4% 4

where AZ4 is a small increment of the characteristic impedance, and
chosen to be 10—6. The terms BVO/B)?,4 were found using the adjoint
network method. Table 3.5 shows 32V0/824324 as computed by.both
techniques. The result from perturbation verifies the result from the

adjoint network approach.
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TABLE 3.4

NODE VOLTAGES IN THE THREE ANALYSES

Node v v Vv

2 0.526499 | -6.5 0.495886 -158.9  0.550675 i104.2

3 0.466159 § -31.9 0.410113 |-127.6  0.455424 héé;é_

4 0.550675 [ 104.2 0.550675 | 104.2 0.6115172: 73.5

5 0.410113 %-127.6 0.466159 % -31.9  0.455424 héé;é_
| -6.5

6 0.495886 2—158.9 0.526499 0.550675 (104.2

TABLE 3.5
COMPARISON BETWEEN RESULTS OBTAINED BY ADJOINT NETWORK

AND BY PERTURBATION

15t order sensitivity by adjoint net.
Adjoint network nd
277 order sensitivity by perturbation
2
3 VO
57 5% 11.71675+35.415667 11.71232+35.431066
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3.5 Group Deiay Sensitivities

In computer-aided design the gradients of the group delay with
respect to the design parameters of the network are required,especially
when gradient minimization techniques are used. Instead of
evaluating the sensitivity of the group delay by perturbing each
variable parameter, the adjoint network concept can be used to find the
sensitivities accurately and with less time and effort.

The group delay sensitivity with respect to the ith parameter

¢i is given by

ir;ﬁ_(_(ﬂ)_=_1m{-;v—9—-12-ﬂ9+vl.-2vg} (3.25)
9 vy o; Vg 9% 00

Examining (3.25) we can see that the term - BVO/Bw has already been
evaluated for the group delay computation and the term 8V0/a¢i, which is

the sensitivity of V., with respect to ¢i,can be evaluated easily since

0
the analysis of the original and adjoint network have been performed.
The term 82V0/8¢iaw is the one which has to be found.

Considering the parameter ¢i in the jth element and replacing

the parameter Y by w, which is a common parameter, in (3.20) we get



3yl !
~J ~J -V
azv 8¢18w 3¢iaw ~aj
w55 o = [y Ig I 21 a7
95 9w ~aj ~ oal 'z X
a¢iaw 39, 5 Ebj
CoyT o )
~J =) -V
n avzj argj oW Buw ~@)
+ L [w—d 22
=1 9% 93 T 1 g,T 3z§ A
BN
oyl au! )
=L .= V.
ava. a1, | %93 9% ~a]
dw W 3l ozt )
S BN I, .
9, 09, ~bj
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(3.26)

The other port terms are zeros since either they have fixed sources or

they are associated with zero valued sources.

Examining the first term of (3.26) on the RHS we find that it

consists of voltages and currents of the jth element in the original

network and its adjoint, and formulas of second-order derivatives which

can be easily evaluated.

[ 3]
[N

T oY, BA. ]
=)~
ow  dw

A

| oM. 3Z.
o4 )

_dw  dw

Let us define Ej to be

A
Introduce now a new network N!

ports of each element by current and voltage sources T;j and ng, where

[
|
|
|
|
i
[
|
L

_fS
~aj

~S
H
Yb;

B
~J

0>

|
B

-V
~aj |
|

~bj j

~

(3.27)

s which is the same as N, but excited at the

(3.28)
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Consequently, by conventional adjoint network theory,

nooav. axg. -?S‘ |

Vaj o1 Tas |
Iolgtma| oaltd (3.29)
j=1 "1 i Vbj

where Gi is the sensiti?ity component of N w.r.t. ¢i, known in terms
of the voltages and currents in N and N'.

Next, consider a network N', which is the same as N, but
excited at the ports of each element by current and voltage sources

I'> and V'3 , given by

aj bj
1551 %-vaJ
= I
~b3_t L ~b3
so that in N!
Tr
I, 113 ;‘Y A, Ve,
~aj | ~aJ . | ~3 ~3 ~aj (3.31)
. . Z. o
| %55 | J REEBRESE

Replacing ¢ by w in (3.5) and comparing it with (3.31), we see that

— av ) -  and s
—~aj) ? !
3w ~aj |
§ (3.32)
51, . i
~bJ 5
ow | ~b3_j

so that the third term in (3.26) can be calculated from currents and
voltages in N' and N.
Teble 3.6 shows E. for some elements and for two possible

hybrid-matrix formulations. Table 3.7 shows second-order sensitivity

expressions needed in evaluating the first term in (3.26).
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