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Abstract We present an efficient approach to the optimal assignment of
component tolerances along with centering and, eventually, tuning. The main
objective is to automate the process without sacrificing computational
efficiency. The development of selection schemes for critical vertices of

the tolerance region is discussed in detail. As the process proceeds vertices
can be added or purged automatically. The exploitation of symmetry in design
problems is considered at length. The presentation is illustrated by a five-
section transmission-line lowpass filter, where both characteristic impedances
and section lengths are toleranced and parasitic junction effects are simulated.
Finally, capacitive tuning is also considered. The paper contains numerous

tables comparing the effectiveness and efficiency of different schemes.
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I. INTRODUCTION

This paper presents an efficient approach to the optimal assignment of
component tolerances along with centering and, eventually, tuning. The main
objective is to automate the process without sacrificing efficiéncy.

The historical development of the general area is indicated by a number
of relevant papers [1-7]. The authors have already demonstrated the benefits
of allowing the nominal design to be variable while optimizing the tolerances
[6,7], and the way in which tuning can be brought in [8,9]. The principle
drawback with the previous work is the interaction necessary by the designer
to reduce the computational effort.

A typical problem solving sequence is shown in Fig. 1. This sequence
can also be started as an intermediate problem. Problem 1 is the conventional
problem of performance optimization. Its result, or else a design obtained
by analytical methods, can be used as a starting point for the next steps
in the sequence. Problem 2 is also a performance optimization, but now the
objective function or performance criterion should be formulated in terms of
the network response for all, or a selected number , of possible outcomes of
the parameter vector. This problem allows the designer to find out what the
optimal design is and whether the specifications can be met, when the tolerances
are given and fixed. The solution of problem 2 helps the designer in deciding
what to do next. If the specifications cannot be met, even with minimal
tolerances, tuning can be introduced. This leads to problem 4, eventually,
with fixed tolerances. If no tuning elements are wanted, we can proceed to
calculate the yield. That can be used again in a yield optimization.

Even if problem 2 is not relevant practically, its result usually provides
a good starting point for problem 3. This is the tolerance optimization pro-

blem as described above. From problem 3 we can proceed to problem 4, the



tolerancing-tuning problem.
In this paper, we shall mainly deal with the efficient automatic solution
of problem 3, but most of the methods and results will also be useful in problems

2 and 4, which have essentially the same structure.

II. IMPLEMENTATION OF THE TOLERANCE PROBLEM

The methods to be described are illustrated by the results for the 5-
section transmission-line stepped impedance lowpass filter, shown in Fig. 2.
Relevant element data is shown in Table I. The nominal characteristic
impedances are fixed and have a uniform fixed relative tolerance. Zi, i=1,...,5,
are the line lengths, normalized w.r.t. the quarter wavelength at the passband
edge. They have variable nominal values and a uniform variable absolute toler-
ance. The parasitic capacitors Ci, i=1,...,6, were calculated from formulas
given by Marcuvitz [10] for a step in the inner conductor of a coaxial line
at the edge of the passband and with an inner diameter of the outer conductor
of-l inch.

The specifications and the objective function are given in Table II.

The parameter vector in this case is given by

_ T
9= [0, 4y 0y 8, 82, 2, 2,2, 2] . (1)

In this case there are 210 = 1024 vertices of the tolerance region [6,7]

given, in general, by
R é'{m¢.=¢9+a.u. -1 <p.,<1, iel,} (2)
€ i i i1’ - Ti- 7 ¢
where superscript 0 distinguishes the nominal parameter values, €; the toler-

ance on the ith component and, for k components,

1 &

6 {1,2,...,k}. (3)



In principle, the network response should be calculated for all possible
values of the parameter vector; or at least at the 2k vertices of the toler-
ance region, when a one-dimensional convexity condition is satisfied [5].

In order to reduce the problem, we need a vertex selection method, which finds
the worst vertex or at least gives an accurate prediction of the vertices
which are critical in the optimization.

The tolerance optimization problem can be solved by the general scheme
of Fig. 3. Note that the tolerancing-tuning problem can be solved by the
same scheme. The minimax approximation problem with fixed tolerances has
also the same basic structure, the only difference being that the selected
vertices are not used in the calculation of constraint functions, but for
the error functions, and enter the objective function. The critical step in
running the scheme of Fig. 3 efficiently is the vertex selection. Several
methods of vertex selection have been previously used. The one which the
authors had found acceptable involves changing each parameter one at a time
from the nominal point and examining the partial derivatives of the response
or constraint functions [7]. The disadvantage, in general, is that sometimes
only one vertex is selected, which is often insufficient if the starting
point is far from the solution. On the other hand, too many can be selected,
most of which are not critical.

A large number of selected constraints makes the whole process inefficient
or even impossible to run. That means that a further reduction is needed,
based, for example, on the constraint values at the selected vertices.

This then involves a large number of response evaluations and, at some
frequency points, all the vertices have to be evaluated. Moreover, the old
schemes are not foolproof. In our example, even at the optimal solution,

the one-at-a-time scheme misses some of the critical constraints. That means



that after each optimization, extensive testing of the results is needed,
which involves at least the evaluation of all vertices at all frequencies and
is extremely time-consuming. It is clear from these considerations that,

with the known vertex selection methods, the problem can hardly be solved
efficiently and the process cannot be automated. Interference of the designer
is continually needed relying on his insight and his experience. Usually,
several test runs are needed.

Some rcsults for the lowpass filter are summarized in Table III for
future reference. They were obtained by the one-at-a-time vertex selection
method, followed by manual selection and testing of all vertices after each
optimization. The minimax optimization with fixed tolerances was started with
the parameter values obtained from the nominal minimax approximation. Two runs
were needed using MINOPT [11]. Figs. 4 and 5 show the frequency response in
passband and stopband, respectively, of the nominal minimax approximation.
Figs. 4 and 6 show the nominal response and the worst response at each frequency,
in the passband and stopband, respectively, for the minimax approximation with
fixed tolerance on all lengths (ez = 0.001). Analogous results for €, = 0.002
show that the specifications cannot be satisfied in that case. The passband
ripple of the nominal response of the nominal minimax approximation was 0.00123
dB. The worst response of the minimax approximation with fixed tolerances is
0.0125 dB if €, = 0.001, and 0.02007 dB when €, = 0.002.

The tolerance optimization was started from the parameter values resulting
from minimax approximation with €, = 0.001. Six runs of DISOPT [12] were
nceded, with intermediate testing of vertices. The final run took 60 secs
on a CDC 6400 using 228 function evaluations. The number of variables is 4 and
the number of constraints 49. Figs. 7 and 8 show the nominal response and

the upper and lower bounds over all vertices for the resulting parameter values

in the passband and stopband, respectively.



The symmetry of the problem was exploited. There is a double mirror-
symmetry in the parametervector ¢, which means that the insertion loss L(Q)

is symmetric in the parameter space:

L) = L(SY), )
where the symmetry operator s is given by
00001 ]
00010
00100 Y
01000
_ 10000
R = 00001 /| - )
00010
0 00100
01000
) 10000 |

The number of vertices which are essentially different (in response value)
~is reduced from 1024 to 544.

As a result of the symmetry, the optimum %O should lie in the plane of
symmetry. If the nominal point is forced to be symmetric throughout the
optimization, both the number of parameters and the number of constraints
is reduced. When symmetry is not exploited, care should be taken in the
vertex selection, to ensure that of each pair of symmetric vertices, both
should be used as constraints or error functions. As an example, the vertices
.used in the final run of the minimax approximation with fixed €, = 0.001
of the lowpass filter are shown in Table IV, when symmetry is and is not used.

The savings made by the use of symmetry are clear from Table V. CPU times

given apply to the CDC 6400.

III. EFFICIENT VERTEX SELECTION
The vertex selection method which we propose is a based on an iterative
solution of a necessary condition for the worst vertex, derived from the

Kuhn-Tucker conditions.



Let g(¢) be the constraint function, generated by the network response

at a certain frequency point. The problem of finding the worst vertex at

that frequency is equivalent to the nonlinear programming problem:
. 0
Min g(g + Ep)
K

subject to

where E is a diagonal matrix with e, as the ith element,

Let E be the minimum of (6). The Kuhn-Tucker conditions are

k k
O v - v + ~

L,8@ + B = Lup §(-w) + ] ugy (i)
i=1 i=1

uy (1 - ui) =0, 1c¢ I¢

T+ u)=0,iel
ui ( “1) - s 1 € ¢
u£ >0, 1ice I¢

+ .
u. >0, 1iel
i

- ¢
where Zu is the first partial derivative operator w.r.t. K.

Equation (8) is reduced to

3g

€.
) i 3¢i

K=K b0 Bi

og
Bui

If the tolerance region is one-dimensionally convex, the worst point in it

should be a vertex. That means that any component ﬂi of k has two possible

values:

1) If u, = 1, then from (10)

i
ur =0
i
and from (13) and (11)
e, 28 = -u; <0.

i

"l =g+

(6)

(7

(8)

(9

(10)

(11)

(12)

(13)

(14)

(15)



2) If My = -1, then from (9) _ .
u. = 0 (16)
and from (13) and (12) '

m
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> 0. ' (17)
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Equations (15) and (17) can be summarized in the following necessary

condition for the worst vertex:

v 0 v
K = -sgn [xq,g(;e +* Byl , (18)
where Z¢ is the first partial derivative operator w.r.t. 9.
Equation (18) can be solved iteratively for é. If E(k) is the kth

approximation for é, then

R = e e’ - S a9

A suitable starting point would be the nominal point, i.e.,

0
p@ =g

Note that the iterative solution (19) of (18) amounts to successive linear
approximations of the constraint function.

Table VI illustrates the performance of the vertex selection methods
for the lowpass filter. Results are shown for the parameter values correspond-
ing to the optimally toleranced solution. Symmetry of the problem was exploited.
The results obtained by the one-at-a-time method confirm the criticism made
earlier. A large number of vertices is generated and at two sample points
no vertices were eliminated. The number of function evaluations required to
get a vertex table and the corresponding constrained values (needed for further
selection) can be found as: six response evaluations with gradient calculation
+ the number shown in column 6 of Table VI response evaluations without gradient
calculation. It is clear that the method is not efficient. Moreover, it
fails to find the worst vertex at the sample frequencies and gives a wrong

vertex as the worst at one sample frequency.



Some data on efficiency and accuracy are summarized in Table VII. Since
(18) is only a necessary condition, more than one vertex will satisfy it, only
one among them being the worst vertex, generally. This is clear from column
3 in Table VI. The first iteration, starting at the nominal point, does
generally not lead to the worst vertex, which is illustrated by column 7
in Table VI. This is especially true when there is symmetry. In the case
of mirror symmetry, the gradient at the nominal point lies on the axis or
in the plane of symmetry and the first iteration leads to a symmetrical
vertex. This is confirmed by the results for our example (see columns 3
and 7 of Table VI): the first iteration gives always the worst symmetrical
vertex. That means that additional testing is necessary.

It should be noted. that in our example, only one iteration was needed
in each initial iterative search. In the iterative searches to be mentioned
further, there were never more than two iterations needed.

More than one vertex can satisfy (18) due to concavity of the constraint
function. This fact suggests an obvious scheme for further vertex selection:

the testing of adjacent vertices. Adjacent vertices are vertices differing

in only 1 component of u. Two testing schemes were used, both starting
with an iterative search from the nominal point.

Testing scheme 1

Each time a vertex is found satisfying (18) all adjacent vertices are tested
to see whether they satisfy (18).

Testing scheme 2

Each time a vertex is found satisfying (18) the iterative search is restarted

from all adjacent vertices.



Both schemes have the structure of a branching process. The process
stops when all possibilities are exhausted. A particular branch can also
stop when a vertex, or its symmetrically equivalent one, is encountered for
the second time. When this occurs, however, in the initial iterative search
it indicates that the constraint region is not one-dimensionally convex and
the worst point within the tolerance region is not a vertex. One action
we can take in such a case is to neglect that particular frequency. In all
ﬁractical problems solved untilnow this never happened at a critical frequency,
though it often happens at other frequencies.

A complication is caused by the presence in many problems of related
parameters. Two or more parameters are called related if they have to be
changed simultaneously, when going from one vertex satisfying (18) to another
one, both vertices of course taken for the same frequency. In our example,
the characteristic impedance and the normalized length of the same transmission
line section were found to be related. For the ﬁominal parameter values of
interest: considering the vertices in column 3 of Table VI, for a particular
frequency, My and My (same i) have to be changed simultaneously to go from
one to anothe;. ’

It is clear that testing scheme 1 will not work in most cases where there
are related parameters. In our example, a vertex adjacent to a vertex satis-
fying (18) may never satisfy (18). Testing scheme 2 will work, but generally
not reliably. If we know a priori that there are related parameters, we can
use both testing schemes if we reinterpret the term "adjacent": adjacent
vertices are vertices differing only in the u;s corresponding to a set of

related parameters.
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Table VI, columns 8-13, gives results for both testing schemes, assuming
and not assuming relationship. Table VII summarizes some data on the perform-
ance of the different schemes. It is clear that testing scheme 2 is more
accurate than scheme 1 and requires only slightly more effort. Assuming
related parameters improves both accuracy and efficienty.

If we are not a priori sure about the existence of relationships between
the parameters, it is possible, in the general process of Fig. 3, to do the
first vertex selection without assuming any relationship. The generated
vertex table can then be tested for related parameters, which can easily be
done automatically. If there is an indication for a relationship, this can
be assumed in subsequent vertex selections. Finally, the constraint set of
the last optimization has to be tested again, to see whether the assumed
relationship still exists.

From the results in Tables VI and VII, we can conclude that the proposed
vertex selection scheme has the following advantages:

- it requires fewer function evaluations than the one-at-a-time scheme,
to get the same information, i.e., a vertex table and the corresponding
constraint values, needed for further processing;

- the accuracy is at least the same, and usually bétter;

- the effort required depends on the conditioning of the constraint function
at a particular freQuency.

This makes the scheme suitable for automatic tolerance optimization according

to Fig. 3.

The same tolerance optimization problem as before was solved with the
new vertex selection scheme. Testing scheme 2 was used, assuming related

parameters. The parameters in the optimization were the same. With the
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same starting point, the solution was found in only 1 cycle of the process

of Fig. 3. A total of 40 sec of CPU time was needed on the CDC 6400, and

157 function evaluations in the single optimization. The number of constraints
was 33 (fewer than before). This performance compares extremely favourably
with the 6 runs needed before, requiring an average of 60 sec each, plus 2 to

3 minutes for vertex selection and intermediate testing.

IV, EFFICIENT AUTOMATIC TOLERANCING
As a test problem for the automatic tolerancing process to be discussed

we have chosen the starting point

o_,0_,0_,0_ .0 _ _
21 = 22 = 23 = 24 = 25 = 0.1, €y = 0.001

and used DISOPT [12] to perform the optimization.

Initial approximate centering

The scheme of Fig. 3 can directly be used to solve the test problem.
All subsequent results were found with vertex testing scheme 2, assuming
related parameters. The box labelled optimization in Fig. 3 consists of
2 steps: a feasibility check interrupted when all constraints are satisfied
and the main optimization process.

When using the scheme of Fig. 3, care must be taken to ensure proper
convergence. New constraints will be selected even when the solution is
already reached. The optimization will needlessly be restarted. This is
due to the fact that the vertex selection method selects more vertices than
strictly the worst. To get proper convergence, the amendment of limited

vertex insertion is needed. A newly selected vertex is only added to the

constraint table if it is worse than the vertices already selected for that

particular frequency.
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With this amendment to the basic scheme, the solution of the test problem
is found in 8& sec on the CDC 6400. Three optimizations were needed. Details
of the process ére shown in Table VIII. It is clear from Table VIII fhat
the first feasibility check brings us close to the solution. In fact, it
replaces approximately the steps 1 and 2 of Fig. 1. The next optimization
and feasibility check do not improve the solution essentially.

These considerations lead us to a scheme with initial approximate centering
of Fig. 9. We do the feasibility check only as long as new violated constraints
are found by the vertex selection. Its performance is illustrated by Table IX.
Only two optimizations and 71 sec on the CDC 6400 were needed.

Purging schemes

From Tables VIII and IX it is clear that in each optimization there is
still a relatively large number of constraints. We would like to reduce
them. This is especially important if we go on to the tolerancing-tuning
problem, where the number of slack variables increases with the number of
constraints. Uncritical constraints should then definitely be avoided,
because they lead to variables, which are indifferent to the optimization.
Because we can solve the nonlinear programming problem only approximately,
these indifferent variables will slightly interfere in the optimization and
can make the whole process highly inefficient. In some examples about half
the time needed for optimization was spent in changing the indifferent variables,
without any improvement in the solution. For these reasons, the constraint
table should be purged before each optimization.

The following basic purging scheme was used. The user specifies a
purging percentage P. Let g, and 8 be the highest and the lowest constraint
values, respectively, taken over the whole constraint table (and also over
all frequencies). The purging limit is then defined as

). (20)

8. =8, - -01P (g -g,

u
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All constraint values greater than g, are purged. The following amendment
has to be adopted to ensure meaningful purging.

1st amendment

The user specifies a maximum constraint value &y This can be chosen
rather pessimistically. All constraints higher than g, are not considered
in determining g, and are therefore also automaticaliy purged. This
amendment is especially useful for eliminatingcompletely uncritical sample
frequencies. In our example we used g, = 10, i.e., we‘consider that all
constraints larger than 10 dB will never be critical.

We would like to use high purging percentages in order to limit the
number of constraints as much as possible. We should, however, prevent
too much purging, which might make the optimization unbounded. In order to
ensure that there remain enough constraints to limit the solution, we need
the following.

2nd amendment (minimal band requirements)

The user specifies frequency bands and the minimum number of constraints
needed per band to limit the solution. The program will thén make sure
that these minimal requirements are met. If the user does not know very much
about the critical frequency bands for his problem, he can specify them con-
servatively. This amendment anyway allows the user to use his insight and
knowledge of the problem. The more detailed his knowledge is, the higher the
P he can use, the lower the minimum number of frequency points per band and the
more efficiently the program will run. Even if the designer has no knowledge
at all, there are usually some obvious frequency bands.

The minimal band requirements used in our test problem can be found in
Table X. Such band requirements can eventually be found by roughly drawing
or calculating an equi-ripple response of the desired order, which gives

some idea about the critical frequencies.
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The basic purging scheme described is incorporated in purging process 1,
as shown in Fig. 10. There is a safeguard against too much purging. A nega-
tive purging limit may indicate that P is too high. 1In that case, P is
decreased and the last Step is discarded.

The performance of purging process 1 in the test problem, with 10% purging,
is illustrated in Table XI. The 2nd amendment was not used, while the 1st
amendment eliminated the sample point at 10 GHz. The performance with P = 30%
is shown in Table XII. The second amendment was used in the first purging
step, to keep one constraint in the stopband (band 4).

The initial centering steps in Tables XI and XII are the same as in Table
IX. Higher purging percentages were less efficient, because the program
decreased P again, and the discarded optimizations were lost. We would
still like to use higher purging percentages P. If we could find the
solution with a largér number of optimizatiqns, but with a lower number of
constraints per optimization, such that the total time needed remains the
same as in purging process 1, the process would work more efficiently in
the tolerancing-tuning problem. Each optimization will run far more efficiently
with fewer constraints. The discarded 6ptimizations are equivalent to the
test runs but action will be taken automatically. This leads to the idea

of adaptive minimal band requirements, as realized in purging process 2,

shown in Fig. 11.

The minimal band requirements are adapted as follows: if any vertex
purged before the previous optimization reappears again in the vertex selection
with a negative constraint value we discard the last optimization. We make
sure that the vertex will not be purged in the next purging step and increase
the minimum number of constraints required for that particular band by one.

Moreover, in the next purging step, the vertex that has unjustifiably been purged
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will not be counted towards determining whether the minimum band require-
ments are met. This means that one vertex more has to be found for that
band.

Another difference with purging process 1 is the treatment of negative
purging limits g If 8. is negative we do not discard the previous optimi-
zation but we increase g We also make sure that the new 8. is positive, so
that the constraints which were active in the last optimization are not
purged.

The performance of purging process 2 is illustrated in Table XIII, for
P = 90%. It is slightly more efficient than purging scheme 1 with 30%
purging. (One more optimization is needed.) It is, however, expected to be
more efficient when we introduce tuning, as can be seen from the number of
constraints in each optimization.

Some results on tuning are summarized in Table XIV. Tuning was intro-

duced by two symmetrically placed tuning capacitors, C_ and Ct (Fig. 12),

3 4
~allowed to vary from 0 to 10 pF. The nominal minimax approximation and the

t

minimax approximation with fixed tolerances gave the same results as before
with tuning capacitors + 0, as was expected. The automatic process with
purging was also implemented and, as was claimed above, purging process 2
was more efficient than process 1. Process 2 with P = 90% fqund the solution
in 1025 sec on a Siemens 4004, while process 1 with P = 30% did not find a
solution in less than 1200 sec. It is clear from these figures that a high
purging percentage is essential, if no good starting point is available.

It should also be mentioned that the vertex selection was done with

Ct = Ct = 5 pF, since the actual values of the tuning capacitors for each
3 4

vertex are not known a priori.' That means that we cannot completely rely on

the convergence of the process and that testing of the final results (all vertices)
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is nccessary. It turned out that one more optimization was needed.

Different starting points gave slightly different results, which indicates
that the tolerancing-tuning problem is extremely ill-conditioned. At any rate,
the usefulness of the ideas involved in automatic efficient tolerancing for
the tolerancing-tuning problem was fully illustrated: a problem was solved
which was impréctical by conventional means in one computer run. Further

investigation of the peculiarities of the tuning problem is still needed.

V. CONCLUSIONS

An approach to automating the optimal assignment of component tolerances
along with centering has been presented. A new vertex selection method for
the tolerance region has been proposed with the aim of avoiding intermediate
testing of all vertices. It is felt that a program based on this work would
exploit the insight of a designer to improve computational efficiency without
requiring detailed knowledge of the program or the algorithms used. The inform-
ation required of the designer relates to the physical properties of the

problem.
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TABLE I

DATA

FOR LOWPASS FILTER

Band edge
0 0 _ .0
Zl N ZS - ZS
D.- D
2 4
€, 5 1 = 1, s5
1
C, = C6

Terminations

1.0 GHz:
0.2 Q
5.0 Q

o

15.6 pF
28.5 pF
1.0 Q

TABLE II SPECIFICATIONS FOR LOWPASS FILTER

Band Insertion loss specification
0 -1 GHz 0.02 dB
2.5 - 10 GHz 25.0 dB
P i 0 0
arameter constrailnts 21 = 25
0o_,0
22 = 14-
€ = € = € = € = €
1o s Yy s

Cost function




TABLE IiI RESULTS FOR LOWPASS FILTER

0_ .0 0_,0 0
Problem 21 = 25 22 = 24 23 62
Nominal minimax .0343 .1440 .1207 -
approximation
Minimax approximation
with fixed tolerances -0402 » 1433 -1252 -001
Tolerance optimization .0423 . 1426 .1274 .00196

TABLE IV VERTICES USED IN MINIMAX APPROXIMATION WITH
€, = 0.001 FIXED (LAST RUN)

L

Frequency Vertices when

Additional vertices when

GHz using symmetry+ not using symmetry
.25 22 -
.35 22 -
.40 22 -
.50 22 -
.65 119,460,507,508 475,782,972,988
.75 476 906
.80 243,476 906
.85 243,476 906
.90 212,243 410,906
.95 119,243 782,906
1.0 615 813
2.5 673 -
10.0 687 -
TABLE V DATA FOR LAST RUN IN SOLUTION OF
= 0.001 FIXED

MINIMAX APPROXIMATION WITH €y

Not using symmetry Using symmetry

Number of variables 5 3
Number of constraints 32 20
CPU time (sec) 36.0 18.6
Number of function evaluations 252 185

k i+l 1
T Vertices are numbered as r = 1 + ) ['—lf“ 1 2075, u§ e {-1,1}.

j=1



TABLE VI VERTEX SELECTION AT OPTIMALLY TOLERANCED
SOLUTION OF LOWPASS FILTER*

Yreauency  Nominal Vertices satisfying Vertices selected One iteration

GHz constraint necessary condition by one-at-a-time from nominal
vealue No. Constraint scheme point
value Satisfying  Number
necessary
condition
.25 .0140 22 .00671 22 1 22
.35 .0123 22 .00107 22 1 22
.40 .0124 22 .00000145 22 1 22
.50 .0146 22 .00213 22 1 22
.65 .0193 53 .01095 53 36 -
119 .01144 - -
549 .01147 549 549
507 .01786 - -
476 .01851 - -
.75 .0199 243 .009968 243 544 -
119 .01060 119 -
476 .01242 476 476
507 .01341 - -
549 .01522 549 -
53 .01560 53 -
.80 .0195 243 .006660 = 36 -
476 .008507 476 476
119 .009267 - -
549 .01638 - -
.85 .0190 243 .003388 - 10 -
476 .005286 476 476
119 .007627 - -
549 .01689 - -
.90 .0189 243 .0009800 = 10 -
212 .001882 212 -
476 .004051 476 476
119 .005923 - -
549 .01662 - -
.95 .0194 212 .0000004761 212 20 -
243 .0001738 - -
119 .003988 - -
476 .005918 476 476
549 .01506 - -
1.0 .0200 615 .000001250 615 544 -
119 .0005760 119 -
212 .0006256 212 -
243 .001076 243 -
549 .01093 549 549
476 .01108 476 : -
879 .01144 879 -
2.5 1.507 673 .00007964 673 1 673
10.0 28.31 687  25.98 687 1 687

1 0f cach pair of symmetric vertices, only the lowest vertex number is mentioned. Aiso
in column G, the figure mentioned is the number of essentially different vertices.

+ Underlined vertex numbers denote vertices in the plane of symmetry.

++ At 0.80 CGHz the one-at-a-time scheme found vertex no. 211 as worst vertex. It does
not satisfy the necessary condition.



Vertex selection assuming related parameters Vertex selection not assuming related

Testing scheme Testing scheme parameters, testing scheme 2
1 2
Vertices FE Vertices FE Vertices FE
22 5 22 5 22 8
22 5 22 5 22 8
22 5 22 5 22 8
22 5 22 5 22 8
53 12 53 12 53 24
119 119 119
549 549 549
243 15 243 15 243 24
119 119 -
476 476 476
507 507 507
549 549 -
53 53 -
- 5 243 11 - 8
476 476 476
- 119 -
- 5 243 11 243 16
476 476 476
- . 119 -
243 14 243 15 243 24
212 4 212 212
476 476 476
119 119 -
212 14 212 14 212 24
243 , : 243 243
119 119 -
476 476 476
615 16 615 17 615 32
119 119 119
212 212 : 212
243 243 243
549 549 549
476 476 -
879 879 -
673 5 673 5 673 8
687 5 687 5 687 8

FE = number of function evaluations (in this case calculation of network response
and gradient at a single frequency)



TABLE VII PERFORMANCE OF VERTEX SELECTION METHODS
FOR OPTIMALLY TOLERANCED LOWPASS FILTER

CPU time on

No. of sample No. of vertices
frequencies CDC 6400 generated
where failure (sec)
One-at-a-time 3 12.3 1196
Iterative
Assuming related
parameters
Testing scheme 1 2 1.65 32
Testing scheme 2 0 2.07 36
Not assuming related
parameters
Testing scheme 2 1 3.09 26
TABLE VIII PERFORMANCE OF BASIC AUTOMATIC SCHEME IN TEST PROBLEM
Ste No. of constraints in Resulting parameters CPU time on
P optimization 20290 L0_,0 0 CDC 6400
1775 "27"4 73 2 (sec)
Vertex selection .
Feasibility check 12 .0394 .1400 .1300 .00034 9.6
Optimization .0283 .1683 .1310 .00653
Vertex selection
Feasibility check 37 .0380 .1477 .1235 .00161 31.7
Optimization .0416 .1442 .1287 .00254 '
Vertex selection
Feasibility check 47 .0410 .1439 .1249 .00156 40.1
Optimization .0423  .1426 .1274 .00196 :
Total CPU time = 86 sec




TABLE IX PERFORMANCE OF INITIAL APPROXIMATE CENTERING

SCHEME IN TEST PROBLEM

Step - No. of constraints Resulting parameters Effort
in optimization 0_,0 ,0_,0 0 FE = function
S TS R S T Y evaluations,

CPU times on
CDC 6400

Vertex selection » .

Feasibility check 12 .0394 .1400 .1300 .00034 22 FE

vertex selection 24 .0427 .1430 .1268 .00217  33.5 sec

Optimization

Vertex selection

Feasibility check 40 .0421 .1427 .1271 .00186 31.2 sec

Optimization .0423 .1426 .1274 .00196 :

Total CPU time = 70.7 sec

TABLE X MINIMAL BAND REQUIREMENTS FOR PURGING IN TEST PROBLEM

Band No. Frequencies Minimum number of
(GHz) constraints
1 0 - 0.55 1
2 0.60 - 0.96 1
3 0.97 - 1.0 1
4 2.5 -10.0 1




TABLE XI PERFORMANCE OF PURGING SCHEME 1, P = 10%,
IN TEST PROBLEM
Number of Resulting parameters CPU time
Step , .
‘constraints (0_,0 ,0_ 0 0 . (sec)
5 2 74 3 2 CDC Siemens
6400 4004
Initial centering 24 .0427 .1430 .1268 .00034
Purging
Optimization 18 .0437 .1438 .1252  .00270 20.1 89.5
Vertex selection 32
Purging
Feasibility check 30 .0422  .1427 .1273  .00193 22.9 96.2
Optimization .0423 .1426 .1274 .00196 ' )
Total 49.3 212.9
TABLE XII PERFORMANCE OF PURGING SCHEME 1, P = 30%,
IN TEST PROBLEM
Step Number of Resulting parameters CPU time
constraints £0=Q0 QO_QO ‘ 10 (sec)
175 72774 3 % CDC  Siemens
6400 4004
Initial centering 24 .0427 .1430 .1268 .00034
Purging- second
amendment used in
band 4. .
Optimization 18 .0437 .1438 .1252 .00270 20.1 89.5
Vertex selection 32
Purging
Feasibility check 24 .0423 .1424 .1274 .00188 18.9 798
Optimization .0423  .1426 .1274 .00196 f' ot
Total 188.06

45.3




TABLE XIII PERFORMANCE OF PURGING PROCESS 2, P = 90%,
IN TEST PROBLEM

St Number of Resulting parameters CPU time
ep .
constraints 20220 ,0_,0 20 . (sec)
175 274 3 L CDC  Siemens
6400 4004
Initial centering 24 .0427 .1430 .1268 .00034
Purging

Optimization 6 .0361 .1633 .1078 .00361 9.02 34.9

Band 4, minimum
from 1 to 4, discard.

Purging :
Optimization 12 .0427  .1430 .1268 .00217 10.2 39.8
Vertex selection 30

Purging (increased g )
Feasibility check 13
Optimization . 0423 . 1426 .1274 .00196 10.9 41.5

Total 38.3 148.8

TABLE XIV PERFORMANCE OF AUTOMATIC SCHEMES ON TEST PROBLEM

Basic scheme Approximate Purging Purging
initial centering 1, 30% 2, 90%
No. of Yertex 4 4 4 4
selections
No. of feasibility
checks 3 2 2 2
No. of optimizations 3 2 2 2
No. of constraints
per optimization 12,37,47 24,40 18,30 6,12,13
CPU time(sec) 86.0 70.7 45.3 38.3

CbC 6400




1] Nominal minimax approximation

yes Tolerance

optimization

Minimax approximation
with fixed tolerances

yes Specificatio no
satisfied
/

Tolerance yes no
optimization

|

Introduce tuning to _ Introduce tuning

increase tolerances to satisfy specs

- ]

—

Caculate yield

Optimal tolerancing

and tuning ‘ Yield optimization

Fig. 1. Typical problem solving sequence.
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Vertex selection at starting point
=s set of constraints for optimization

Constrained minimizatiqn

of cost function

Vertex selection at . solution

All vertices use

yes —( sTop)

|

Add newly selected vertices

Fig. 3. Basic scheme for tolerance optimization.
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Vertex selection

Feasibility check -

4
Vertex selection

Are newly found yes

Add new constraints
to vertex table

constraints negative

Optimization

Vertex selection with
limited insertion

Are

n
new vertices 0

foun
yes

Add new vertices
to vertex table

Fig. 9.

Feasibility check

Approximate initial centering scheme.

~( STOP )




Initial centering

Purging, using

_both amendments

Optimi

zation

Vertex selection

yes

Purging, using
both amendments

New
constraints

no

no

P=5P

- Discard last
 optimization

Add new vertices
to constraint table

|

Feasibility check

Fig. 10.

Purging process 1.




Initial centering

Purging

{
Optimization

\
Vertex selection

Any
purged vertices

Adapt band

requirements

violoted

= g.=0! (100-P)g,

Purging

L —~( STOP )

New constraints

Feasibility check

Fig. 11. Purging process 2.
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