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Abstract A new, integrated approach to microwave design is presented involving
concepts such as optimal design centering, optimal design tolerancing, optimal
design tuning, parasitic effects, uncertainties in models and reference planes,

and mismatched terminations. The approach is of the worst case type, and previous-
ly published design schemes fall out as particular cases of the ideas pre-

sented. The mathematical and computational complexity as well as the benefits
realized by our approach is illustrated by transformer examples, including a

realistic stripline circuit.
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I. INTRODUCTION

The use of nonlinear programming techniques for the design
of microwave circuits has been well established. Applications hitherto
reported by the authors, for example, fall into two categories: (1) the
improvement of a response in the presence of parasitics [1 - 2]. In this
case the function to be minimized is of the error function type and the
constraints, if any, are normally imposed on the design parameters.

(2) design centering and tolerance assignment to yield a minimum cost cir-
cuit that satisfies certain specifications, usually imposed on the frequency
response, for all possible values of the actual parameters [3]. The function
to be minimized is of the cost function type and the constraints are due to
the specifications. Tuning elements may be introduced to further increase
possible unrealistic tolerances and thus decrease the cost or make a circuit
meet specifications [4].

No consideration, however, of optimal tolerancing or tuning of microwave
circuits has been reported, where parasitic effects were taken into account.
A major complication is introduced here, since the models available for
common parasitic elements normally include uncertainties on the value of
the model parameters. These uncertainties are due to the fact that the
model is usually only approximate and that approximations have to be made
in the implementation of existing model formulas. A typical example of
the latter is the relationship between the characteristic impedance and
width of a symmetric stripline, where the formula involves elliptic integrals.

The model uncertainties can well be of the same order of magnitude as
the tolerances on the physical network parameters so that a realistic

design, including tolerances, can only be found when allowance is made for them.



In the approach adopted, an attempt is made to deal with the model un-
certainties in the same way as with the other tolerances. This involves,
however, a complication in the formulation of the problem. The physical
tolerances affect the physical parameters whereas the model parameter
uncertainties affect a set of intermediate parameters (which will be called
the model parameters) in the calculation of the responSe.

In thevpresent paper we consider design of microwave circuits with the
following concepts treated as an integral part of the design process:
optimal design centering, optimal design tolerancing, optimal design tuning,
parasitic effects, uncertainties in the circuit modeling, and mismatches at
the source and the load.

II. THEORY

The Tolerance-Tuning Problem

In this section we introduce some of the notation and briefly review
the parameters involved in the tolerance-tuning problem.

We consider first a vector of nominal design parameters QO and a
corresponding vector containing the manufacturing tolerances g. Thus, for

k variables,
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A possible outcome of a design is then

% = $ + E ge’ (2)



where
uelT
A
K = Ve, (3)
Uek
- —
and
e, h
€
A 2
E = )
€
L k|

The vector p_ determines the actual outcome and can, for example, be bounded
by

-1 < B S 1, i =1,2,...,k. (5)
i

It is assumed that the designer has no control over J . This leads to the
concept of the tolerance region Rs’ namely, the set of points ¢ of (2)
subject to, for example, (5). An untuned design implies ¢ as given by (2).

Consider a vector t containing tuning variables corresponding to (1). Thus
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A design outcome with tuning implies
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The vector j. determines the setting of the tuning elements and we consider,

for convenience,
1<y, <1,1i=1,2,...,k. (10)

Hence, we have a tuning region Rt centered at QO + Eke for each outcome Ko+
The worst-case tolerance-tuning problem is to obtain an optimal set
{QO, £ g} such that all possible outcomes (controlled by He) can be tuned
so as to satisfy the design specifications (by adjusting Ht) if tuning is
available. If tuning is not available all outcomes must satisfy the design
specifications. A detailed discussion has been presented [4].

Model Uncertainties

Taking ¢ as the vector of physical design parameters which have to be
determined and appear in the cost function, we may consider an n-dimensional
vector p containing the model parameters, e.g., the parameters appearing

N

in an electrical equivalent circuit. In general, n # k. We have an associa-

ted vector of nominal model parameters p0 and a vector of model uncertainties

n
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A possible model can then be described by

p =10+ A K (12)
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Thus, Ks determines the particular model under consideration. We will
assume

-1 < Mg < 1, i=1,2,...,n, (15)

and also the functional dependence on ¢ implied by
0
P=p (9 + AWK Ks- (16)
N Y]
Given a tolerance region in the $ space it would be hard, in general,
to envisage its effect in the p space, even if § = 0. The selection of
N
worst-case p is complicated by the modeling uncertainties. Especially when n<k
N

more than one {u , } ma ive the same worst case p. In selecting candidates
Ke» Ks y 8 p g
n

we will assume, intuitively, that the following is sufficient

He 5 Mg = +1,1i=1,2,...,k,j = 1,2,...,n. (17
1 ]
Mismatch Considerations

We consider environmental influences in the form of mismatches at the source
and load. The situation is depicted in Fig. 1. The discussion is directed towards
handling terminations with prescribed maximum reflection coefficient amplitudes and
arbitrary reference planes, the mismatches at different frequencies being, pessi-

mistically, taken as independent.



Fig. 1 (a) shows the ideal situation of matched resistive terminations
Ry and RO. Assume that the actual complex terminations as seen by the

circuit are ZS and ZL’ as shown in Fig. 1 (b). Then the reflection coefficient

Zs - R

I
Pe = 5w (18)
S ZS + RI
at the source, and
Z. - R
L 0
o =0 (19)
L ZL + R0

at the load. The actual reflection coefficient p at the source is given

by

*
Z - ZS

P =55
Z + ZS

using the notation of Fig. 1(b). *denotes the complex conjugate.

(20)

Consider the situation depicted in Fig. 1(c). We have, for a matched

source and mismatched load the input impedance Z with the reflection coefficients

Z - RI

pa =7+ RI (21)
and
*
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L -

pb = ) (22)

ZL + Z

1
where Z is the impedance at the output when the input is matched. Associated

with the latter situation is the parameter S5o given by (Fig. 1 (a))

s = _._.___—-Q- . _ ‘ (23)

From (18), (20) and (21) we can obtain p in terms of Pg and Pye Similarly,
from (19), (22) and (23) we can obtain 5 in terms of Sop and oL Using
Carlin and Giordano [5] we may readily derive the following expressions. For

all possible phases,
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where, assuming a lossless circuit, lpal = [pbl and
l!pL| - Iszzll Ile + l522| . (25)
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A particular example showing the extreme values of lpa[ and |p| is shown in
Fig. 2.

Explicit upper and lower bounds on |o| may be derived. Simplest is the upper
bound, given for all possible phases of Pg and Py and constant amplitude by
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Assuming all possible phases of Pg and PLs but constant amplitude as before,

we obtain the following lower bounds.
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Fig. 3 shows a comparison of these relations with the results of a Monte
Carlo analysis with 1000 uniformly distributed values for the phases of
Pg and pp, on [0, 2] for a particular example of an ideal one-section trans-
former from 50 @ to 20 @ wiph lpsl = 0.05 and |le = 0.03.

Assume now all possible amplitudes up to lpsl and IpLI in addition to all

possible phases. The upper bound remains the same as (26) but the lower bound

becomes
syl -
S—
22 p if K < |s
1-K]|s,,]| P 22
min|p|= 1 p'~22 (31)
0 if K > |55,
\
An illustration for |pg| = IpLI is shown in Fig. 4. We note that under

this restriction, the results are not affected by whether all possible
amplitudes are considered or not.

Design Specifications

Let all the performance specifications and constraints be expressed in
the form
g; > 0 (32)

where g; is, in general, an ith nonlinear function of p(g). Thus, we may
N

consider mismatches by an expression of the form

_ 0
gi - gi(R) + upi (R: psi: pLi) > (33)

where subscript i may denote a sample point and where Pg represents the

source mismatch and PL the load mismatch. The function up has the effect
i

of shifting the constraint.

Given mismatches, model uncertainties and so on obviously influence

the nominal design parameters and manufacturing tolerances. An objective,
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for example, is to find an optimal set {QO, £s %} such that all possible
outcomes (controlled by ge), all possible models (controlled by H5) and
all possible mismatches (controlled by gp) are accommodated in satisfying
the design specifications.
II1. EXAMPLES

To illustrate some of the ideas presented, we consider two simple
circuits. The first includes tuning, the second considers possible model
uncertainties, parasitic effects and mismatched terminations.

Two-Section Transformer

An upper specified reflection coefficient of 0.55 for a two-section
lossless transmission-line transformer with quarter-wave length sections
and impedance ratio of 10:1 was considered at 11 uniformly spaced frequences
on 100% relative bandwidth.

Table I shows some results of minimizing certain objective (cost)
functions of relative tolerances and tuning ranges. The functions are chosen
to penalize small tolerances and large tuning ranges. The design parameters
are the normalized characteristic impedances of the two sections, namely,

Zl and 22. The problem has already been considered from the purely tolerance
point of view [3]. The parameter e; is the effective tolerance [4] of the
ith parameter, i.e.,

' A

€.

e. - t. for e. > t. . (34)
i i i i

i

A number of interesting, but not unexpected, features may be noted.
Column 2 of Table I shows results for no tuning [3]. Columns 3 and 4 show
results when Z1 and 22 are tunable, respectively, by 10%. Note that the
nominal points move and the tolerances increase. Figure 5 illustrates the
optimal solution corresponding to Column 3. The remaining results indicate

solutions when the tuning ranges are variables and included in the objective

functions. Observe that the results in the final two columns are essentially
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the same as those in Column 2. The last column shows how the tuning ranges
are automatically set to 0 when they are heavily weighted in the cost
function, i.e., they are assumed to be expensive. Figure 6 corfesponds to
the situation of Column 7.

Tuning of any component enhances all the tolerances, as expected.
Furthermore, if tuning'is expensive it is rejected by the general formula-
tion, which is useful if the designer has a number of possible alternative
tunable components and is not sure which components should be effectively
tuned (ti > ei) and which should be effectively toleranced.

One-Section Stripline Transformer

A more realistic example of a one-section transformer on stripline
from 50 @ to 20 Q is now considered. The physical circuit and its equiva-
lent are depicted in Fig. 7. The specifications are listed in Table II.
Also shown are source and load mismatches to be accounted for as well as
fixed tolerances on certain fixed nominal parameters and assumed uncertain-
ties in model parameters.

Thirteen physical parameters implying 213 extreme points are
3
+ variable nominal and

2 variable tolerances

w
Ws
3

lo
1
;1

=
[

(35)
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where w denotes strip width, % the length of the middle section, €. the
dielectric constant, tg the strip thickness and b the substrate thickness.
Tolerances on e, b and t  were imposed independently for the three lines
allowing independent outcomes. Nominal values for corresponding parameters
were the same throughout.

Six model parameters implying 26 extreme points are

— —

(36)

®» - O O
N NN
-

where D denotes effective line width, L the junction parasitic inductance

and zt the effective section length.

The formula for Di used is [6]

2b. t .
i si 2t .
D. = w. + —— n2 + —— si .

i i m L 1 - 4n 5 , 1

1

= 1,2,3. (37)

The formula is claimed to be good for wi/bi > 0.5. A 1% uncertainty was
rather arbitrarily chosen for Di' The characteristic impedance Zi is then
found as
30ﬂ(bi—tsi)
4 D e (38)
i ri
The values of Li were calculated as [7]

305i
L. = K. , i=1,2, (39)
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Mean values across the junctions of adjacent sections of /E; and b are taken
since actual values in our model can be different across junctions. Data for
estimating the uncertainties on Li is available [6,7]. Other approximations
have, however, beeh introduced due to the tolerancing. A 3% uncertainty on
Li was adopted.

The length Rt is nominally the same as &. Experimental results [6]
indicate possibly large inaccuracies in d (see Fig. 7) and that it depends
at least on o, so that it is actually different for the two junctions. A
rather pessimistic estimated error of 1 mm on lt was chosen.

Maximum mismatch reflection coefficients of 0.025 were chosen for the
source and load. Note that these values are assumed with respect to 500
and 20Q, respectively. The relevant formulas developed in Section II can
not be applied directly, since Z1 and ZS’ which are affected by tolerances,

must be considered for normalization. We take, most pessimistically,

0.025 + |, |
legl = : (40)
1+ 0.025 |p,|
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where
i 50 - Z;
P11 50 + Z,

and

0.025 + |p.]|

oy = > (41)

1+ 0.025[p | °

where

20 -
ZS

p —_—
3 20
+Z3

Figure 8 summarizes some of the results obtained from worst-case analyses.

0]

Depicted are curves of the ideal design with discontinuity (parasitic) effects
taken into account; upper and lower bounds on the response with source and
load mismatches also added; finally, upper and lower responses with model
uncertainties further deteriorating the situation.

A worst-case study was made to select a reasonable number of constraints

from the possible 219 = 213

X 26, since 219 would have requifed about 5000s
of CDC 6400 computing time per frequency point. The vertex selection pro-
cedure for the 13 physical parameters follows Bandler et al. [3]. From each
of the selected vertices the worst values of the modeling parameters are
chosen. Only the band edges are used during optimization. After each optimi-
zation the selection procedure is repeated, new constraints being added, if
necessary.

Results on centering and tolerancing using DISOPT [8] are shown in
Table III. The final number of constraints used is 21 after 9 optimizations
required to identify the final constraints. Less than 4 minutes on the

CDC 6400 was altogether required. (An intermediate, less accurate, solution

is obtained using 18 constraints after 7 optimizations requiring 2 minutes
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on the CDC 6400). To verify that the solution meets the specification,
the constraint selection procedure was repeated at 21 points in the band.

Figure 9 presents final results for this example. The reason for the
discrepancy between the worst cases when vertices are used and when the
Monte Carlo analysis is used is that the Monte Carlo analysis does not
employ the pessimistic approximations of (40) and (41).

CONCLUSIONS

The concepts we have described and the results obtained are promising.
Our approach is the most direct way of currently obtaining minimum cost
designs under practical situations, at least in the worst case sense. It is
felt that this work is a significant advance in the art of computer-aided
design since the approach permits the inclusion of all realistic degrees
of freedom of a design and all physical phenomena that influence the sub-
sequent performance.

The. approach automatically creates a tradeoff between physical tolerances
(implying the cost of the network), model parameter uncertainties (implying
our knowledge of the network), the quality of the terminations and, eventually,
the cost of tuning. Our approach to mismatches permits input and output
connecting lines of arbitrary length - an important step towards modular
design.

The conventional computer-aided design process which seeks a single
nominal design or its extension which attempts to find a design center
influenced by sensitivities (see, for example, Rauscher and Epprecht [9])
would normally be a preliminary investigation to find a starting point for

the work we have in mind.
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TABLE II

ONE-SECTION STRIPLINE TRANSFORMER

Center Frequency 5 GHz
Frequency Band 4.5 - 5.5 GHz

Reflection Coefficient Specification 0.25 (upper)

Source Impedance 50 @ (nominal)
Load Impedance 20 Q@ (nominal)
Source Mismatch (Maximum) 0.025 (reflection coeff.)
Load Mismatch (Maximum) 0.025 (reflection coeff.)
€ 2.54 + 1%
T
b 6.35 mm = 1%
tS 0.051 mm %+ 5%
Uncertainty on Ll, L2 3%
%
Dy, D,, Dy 1
L 1 mm

t




TABLE III

RESULTS FOR ONE-SECTION STRIPLINE TRANSFORMER

Cost Function

Sample Points

Number of Variables

State of Solution

Number of Final Constraints
Number of Optimizations

CDC 6400 Time

Minimal Cost

x 100
e /w, x 100
€ /wg x 100

62/20 x 100

L
00

[5=Y

Intermediate
18

7

4.660

8.968

15.463

8.494

0.94

.93

.642

.910

.442

.437

.92

.13

.70

.65

GHz

min

mm

mm

mm

mm

o

554

54

o
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