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design tuning, parasitic effects, uncertainties in circuit models, and mis-
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I. INTRODUCTION

The use of nonlinear programming techniques for the realistic design
of microwave circuits has been well established. Applications hitherto
reported by the authors, for example, fall into two categories: (1) the
improvement of a response in the presence of parasitics [1 - 2]. In this
case the function to be minimized is of the error function type and the
constraints, if any, are normally imposed on the design parameters.

(2) design centering and tolerance assignment to yield a minimum cost cir-
cuit that satisfies certain specifications, usually imposed on the frequency
response, for all possible values of the actual parameters [3]. The function
to be minimized is of the cost function type and the constraints are due to
the specifications.

Tuning elements may be introduced to further increase the tolerances and
thus decrease the cost or make a circuit meet specifications [4]. No
consideration, however, of optimal tolerancing or tuning of microwave cir-
cuits has been reported, where parasitic effects were taken into account.

A major complication is introduced here, since the models available for
common parasitic elements normally include uncertainties on the value of
the model parameters. These uncertainties are due to the fact that the
model is usually only approximate and that approximations héve to be made
in the implementation of existing model formulas. A typical example of
the latter is the relationship between the characteristic impedance and
width of a symmetric stripline, where the exact formula involves elliptic
integrals.

The model uncertainties can well be of the same order of magnitude as
the tolerances on the physical network parameters so that a realistic

design, including tolerances, can only be found when allowance is made for them.



In the approach adopted, an attempt is made to deal with the model un-
certainties in the same way as with the other tolerances. This involves,
however, a complication in the formulation of the problem. The physical
tolerances, which can be fixed or variable, affect the physical parameters,
which can also be fixed or variable, whereas the model uncertainties affect
a set of intermediate parémeters (which will be called the model parameters)
in the calculation of the response.

In the present paper we consider design of microwave circuits with the
following concepts treated as an integral part of the design process:
optimal design centering, optimal design tolerancing, optimal design tuning,
parasitic effects, uncertainties in the circuit modeling, and mismatches at
the source and the load.

II. THEORY

The Tolerance-Tuning Problem

In this section we introduce some of the notation and briefly review
the parameters involved in the tolerance-tuning problem. |

We consider first a vector of nominal design parameters %O and a
corresponding vector containing the manufacturing tpleranceslg. Thus, for

'k variables,
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The vector Mo determines the actual outcome and can, for example, be bounded
by

-1 <y <1, 1i=1,2,...,k. (5)
It is assumed that the designer has no control over Ke- This leads to the
concept of the tolerance region Re, namely, the set of points ¢ of (2)
subject to (5). An untuned design implies $ as given by (2). Consider a

vector t containing tuning variables corresponding to (1). Thus
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A design outcome with tuning implies

$=9 *Ex. T M (7)

where

ne>
~+

2 (8)




and

ne>
N

(9)

o3

i x|

The vector Ke controls the tuning and we consider, for convenience,
-1 <yu, <1,1i=1,2,...,k. (10)

Hence, we have a tuning region Rt centered at QO + EHE'

The worst-case tolerance-tuning problem is to obtain an optimal set
{QO, £, g} such that all possible outcomes (controlled by &e) can be tuned'
so as to satisfy the design specifications (by adjusting Rt) if tuning is
available. If tuning is not available all outcomes must satisfy the design
specificatioﬁs. |

Model Uncertainties

Taking ¢ as the vector of physical design parameters, we may consider

an n-dimensional vector p containing the model parameters, e.g., the para-
V]

meters appearing in an electrical equivalent circuit. In general, n # k.

We have an associated vector of nominal model parameters po and a vector of
v

model uncertainties §, where
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A possible model can then be described by

0
P=DP + Qs (12)
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Thus, Rs determines the particular model under consideration. We will

assume

1<ug <1, i=1,2,..0,0, (15)

and also the functional dependence on ¢ implied by

0
p=p (9 + A0 Rs- (16)
v v
Given a tolerance region in the $ space it would be hard, in general,
to envisage its effect in the p space, even if o = Q. The selection of
v

worst-case ¢ 1is complicated by the modeling uncertainties. The whole design
problem is inevitably becoming more abstract. In selecting candidates

for worst case, however, we will assume, for simplicity, that

Mo, Mg =1, 1 =1,2,..,k,5 = 1,2,...,0. (17)

Mismatch Considerations

At this point, the discussion needs to become more concrete. We
consider environmental influences on the behavior of a circuit in the form
of mismatches at the source and load ends. The situation is depicted in

Fig. 1.



Fig. 1 (a) shows the ideal situation of matched resistive terminations

RI and RO. Assume that the actual complex terminations as seen by the

circuit are Z, and ZL,‘as shown in Fig. 1 (b). Then

S

Pg = ;g"::‘i_l (18)
A S I
at the source, and
°L = ;_;_E_Q (19)
L 0

at the load. The actual reflection coefficient p at the source is given

by

yA Z *
7S

P =5 , (20)
Z + ZS

using the notation of Fig. 1(b). *denotes the complex conjugate.

Consider the situation depicted in Fig. 1(c). We have, for a matched

source and input impedance Z

Z - R,
Pa TTER, (21)
and -
*
7 -7
-
op = ———r (22)
ZL + Z

1
where Z is the impedance at the output when the input is matched. Associated

with the latter situation is the parameter $9 given by (Fig. 1 (a))

1
Z - RO
Sy = T - (23)
Z + RO

Using Carlin and Giordano [5] we may readily derive the following expressions.

For all possible phases,



el = logl| lo |+ log]
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where, assuming a lossless circuit, Ipal = |pb| and
HpL’ - |522H |le + I.Szzl . (25)
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A particular example showing the extreme values of !pal and |p| is shown in
Fig. 2.

Explicit upper and lower bounds on ]p| may be derived. Simplest 1is

the upper bound, given by

K o+ |s,,|
max |p| = B——22 (26)
1+ Kp |522|
where
lo, | + logl
K = LS 27)
o1+ oyl legl
Let
lo | - logl
T 1 - ol legl
and
K, = K. (29)

Assuming all possible phases of g and P> but constant amplitude we

obtain the following lower bounds.
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0 otherwise



Fig. 3 shows a comparison of these relations with the results of a Monte
Carlo analysis with 1000 uniformly distributed values for the phases of
g and p; on [0, 2n] for a particular example of an ideal one-section trans-
former from 50 & to 20 @ with [pg| = 0.05 and lo, | = 0.03.

Assume all possible amplitudes up to lpS[ and lpLI in addition to all

" possible phases . The upper:bound remains the same as (26) but the lower bound

becomes (
|s,,] - K
_22 p ifK<|522|
: 1-K|s,| P
min|p|= { p' 22 (31)
0 if K> | 55,1
\
An illustration for Ips| = |pL| is shown in Fig. 4. We note that under

this restriction, the results are not affected by whether all possible
amplitudes are considered or not.

Design Specifications

Let all the performance specifications and constraints be expressed in
the form
. >
g; 20 , (32)
where g; is, in general, an ith nonlinear function of p or ¢. Thus, we may

Y
consider mismatches by an expression of the form

_ .0
g; = g;(p) +u

(P> g > 0L ) (33)
1 1 1

where subscript i may denote a sample point and where Pg represents the

source mismatch and oL the load mismatch. The function up has the effect
- i

of shifting the constraint.

Given mismatches, model uncertainties and so on obviously influence

the nominal design parameters and manufacturing tolerances. An objective,
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for example, is to find an optimal set {QO, £, g} such that all possible
outcomes (controlled by Hs)’ all possible models (controlled by HG) and
all possible mismatches (controlled by Rp) are accommodated in satisfying
the design specifications.
ITI. EXAMPLES

To illustrate some of the ideas presented, we consider two simple
circuits. The first includes tuning, the second considers possible model
uncertainties, parasitic effects and mismatched terminations.

Two-Section Transformer

Specifications and sample points for a two-section lossless transmission-
line transformer with quarter-wave length sections and impedance ratio of
10:1 and 100% relative bandwidth are given in Table I.

Table II shows some results of minimizing certain objective (cost)
functions of relative tolerances and tuning ranges. The functions tend to
discourage small tolerances and large tuning ranges. The design parameters
are the normalized characteristic impedances of the two sections, namely,

Zl and ZZ' The problem has already been considered from the purely tolerance
point of view [3]. The parameter e; is the effective tolerance [4] of the

ith parameter, i.e.,

1 A '
e, = € - ti for €5 > ti . (34)

A number of interesting, but not unexpected, features may be noted.
Column 2 of Table II shows results for no tuning [3]. Columns 3 and 4 show
results when Z1 and 22 are tunable, respectively, by 10%. Note that the
nominal points move and the tolerances increase. Figure 5 illustrates the
optimal solution corresponding to Column 3. The remaining results indicate

solutions when the tuning ranges are variables and included in the objective

functions. Observe that the results in the final two columns are essentially
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-the same as those in Column 2. The last column shows how the tuning ranges
are automatically set to 0 when they are heavily weighted in the cost
functién, i.e., they are assumed to be expensive. Figure 6 corresponds to
the situation of Column 7,

Tuning of any component enhances all the tolerances, as expected.
Furthermore, if tuning is expensive it is rejected by the general formula-
tion, which is useful if the designer has a number of possible alternative
tunable components and is not sure which components should be effectively
tuned and which should be effectively toleranced.

One-Section Stripline Transformer

A more realistic example of a one-section transformer on stripline
from 50 @ to 20 Q@ is now considered. The physical circuit and its equiva-
lént are depicted in Fig. 7. The specifications are listed in Table III.‘
Also shown are source and load mismatches to be accounted for as well as
fixed tolerances on certain fixed nominal parameters and assumed uncertain-
ties in model parameters. |

Thirteen physical parameters implying 213 extreme points are
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where wdenotes strip width, % the length of the middle section, €. the
dielectric constant, tg the strip thickness and b the substrate thickness.
For computational convenience, independent tolerances on € b and t, were
imposed for the three lines, but the nominal values were the same throughout.

. . . 6 .
Six model parameters implying 2 extreme points are

— —

1
2
3 R (36)
1
2

* - -0 O O o

- t-—

where D denotes effective line width, L the junction parasitic inductance

and & _ the effective section length.

t
The formula for Di used is [6]
2bi ti Zti
D. =w, + —n2 + — | 1-4n—— 1|, i=1,2,3. (37)
i i m T | bi

The formula is claimed to be good for W /b. > 0.5. A 1% uncertainty was
i1

rather arbitrarily chosen for Di' The characteristic impedance Zi is then

-found as
SOﬂ(bi—ti) ‘
7., = ——"— (38)

i D.
i

The values of Li were calculated as [7]

303i
L. = K. , i=1,2, (39)
i c i
1
where 5t ar
2 1
l-a. 1+o. 2 )
Kl - %nL do.. l1-a. * A,
i i - i
D;
@, = 24— <1,
1 D.



13.

1+3a12
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1
¥ .=
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ri

bi = O.S(bi + bi+1) s

“r§;;_= 0.5(Ve,; * Yer(iv) )
Mean values aéross the junctions of adjacent sections of /E; and b are taken ‘
since independent tolerances on these parameters are assumed. Data for
estimating the uncertainties on Li is available [6,7]. Other approximations
have, however, been introduced due to the tolerancing. A 3% uncertainty on
Li was adopted.
| The length Qt is nominally the same as . Experimental results [6]
indicate possibly large inaccuracies in d (see Fig. 7) and that it depends
at least on o, so that it is actually different for the two junctions. A
rather pessimiétic estimated error of 1 mm on zt was chosen.
Maximum mismatch reflection coefficients of 0.025 were chosen for the
source and load. Note that these values are assumed with respect to 500
and 209, respectively. The relevant formulas developed in Section- II can
not.be applied directly, since Z1 and 23, which are affected by tolerances,

must .be considered for normalization. We take

0.025 + Ipll (40)

logl =
S 1+ 0.025 |p,|
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where
. 50 - Z1
1 50 + Z1
and
0.025 + [p3|
IpLI = (41)
1 +0.025/p,] °
where
- 25 - Z3
3 25 + Z3

Figure 8 summarizes some of the results obtained from worst-case analyses.
Depicted are curves of the ideal design with discontinuity (parasitic) effects
taken into account; upper and lower bounds on the response with source and
load mismatches also added; finally, upper and lower responses with model
uncertainties further deteriorating the situation.

A worst-case study was made to select a reasonable number of constraints
from the possible 219 = 213 X 26, since 219 would have required about 5000s
of CDC 6400 computing time per frequency point. The vertex selection pro-
~ cedure for the 13 physical parameters follows Bandler et al. [3]. From each
of the selected vertices the worst values of the modeling parameters are
chosen. Only the band edges are used during optimization. After each optimi-
zation the selection procedure is repeated, new constraints being added, if
necessary.

Results on centering and tolerancing using DISOPT [8] are shown in
Table IV. The final number of constraints used is 21 after 9 optimizations
required to identify the final constraints. Less than 4 minutes on the

CDC 6400 was altogether required. An intermediate, less accurate, solution

is obtained using 18 constraints after 7 optimizations requiring 2
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minutes on the CDC 6400. To verify that the solution meets the specifi-
cation, the constraint sélection procedure was repeated at 21 points in
the band.

Figure 9 presents final results for this example. ‘The reasoh for the
discrepancy between the worst cases when vertices are used and when the
Monte Carlo analysis is used is that the Monte Carlo analysis does not
employ the pessimistic approximations of (40) and (41).

CONCLUSIONS

The concepts we have described and the results obtained are promising.
Our approach is the most direct way of currently obtaining minimum cost
designs under practical situations, at least in the worst case sense. It is
felt that this work is a significant advance in the art of computer-aided
design since the approach permits the inclusion of all realistic degrees
" of freedom of a design and all physical phenomena that influence the sub-
sequent performance. The generallproblem is both mathematically and comput-
ationally far more complicated than the conventional computer-aided design
process which seeks a single nominal optimal design. The latter approach,
however, would normally be used to find a starting point for the work we
have in mind.
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TABLE III

ONE-SECTION STRIPLINE TRANSFORMER

Center Frequency 5 GHz
Frequency Band 4.5 - 5.5 GHz'
Reflection Coefficient Specification 0.25 (upper)
.Source Impedance 50 @ (nominal)
Load Impedance 20 @ (nominal)
Source Mismatch 0.025 (reflection coeff.)
Load Mismatch 0.025 (reflection coeff.)
e R 2.54 + 1%
b | 6.35 mm + 1%
tg 0.051 mm + 5%
Uncertainty on Ll’ L2 3%
D, D,, Dy 1%
L 1 mm

t




RESULTS FOR ONE-SECTION STRIPLINE TRANSFORMER

Cost Function

Sample Points

Number of Variables

Number of Final Constraints
Number of Optimizations

CDC 6400 Time

Minimal Cost

1M1
100 |e

wO WO 20
2 3
+~€——+E-—+€—
Wy ws L
4.5, 5.5
8
21
9
4
.82 4
.660 4
.968 8
.463 15.
.457 8
.94 0
.20 1
.74 0
.64 0

.93
.642

.910

442

.437

.92

.13

.70

.65

GHz

min

mm

mm

o°

e

o°
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