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Abstract
A major obstacle to efficient optimal design and tolerance assignment,

particularly in the microwave area, is the scarcity of simulation programs
incorporating both the efficient analysis of circuits and response sensitivitiés,
for example, with respect to physical design parameters which are to be toleranced.
Tt is the aim of this paper to bridge the gap between available analysis programs
(for both circuits and fields) by suitable modeling of the functions to be
optimized using low-order multidimensional approximations. As a result, rapid
and accurate determination of designvsolutions, including yield estimation and
optimization, should be facilitated, even with relatively inefficiently written

analysis programs, or with experimentally obtained data. Subsequent tuning

may also be more readily effected.






Optimal Centering and Tolerancing

The tolerance assignment problem can be stated as

minimize some cost function
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and k is the number of designable parameters, golis the nominal point, g is

the tolerance vector. Then for the worst case design [1,2]
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for all -1 < u, < 1, for example, where E is a k x k diagonal matrix

1

with diagonal elements set to €55 RC is the constraint region given by

A 3 —
R, = {glgi(g) >0, i=1,2,...,m} .
For a one-dimensionally convex region [1] it is sufficient that all the

vertices lie inside the constraint region in order to satisfy (1).

Interpolation by Quadratic Polynomial

An approximate representation of a function f(¢) by using its values at a
finite set of points is possible [3,4]. These points are called nodes or base

points, and denoted by
Q(“) , n=1,2,...N .
Interpolation can be done by means of a linear combination of the set of

all possible monomials. Hence,
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and m is the degree of the interpolating polynominal, in our case 2. The number

of such monomials is given by
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be an N-dimensional column vector, and
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be an N x N matrix. The values of the polynomial at the points Q(n)

are given
by
p™) = ag = £ ©)
where g is the unknown coefficient column vector.
The solution of (2) exists if A is nonsingular. This is satisfied when
the set of base points is a degree - 2 independent [5]. For a particular
choice of base points the quadratic interpolating polynomial will be one-

dimensionaly convex if the approximated function is so.

Algorithm

Approximation is only done for complicated functions (objective, responses,
or constraints) or functions for which gradient information is not available.
(1) An initial step § around the starting nominal value where one expects to

find the optimum nominal point is chosen. This value of the step must

be greater than the starting values of tolerances in each parameter.

See Fig. 1.
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A set of base points are arbitrarily chosen within this step and interpolation
is carried out in this region.
A worst case design is to be obtained with respect to this approximation.

If the nominal point moves far away from the interpolation region, the

" functions are reapproximated with the same step size around the new nominal

point. The step size must be greater than the new tolerances otherwise it is
increased. |

If the nominal point stays within a reasdnable distance from the previous
nominal point, the step size is reduced and is checked with the tolerance
values. If the new step is still greater than all tolerances, approximation
is carried around the nominal point. If the step size is greater than

some of the tolerances but not all of them, approxiﬁation is carried out for
the constraints corresponding to the active vertices which are spaced by

less than twice the step size around the center of the hyperface. When
thevstep size is less than all of the tolerances each constraint is
approximated in separate region (regions) around the corresponding active
vertex (vertices). This will reduce computation in solving (2).

The stepbis reduced only when all active vertices stay within the interpolation
region around these vertices.

This procedure is performed several times until the changes in the parameters

are less than a prescribed error when the step is reduced.

Examgle

We consider in this summary a practical example of a nonideal two-section

waveguide transformer [6,7]. The general situation is illustrated by Fig. 2.



The two-section transformer was optimized with a design specification of a
reflection coefficient of 0.05 over 500 MHi centered at 6.175 GHz. Table I
shows the dimensions of the input and output waveguides and the width of the

two sections. The program given in [7] has been used to obtain the reflection
coefficient. It should be noted that the program calculates only the reflection
coefficient. No sensitivities are provided. An equal absolute tolerance &

has been assumed for the heights and lengths of the two sections. The assumption
is reasonable if they are machined in the same way. The objective is to
maximize €. All vertices of the tolerance region have been considered and an
efficient method to obtain the values of the relevaﬁt constraints and their
gradients has been applied. This method exploits the simple properties of the
quadratic approximations to the constraints. The optimum nominal point and
tolerances for the worst case design is given in Table II. The active vertices
at the worst case solution indicate that the reflection coefficient is more
sensitive to the error in bl'

To gain an impression of the utility of our approach we show in Table III
the effect of assuming e = 0.01, keeping other parameters at the appropriate
values in Tables I and II. Based on a uniform distribution, 500 Monte Carlo
analyses were conducted with both the quadratic model and with the actual

response program. The model yields excellent results 11 times faster.

Conclusions

It is felt that a significant step has been taken in bridging the gap
between available analysis programs, which may or may not be efficiently
written and probably do not supply derivative information, and the advancing
art of optimal design centering, tolerancing, tuning. Thus, efficient gradient
methods, which are essential in such general design problems, can be usefully

employed.
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TABLE I

FIXED PARAMETERS AND SPECIFICATIONS FOR THE EXAMPLE

Description Width Height Length
Input guide 3.48488 0.508 o
First section 3.6 variable variable
Second section 3.8 variable variable
Output guide 4.0386 2.0193 o

Frequency points used 5.925, 6.175, 6.425 GHz
Reflection coefficient specification [p| < 0.05
‘Minimax solution (no tolerances) lo| = 0.00443

TABLE II

RESULTS CONTRASTING THE TOLERANCED SOLUTION AND
THE MINIMAX SOLUTION WITH NO TOLERANCES

Description b1 b2 21 22 € number of complete CcbC
response evaluations  time
cm cm cm cm cm

sec

Toleranced ;5917  1.41782 1.51317 1.39463 0.00687 45 10
optimum -

Minimax 0.71315 1.39661  1.56044 1.51621 0 B, -
optimum

TABLE III

COMPARISON OF METHODS OF YIELD ESTIMATION

Number Tolerance Yield CDC Time sec
of points € Approx. Actual Approx. Actual
500 0.01 99.4% 100% < 0.5 5.7
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Fig. 2 Illustrations of an inhomogeneous waveguide

transformer.
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Fig. 1 Three situations created by certain step

sizes 6 and tolerances.
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