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Recent ideas and results developed by the auth-
ors involving concepts of modeling and approximat-
ion are reviewed. The approaches taken include
abstract ones as well as a physically meaningful
one in the area of time domain circuit analysis in-
volving transmission-line modeling of lumped circu-
its. Optimal centering and tolerancing is also
considered.

Introduction

Recent ideas and results developed by the auth-
ors involving concepts of modeling and approximat-
ion are reviewed. Both an abstract approach to app-
roximation of the response functions with respect
to the design parameters as well as a physically
meaningful approach to time domain circuit analysis
are discussed. The optimal assignment of component
tolerances and optimal centering is considered.Low-
order multidimensional approximations of the funct-
~ions concerned allow rapid and accurate yield esti-
mation and optimization.Transmission-line modeling
of lumped circuits is used for optimization in the
time domain. The response evaluation is exact for
the model and exact derivatives are easily obtained.

Bounding and Approximating R,

The constraint region R. is the set of points
¢, the vector of design parameters, for which all
performance specifications and design constraints
are satisfied. Upper and lower bounds on the para-
meters ¢; for which points satisfying all the req-
uirements can be found provide useful design infor-
mationl. In a statistical analysis,for example,con-
straints can be stacked in the order of increasing
computational effort, upper and lower bounds appear-
ing at the top of the stack. If any is violated,
further testing becomes unnecessary.

See Fig.l. In practice, 2k optimizations are
not required, if the necessary conditions for opti-
mality are taken advantage of in the k-space.

Fig.2 shows an alternative approach to elimin-
ating regions unlikely to contain acceptable sol-
utions. A generalized least pth objective U(¢)
based on all the constraint functions is formedZ2.
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M(¢) is the corresponding maximum.A sequence ¢ is
generated.If R, is convex or one-dimensionally con-
vex3 we can eliminate from further consideration
the regions shown in Fig.2.

We can employ interior and exterior approximat-
ions# to R, as shown in Fig.3. A best exterior
approximation may be found by deflation of a suit-
able region Rg and a best interior approximation
by inflation of a suitable region Ry4, keeping
R{CR.CRg. Thus, the original functions would be
calculated only for ¢ & Rg - Ry.

The interior approximation could also be used
in design centering’. The tolerance region for
independent variables R_. is an example of an
interior approximation. The upper and lower bounds
on R, form an exterior approximation.

Optimization Utilizing Polynomial Approximations

Consider the approximation of the constraint
functions using values at selected sets of points
(base points)5,6., 1In conventional optimization:
(1) The functions are approximated by quadratic
polynomials using 0.5(k + 2)(k + 1) base points
(number of coefficients), where k is the dimen-
sionality. The base points lie in a neighbourhood
of the starting point (current estimate of the
solution) within a step *§ in each variable in the
¢ space. (2) Optimization is carried out with the
approximate functions.The solution become$ the
next starting point.(3) If the solution is close
to the interpolation region, e.g., each parameter
has not changed by more than 1.58 the step size
is reduced, e.g., by a factor of 0.25. (4) The
procedure is repeated from (1) until an appropriate
termination criterion is satisfied.

For solving centering and tolerancing problems
consider the following. See Fig.4. (1) As previous-
ly with § chosen greater than the starting or
current values of the tolerances ¢;, i = 1,2,...,k.
(2) As previously but where the problem under con-
sideration is the worst case tolerance problem.

(3) If the nominal point 40 moves too far from the
interpolation region (Figl4), e.g.,parameters
change by more than 1.58, the procedure is repeated
from (1). (4) If the nominal point has not moved
too far § is reduced. If § is still greater than
the tolerances approximation as in (1) is carried
out. If § is greater than only some of the toler-



ances approximation is carried out separately for
constraints corresponding to the active vertices of
R spaced by less than twice the step size around
the center of the hyperface (Fig.4). When § becomes
less than all the tolerances each constraint is re-
approximated around the appropriate active vertices.
(5) S is subsequently reduced only when all active
vertices stay within the corresponding interpolat-
ion region. {6) The procedure is repeated as necess-
ary until parameter changes satisfy an appropriate
termination criterion when the step size is reduced.

The structure of the approximations permits
efficient function and gradient evaluation even
when all 2K vertices are used. Yield can be esti-
mated by enlarging the tolerance region and using
the quadratic approximation to find the yield by
Monte Carlo analysis.

Transmission-line Modeling

We can apply an approach called the transmiss-
ion-line matrix (TLM) method extgnsively used for
the solution of field problems7’ to the time dom-
ain analysis of lumped networks. Lumped components
are represented by transmission-line elements with
various terminations. The exact response of the
model to an impulse can be found by a numerical pro-
cedure, with attendant advantages in the physical
description of errors and stability for stiff syst-
ems .

Consider a ladder network of series inductors
and shunt capacitors. Fig.5 depicts elements and
continuized models for a cascaded transmission-line
representation. Stubs, appropriately terminated, or
a combination of stubs and interconnecting lines
can also be employed.

In the cascade analysis (two-port junctioms) an
ideal delta function pulse is launched from the
first junction.The pulse scatters on reaching the
next junction, being partly reflected and partly
transmitted.This scattering occurs at every juncti-
on,pulses racing to and fro between junctions. For
simplicity, assume equal lengths and velocities of
propagation for all the sections. If the velocity
is 1 m/s, then the time h in seconds for a pulse
to travel between sections is numerically equal to
the length h 1in meters. :

The TIM iteration process is
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where j denotes the iteration, £ the junction
number, S the junction scattering matrix, i in-
cident and r reflected pulses, and subscripts 1
and 2 distinguish the two junction ports.Simple
programming and simple calculation of exact sensit-
ivities w.r.t. design variables is possible.

Examples

Consider the worst-case tolerance optimization
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of impedances Z, and Z, of a 2-section quarterwave
lossless, 10:1,100% bandwidth, transmission-line
transformer?. See Pigs.6 and 7. The expected solut-
ions9 were obtained from £,=0.2 and £,=0.4 (11
sample points). About 7 sec (18 function evaluat-
ions (f.e.)) and 2.5 sec (12 f.e,)for the initial
solutions of Figs.6 and 7,respectively,were requ-
ired on a CDC 6400 using 6=0.4 with FINLP210, Sett-
ing 6=0.1 gave the final results shown in 9.5 sec
(24 £f.e.) and 3 sec (18 f.e.), respectively.

Minimizing 1/e, + l/e2 (Fig.6) subject to a
yield (uniform distributidn) Y > 90% enlarged e; by
about 50%.Yield and sensitivities were estimated
from formulas by Trompll,

Symmetrical LC lowpass filter was optimized in
the time domain. Fig.8 shows a "specified" impulse
response for L1 =L, =1.0, C=2.0. Taking 100
sample points, using TLM analysis, least 4th appro-
ximation yielded the solution in 21 sec (24 f.e.)
and 17 sec (19 f.e.) from starting points a and b,
respectively, with a maximum error of about 3x10-17,
The specifications of Fig.9 were met with a minimax
error of 0.0021992 after 37 sec (46 f.e.) using
33 sample points for optimization.
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