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Abstract

This paper surveys some recent and important results in non-
linear programming useful in the efficient optimal design of circuits.
Huang's general algorithm for unconstrained minimization is reviewed.
It is also shown how constrained minimax problems can be solved exactly
as unconstrained minimax problems, and then approximately solved using
unconstrained gradient methods.

INTRODUCTION

In the area of numerical optimization, the past decade has
seen a proliferation of ad hoc algorithms for unconstrained minimization
ofvnonlinear functions, intuitive techniques for dealing with nonlinear
constraints and ''good-enough-for-practical-purposes" approaches to
solving approximation problems associated with the frequency-or time-
domain responses of circuits and systems. The trouble with all this
is that it gives the impression that optimization is an art not a science.
Furthermore, it leads to inefficient use of available computing resources,
and impedes the advance of the area since it provides the climate of
opinion that currently available techniques are already good enough.

The view which is held in certain quarters among engineers that

more effort should be devoted to ''real' problems rather that to computing

techniques has also not helped the area of numerical methods. Presumably,
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their solution to solving some of these ''real" problems when their
programs consume large quantities of time and memory is to purchase
a bigger and faster computer.

As will be gathered from the opening paragraphs one of the
purposes of this paper is to discourage inefficiency in computing
methods. To this end, a few recent and important results in the field
of nonlinear programming will be highlighted. All the topics covered
will be found useful in the optimal computer-aided design of circuits
and also systems.

Huang's general algorithm fof unconstrained minimization
[1] is reviewed. The updating formulas employed by many of the ef-
ficient gradient optimization methods, notably the Fletcher-Powell
[2] and Fletcher [3] methods fall out as special cases of Huang's
algorithm.

This paper also indicates a number of ways in which con-
strained minimax approximation problems can be solved. Indeed,
it will be apparent how any suitable algorithm for general nonlinear
unconstrained minimax approximation, nonlinear programming, least pth
approximation or unconstrained optimization can be used to solve both
minimax approximation and nonlinear programming problems sufficiently
well for the most exacting engineering purposes.

HUANG'S GENERALIZED ALGORITHM {1]

Suppose we have the problem of minimizing the unconstrained

differentiable objective function U of a k-element column vector g.

Let us denote the gradient vector of U by VU, where
N
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Superscript j will denote the jth iteration.

The updating formula derived by Huang for the approximation to
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where EJ need not be symmetric; p, Ci, ¢, k? and xJ are scalars,
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taken in the direction -HJ VUJ, and
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Huang's algorithm is based on conjugate search directions defined with
respect to a quadratic model for U. Thus, it terminates in at most

k iterations on a quadratic function, i.e.,
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VU =0 (6)
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Assume S is positive definite. Then if p is positive, Sk is positive
definite. If p is zero, Ek is the null matrix. If p is

negative, Sk is negative definite. Depending on the values of»p,

Ci, Cj, Ki, and Kg we can derive particular algorithms, including some

well-known ones, as follows.

Let p=1, Ci=1, C%=0, Ki:O and KJ=1.' Then
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which is the formula derived by Fletcher and Powell [2]. If EO is
taken as a positi#e definite symmetric matrix then H) is also a positive
, v :

definite symmetric matrix.
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which is a formula derived by Fletcher [3], Broyden [4] and Goldfarb
[5]. It has the same properties as the Fletcher-bowell formula.

Following the work of Dixon [6] it can be shown that the
directions of search dépend only on the values of EO and op.

They are independent of the parameters Cj, Cg, Ki and K%. As a consequence,
if sequences of points gj are generated by formulas belonging to

Huang's family for the same general nonquadratic function then the
necessary and sufficient conditions for theée sequences to be the same

is that the formulas have the same values of EO and p.

Many algorithms in use belong to Huang's family with p=1
and they usually begin with so equal to the unit matrix. If full linear
searches are used to locate the minima in the search directions then, in
theory, the same sequences of points should be generated by these algorithms.
In practice, cbmputational differences will mean that the sequences will
not be exactly the same.

In view of these facts it is not surprising that there was little
improvement in the area of unconstrained optimization between 1963 and 1970.
Furthermore, since the algorithm proposed, for example, by Fletcher [3]
abandons the full linear search (required for maintaining the quadratic
termination property) and yet is remarkably efficient it is, in retrospect,
also not surprisng why a number of users of other optimization methods
have managed to obtain good results without spending a great deal of computing

time doing cubic interpolation in the one-dimensional subproblems.
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NONLINEAR APPROXIMATION, NONLINEAR
PROGRAMMING AND UNCONSTRAINED OPTIMIZATION

Nonlinear Programming

Consider the prob}em of minimizing U(i) subject to gi(t)zﬂ,
i=1,2,...,m, where m is the number of constraints. In general, gi(g)
will be taken as nonlinear and differentiable. It has been proved by
Bandler and Charalambous [7,8] that a point satisfying the neceséary

conditions for optimality of the unconstrained function

Piet
VR = max UG, U - e g 8] (i0)
LYY 41 " ~n N
lgic<m
where
gé CHETINS am]T | (11)
@y >0 i=1,2,...,m (12)

and sufficiently large will also satisfy the necessary conditions for
optimality of the original nonlinear programming problem.

The implications of this are that any suitable method for non-
linear minimax approximation can also be used to solve a nonlinear
programming problem. The sufficiently large ay will not, in general, be
known in advance. Threshold values will, therefore, have to be estimated
through a sequences of optimization problems.

Equality constrains can also be handled in this way. It is
important to note, furthermore, that a feasible starting point does not
have to be found. Indeed, there is no need to distinguish between feasible

and nonfeasible points until a particular solution is obtained.
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_ Constrained Minimax Approximation I

Consider the problem of minimizing max £, (¢) subject to
l<ign™ v
g;(¢) > 0, i=1,2,...,m. Here, n is the number of nonlinear, differentiable
n
functions fi(¢). This problem can be recast as one of minimizing a new in-
N

dependent variable Sral subject to

Opay - fi(i) >0 i=1,2,...,n (13)

g;(9) 20 i=1,2,...,m (14)
4]
which is in the form of a conventional nonlinear programming problem.

This problem can again be reformulated as one of minimizing

\Y4 = - . . - . ) - N . | 5
(2’2) ) :liaxsrg¢k+l’¢k+l a1(¢k+1 fl(’?;)), ¢k+1 aﬂ"‘J g1(2)] (15)
I<jsm
where
T
o= [al ay .o an+m] (16)

One then proceeds as in the previous section [9].

Constrained Minimax Approximation II

We are given the same original problem as in the previous subsection.

This time we consider the minimization of

W(¢,w) = max [fi(¢), -w, g.] (17)
N lsi<nin J )
l1<jsm

which is taken as unconstrained and where
(18)

w, >0 j=1,2,...,m (19)
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It is assumed that max f,.(¢) > 0 implies that certain design
l<i<n "V

specifications have been e::Teigd-and that max f, < 0 implies that the
P violated 1<ic<n (’?;) P Y
are satisfied. In this case, comparison with violated and satisfied con-
straints would be appropriate [9,10], and the resulting solution would be
meaningful in the engineering sense since tradeoffs between response specif-
ications and design constraints would be obtained.

Least pth Approximation

A suitable way of obtaining a good approximation to the un-
constrained minimax problems formulated in this paper is to use one of
the approaches suggested by Bandler and Charalambous [11,12]. Basically
one can either use least pth approximation with very large values of p
[11] or one can carry out a suitable sequence of least pth optimization
problems with low values of p [12]. 1In both cases, of course, Fletcher's
algorithm, for example, can be used effectively.

CONCLUSIONS

References are appended which will lead the interested person
to papers which apply or extend the ideas presented here [13-16]. Attention
should be drawn, for example, to fhe work of Charalambous who developed a
family of minimization algorithms based on homogeneous models [16], out of
which the Jacobson-Oksman algorithm [17] fails as‘a special case.
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