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Abstract

Experiences and views related to teaching optimal design to
electrical engineering undergraduates as well as course content
are discussed in the context of numerical methods of analysis and
design. A nﬁmber of documented user-orisnted computer programs
extensively used by students in modeling and’ optimization of
circuits and systems are referenced and are available from the
author. Two of them, namely CANOP2 and MINOPT, are briefly

described.
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I. INTRODUCTION

This paper presents some experiences and views bn teaching
engineering design via numerical optimization techniques [1,2] to
electrical engineering undergraduates. The context of the
material is computer aided circuit and system analysis and design
taught through appropriate courses.

Numerical analysis has long bzen a respectable subject for
electrical engineers. The advent of the modern, high-speed, large
memory digital computer has, within the framework of
analysis-based engineering courses, been used mainly to solve
larger computational problems than before without a corresponding
advance in design philosophy. The transition: slide rule to
computer, graph paper to CRT display, has still not, in the
author’s opinion, had a significant impact on the educator’s
outlook in optimal design.

This paper indicates current possibilities and limitations in
both the application of optimization techniques as tools in desizn
as well as in the undergraduate classroom. Some availablz

programs are described or referenced [3-9].
II. COURSE CONTENT

Backeround Material
In order to develop meaningful procedures of optimization and
optimal design using computer aids, it is assumed that the

electrical éngineering undergraduate has already been exposed to



the following topics: Matrix analysis of linear systems. Steady
state and transient analysis -using a digital computer. Sparse
matrix teéhniques. Sensitivity and tolerance analysis. Computer
solution of electromagnetic fields using iterative techniques.
Noanlinear d.c. éircuit analysis. It is also assumed that the
student is already acquainted with least squares approximation,
minimization by steepest descent and simple (nongradient) direct
'search methods. As a guiding light (for the instructor, at least)
Calahan’s book [10] is still recommended. Chua and Lin [11] and
Director [12] also cover much of the needed background.

Procedure

One aim of the course is to explain the underlying concepts
of efficient iterative methods of solving constrained optimization
problems, to indicate their 1limitations as well as their
potential. Another is to present a variety of ways of formulating
engineering design problems as optimization problems. Finally,
all.the ideas are brought together in hands on experience using
any of several packaged batch or interactive optimization programs
in the context of a design project individualiy tailored to the
student “s interests and progress.

Tests and assignments are employed mainly to determine
whether basic concepts have been grasped. The students build up
towards the final project which dominates their time towards the
end. The project report usually represents over 50 percent of the
grade. There is no final examination.l
Optimizati 0

Figure 1 illustrates the most essential concepts involved in
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optimization such as the objective‘function U of several variables

z , the Taylor expansion assuming differentiability, the gradient
va2ctor operator Z and the Newton-type iteration (jth spep) wnich
seeks a poinﬁ satisfying (for a quadratic model) the necessary
condition for thimality of a zero gradient vector. It is felt
that the parallel development of the basic process of solving a
system of nonlinear equations £( t ):2 alonz . with the
one-dimensional examples aid the student’s understanding.

Figure 2 summarizes typical engineering design situations
treated in the course [1,2]. Fig. 2(a) depicts upper and lower
specifications on a response function of an independent variable
Y (e.g., frequency or time) implying a constraint region in the
2 spac=z. Fig. 2(b) represents a Chebyshev or minimax
approximation problem involving three extreme error functions el,

e2 and e with the corresponding g -space representation of

3

max 'eil. Depicted is the phenomenon of discontinuous derivatives
i

occuring when the max function shifts from one error function to

another. The situation of many circuits with independent design

parameter values lying within a tolerancs region of a nominal

design [13] is depicted in Fig. 2(c). Here, a whole production

line of designs may be involved.

Features of the nonlinear programming problem and nonlinear
minimax approximation problem [2], which are central to optimal
design, are sketched in parallel in Fig. 3. The objective
functions are scalars. The constraints are explicit in the first

problem and implied in the second. Necessary conditions for

optimality 1involving nonegative multipliers ui with corresponding



diagrams are contrastad. The uhderstanding of algorithms and the
interpretatioh of solutions are crucially related to the
optimality conditions and hence the author dwells on them with a
variety of 1illustrations of different cases. One case is the
unifying examble 2 of Fig. 3. Here, we may interpret optimality
either in the nonlinear programming or minimax senses.

Figure 4 présents two rather general approaches to solving
constrained optimization problems. The first is the widely used
Fiacco-McCormick barrier function method involving a sequancz of
unconstrained solutions converging to the desired solution from
the interior of the constraint region [14]. The second is an
example of an exact penalty function method where a sufficiently
large valus of a will make the unconstréined minimax solution the
desired one [15]. 1In the latter case constraints do not have to
be satisfied during optimization, but in tye former case they do.

Figure 5 illusprates the basic approach to generalizzad least
pth optimization when the maximum M of a set of functions is
either positive or negative [16,17]. 1In the former case of Fig.
5(a) we sse the normalization of the functions, ths retention only
of positively going functions followed by the formation of a
scalar least pth objective equivalent to a penalty function. In
the ‘latter case of Fig. 5(b) the normalization of all the
functions also changes their sign. All functions are retained in
a barrier type objective function. MinimiZation»of the least pth
objective in an engineering design problem, therefore, tends to
pull a response towards a specification if the specification is

violated and increase the margin by which the specification is



.satisfied if subsequently possible.

One of the most exciting areas developed in the course is
that of optimal cantering, tolerancing and tuning [13]. " It is a
difficult problem to formulate efficiently in general and is still
under intensive research. The results are extremely worthwhile in
practice. Sufficiently straightforward examples such as resistive
voltage dividerkcircuits can be found to enable the students to
program and solve meaningfully posed design problems.

Fig. 6 illustrates in one dimension the features of optimal
worst cases design. A1l possible production outcomes define a
tolerance region, usually characterized by the nominal point
¢O, tolerance ¢ and paramster yu such that

0 .
$=¢ +enw, -1<pusil
is an outcomes. A tuned outcome is given by

=60+ eu s to
-1Sps1, -1s5p¢<1

where t represents the range and p the setting of the control.
Depending on whether the tolerance exceeds the tuning as in Fig.
6(a) or the tuning exceeds the tolerance as in Fig. 6(b) we
obtain, respectively, an effective tolerance region which must be
entirely contained in the constraint region for 100% yield or an
effecctive tuning region only one point of which need be in the
constraint region. Generalizing the basic statement of the
centering-tolerancing-tuning problem to many dimensions is:
relatively simple, but may result in a vast nonlinear programming

problem. The conventional assumption that the worst case can be

" predicted by linearizing the constraints at the nominal point is,



within the scope of the course, probably as far as one can go in

~developing a computationally feasible formulation.
III. PROGRAM PACKAGES

Here, two of th= packazes available to students will be given
detailed attention: |
Interactive Cascaded Network Oggimigagigg'zgggggg (4,18].

The pagkage called CANOP2 will analyze and optimize cascaded,
1ineér, time-invariant networks in the fréquency}domain. It is
based on CANOPT [19]. It plots responses and enforces equality on
the variable parameters, if desired. |

The program is organized in such a way that future additions
or deletions of performance specifications, constraints,
optimization methods and circuit elements are readily implementad.
Presently, the network is assumed to be a cascade of two-port
building blocks terminated in a unit normalized, frequency-
independent resistance at the source and a user-specified
frequency-independent resistance at the load.

A variety of two-port lumped and distributed elements such as
resistors, inductors, capacitors, lossless transmission 1lines,
lossless short-circuited and open-circuited transmission-line
stubs, series and parallel LC and RLC resonant circuits and
microwave allpass C- and D-sections can be handled. Upper and
lower bounds on all relevant parameters can be specified by the
user. A generalized least ptH objective function or sequence of

least pth objective functions incorporating simultaneously input
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reflection coefficient, insertion loss, relative group delay and
parameter constraintsb (if any) are automatically created.
Constraints are treated by the objective function in eséentially
the sams way as the performance specifications [19]. To
distinguish betwsen the various responses or constraint functions
a scheme for interval translation and introduction of artificial
points has been developed. The Fletcher method of minimizing
unconstrained functions of many variables [20] is available to the
user. The packaze incorporates the adjoint .network method. of
sensitivity evaluation [2].

If equality (symmetry) of some parameters can be predicted,
symmetry mayibe forced throughout the optimization. Results may
be automatically presented numerically and graphically and
analysis of different responses may be performed at the user’s
discretion and a new optimiiation may bes requssted at different
frequencies. A summary of the features and options available is
given in Table I.

The package written in FORTRAN IV was originally devel.o>ped
for bétch processing on a CDC 6400 computer and has now been
largely extended for use on. INTERCOM. The user may interact at
many points with the program to change parameters, frequency
range, types and options and to request plots. The interactive
user enters his déta in free format, and is not required to learn
aﬁy special language. 'He responds to simple questions in a

straightforward manner.

A Sequential Least pth Optimization Program [51[21]



MINOPT is a package of éubroutines for solving design
problems in which the objective is to best satisfy a given set of
design specifications or constraints in the least pth or minimax
sense. It assumes the availability of first partial derivatives
of the functions concerned with respect to the design parameters.
Essentially, a single least pth apbroximation can be done, or a
saquence of least pth approximations with finite constant p can be
carried out to produce highly accurate minimax soltuions, if
desired. An estimated lower bound on the minimax solution is
employed by .the alzorithm. A feature to successively drop
functions 1likely to be inactive at the solution is incofporated.
The program is efficient and well-suited to conducting feasibility
checks.

MINOPT is written in FORTRAN IV and has been tested on a CDC
6400 computer. The following is a brief description of the
subroutines called by MINOPT.

USER subprogram provided by the user to calculate the
fqnctions and first partial derivatives.

LPOBJ formulates the least pth objective.

GDCHK checks ths derivatives at the starting point by
numerical perturbation.

OUTPUT outputs the optimﬁm solution or the current estimate
of the solution.

VAOQA is the Fletcher minimization progzram.

Consider finding a second-order model of a fourth-order
system, when the input to the system is an impulse, in the minimax

sense. The transfer function of the system is
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(s+4)

G(s) = 5
(s+1)(s” + 4s + 8)(s+5)

and of the model is

93
7

H(s) = >
(s+¢,)7 + ¢7,

The problem is therefore equivalent to making the function
. 93 .
(9,t) = %, exp (-¢1t) sin ¢,t
best approximate

S(t) = %ﬁ' exp(-t) + %7 exp(-5t) - EEE%;ZEL (3sin2t + 1llcos2t)

in the minimax sense.
The problem was discretized in the time interval 0 to 10

seconds and the function to be minimized is

max lei(i)l I=1{1,2, ..., 51}

iel
where

ei(g) =F(¢, t;) - S(t;)
A printout of the results is shown in Fig. 7. Four optimizations
and 119 funtion evaluations are required. It is interesting to
obszrve the successive reduction in number of error functions

actually calculated, so that the computing effort is far less than

implied by the number 119.
IV. DISCUSSION

Documented, user-oriented computer programs extensively used
by students in modeling and optimization of circuits and systems

are available from the author. The examples solved by the
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students range over analog and digital circuits and systeams,
active and passive circuit design, low frequency and microﬁave
design, frequency domain and time domain approximation, etc.

The efficient evaluation and utilization of sensitivities is
central to the cours=. Not only nominal design may be échieved
iteratively followed, for éxample, by tolerance analyvsis, but
optimally centered, toleranced and tuned designs are possible with
reasonable additional effort. Sufficiently straightforward
examples can be found to demonstrate conclusively the value of the
general approach as well as the justification in exposing these
ideas to the_undefgraduate student,

The solution of differential  equations, the solution of
nonlinear 2quations and the minimization of ndnlinear functions of
many variables are crucial to enginesring modeling, analysis and
désign. Once students have mastered the concepts of steepest
descent and the basic Newton-type iteration, solution methods for
these problems do not require much additional stretch of the
imagination.

The author’s preferred method of student evaluation in a
design-oriented course is an individual project followed by a
report. This allows students to move at different paces, permits
experiznces with'different problems to be shared among them and
encourages depth and breadth from the more motivated student. The
-main difficulty in managing this approach has been in convincing
the students that they have insufficient time to complete projscts
large enough to satisfy their own ambitions.

It is stressed that the efficient utilization of algorithms
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for design requires a reorientation in the thinking of the
engineer who may or may not be well-versed in simulation. Putting
a simulation program into a simple loop, whether the designer is
in that loop or not, severly limits his horizons. Nevertheless, a
large number of simulation programs exist which do not‘provide for
efficient means of changing design parameters as needed‘by desizn,
for example, efficient first or 1large-change sensitivity
evaluation is not provided for. The graduating engineer will
likely meet many such programs. An approach to exploit such
programs appropriately and with minimal effort involves multi-
dimensional low-ordsr approximations [22]. These approximations
are also useful in modeling of experimental data and surface
fitting in general.

The author believes that the student’s time is at a premium
and that '‘the material presented to him should be sufficiently
fundamental to be of value during advances in hardware and
software. It seems, therefore, preferable to avoid the use of
large, general purpose simulation programs if: (a) they require
considerable investment of the student’s time in mastering
inessential details involved in their use at the expense of tha
theory of basic iterative methods, or (b) they detract from the
procass of acquiring the expertise of setting up and running
design problems gutomatically.

Probably the most difficult and time-consuming topics for the
student ot master are those of defining a design problem to the
computer in terms of appropriate objectives, choice of non-

redundant design variables, selection of essential performance and



- 13 -

othsr constraints, proper scalinz to facilitate rapid convergence
- and, above all, the correct interpretation of false or (for any
reason) undesirable solutions. In contrast, subjects such as
sensitivity evaluation and minimization algorithms (in their basic

form) are readily grasped.
V. CONCLUSIONS

At a time of increased specialization, the optimization
approach to problem solving is particularly opportune. It
provides the enginezer with a tool, e.g., ka modest package for
minimizing functions subject to constraints, which is applicéble
Wwith varying effectiveness or efficiency to such diverse problems
as transistor and other device modeling, rational function
approximation, curve fitting, nonlinear (and lin=zar) circuit
analysis, tolerance assignment and post production tuning
strategies., Branch and bound strategies, the essence of which are
rathef straightforward, permit discrete solutions to be forced,
e.g., in digital filter design or in the optimal utilization of
available components. The use of off-the-shelf components or the
suitable restriction of design parameter values or the use of
loosely toleranced elements obviously reduces the cost of
production. This philosophy is stressed in the classroom, and the
available programs can help in realizing these objectives.

Two volumes should finally be mentioned as providing
excellent background and motivation for the instructor, namely the

reprint volumes of Director [23] and Szentirmai [24].
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Figure Captions

Fig. 1 Contrast of essential concepts in minimization
and solution of nonlinear equations, with

one-dimensional illustrations.

Fig. 2 Typical engineering design situations.
(a) Upper and lower specifications with
corresponding constraint region.
(b) Error function with contour of the
maximum.
(¢) Toleranced design satisfying the

specifications.

Fig. 3 Contrast of essential concepts in minimization
subject to constraints and minimax approximation,
with two-dimensional and one-dimensional

illustrations.

Fig. 4 Contrast of common barrier function approéch and
exact penalty function (minimax) approach to
constrained minimization. One-dimensional
illustrations show the effect of changing the

parameters r and o .

Fig. 5 Illustration of generalized least pth

optimization [16,17].



Fig.

Fig.

€

One-dimensional illustration of the concepts
involved in centering, tolerancing and tuning.
(2) Tolerance exceeds tuning.

(b) Tuning exceeds tolerance.

Results for the system modellins example with

p=2. Starting point ¢ = [1 1 1]T.
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iABLE 1

SUMMARY OF FEATURES, OPTIONS AND PARAMETERS REQUIRED

Automatic scaling
Specified scaling

Features Type Options Parameters
Objective Least 1<p<e Value of p for each of a specified
Functions pth number of optimizations
' Artificial margin
Difference in objective functions
for termination
Performance Upper (+1.) Reflection Normalization frequency
Specifications coefficient (1) Number of Number of
points and bands or
constraints intervals
and Lower (-1.) Insertion For each:
loss (2) Specification/constraint
Weighting factor
Parameter Type
Constraints  Single (0.) Group Option
delay (3) Frequency Lower and upper
(sample point) frequencies
Parameter or parameter (band edges)
. value (0)
Number of
subintervals
Analysis Analysis Option
only (0) Specified or default values for:
Number of iterations allowed
Optimization Gradient Fletcher Estimate of lower bound on
optimization objective function
method (1) Test quantities for termination
Circuit Cascaded Typical Number of elements
Elements Two-port plus Sequence of code numbers
C- and D- Parameter values
sections Indicator for fixed, variable
or equal (symmetrical) parameters
Load resistance
Parameters for C- and D-sections
Graph Frequency Given response As many plots as desired
response Other response Option
Any range Frequency Lower and upper

frequencies
(band edges)

(sample point)




ARTIFICIAL MARGIN FOR THE NEXT OPTIMIZATION =
NUMBER OF FUNCTIONS FOR THE NEXT OPTIMIZATION

OPTIMIZATION 1

ITER FUNCT

0 9

20 36

22 38
IEXIT = 1
NORMAL EXIT

OBJECTIVE
6.394211E-01

7.778212E-03

7.778211E-03

VARIABLE
1.000000E+00

1.000000E+00
1.000000E+00

8.520020E-01
8.935317E-01
1.422568E-01

8.520350E-01

8.935018E-01

1.422609E-01

0000000E-03
1

GRADIENT
-3.780300E-01
7.898472E-01

6.395533E-06
1.384626E-05

~-8.362U492E-05

-9.730915E-08
-2.855661E-08
6.064313E-07

CURRENT MAXIMUM FUNCTION VALUE = 1.05144148E-02

ARTIFICIAL MARGIN FOR THE NEXT OPTIMIZATION = 7.27711352E-03
NUMBER OF FUNCTIONS FOR THE NEXT OPTIMIZATION = 13
OPTIMIZATION 2

ITER FUNCT OBJECTIVE VARIABLE GRADIENT
35 55 1.161221E-03 7.061282E-01 -1.504854E-08
9.479483E-01 -3.011574E-08
1.251141E-01 1.234177E-08
IEXIT = 1
NORMAL EXIT

CURRENT MAXIMUM FUNCTION VALUE = 8.24480216E-03
AFTIFICIAL MARGIN FOR THE NEXT OPTIMIZATION = 7.93591219E-03
NUMBER OF FUNCTIONS FOR THE NEXT OPTIMIZATION = 6

OPTIMIZATION 3
ITER = FUNCT OBJECTIVE VARIABLE GRADIENT
4o 68 5.436247E-05 6.876561E-01 -4.268539E-03
9.525845E-01 -2.T17345E-04
1.231909E-01 1.732489E-01
49 81 1.915435E-05 6.847436E-01 -3.683231E-07
9.540264E-01 1.349722E-07
1.228994E-01 1.685067E-06
IEXIT = 1

NORMAL EXIT

CURRENT MAXIMUM FUNCTION VALUE = 7.95178792E-03

ARTIFICIAL MARGIN FOR THE NEXT OPTIMIZATION = 7.94705799E-03
NUMBER OF FUNCTIONS FOR THE NEXT OPTIMIZATION = 4
OPTIMIZATION U4

ITER FUNCT OBJECTIVE VARIABLE GRADIENT
60 111 3.631441E-09 6.844180E-01 -1.622166E-02
: 9.540929E-01 -1.916376E-02
1.228643E-01 1.199815E-01

6U4 118 1.629539E-09 6.844178E-01 -1.428569E-02



© 9.540931E-01 -3.729895E-03
1.228642E-01 1.650471E-01

IEXIT = 1

NORMAL EXIT |

CURRENT MAXIMUM FUNCTION VALUE = 7.94705954E-03

ARTIFICIAL MARGIN FOR THE NEXT OPTIMIZATION = 7.94705910E-03

FOLLOWING IS THE OPTIMUM SOLUTION

AL A A - e

OBJECTIVE FUNCTION U = 1.62953865E-09

X( 1) = 6.84417768E-01 GU(1) =-1.42856936E-02
X( 2) = 9.54093084E-01 GU(2) =-3.72989486E-03
X( 3) = 1.22864249E-01 GU(3) = 1.6504T054E-01

NUMBER OF FUNCTION EVALUATIONS = 119%

#This total includes the number of function
evaluations required for gradient checking,
minimization and the determination of the
artificial margin and index set.

Fig. 7. Results for the system modelling example with p=2.
Starting point ¢ = [1 1 1]T.
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