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OPTIMAL CENTERING, TOLERANCING AND YIELD DETERMINATION

USING MULTIDIMENSIONAL APPROXIMATIONS

J.W. Bandler, Senior Member, IEEE, and
H.L. Abdel-Malek, Student Member, IEEE

Abstract

A method is described for efficient optimal design centering and
tolerance assignment. In order to overcome the obstacle of scarcity of
simulation programs incorporating both the efficient analysis of perfor-
mance and its sensitivities, a suitable modelling of the functions involved
using low-order multidimensional approximations is used. As a result,
rapid and accurate determination pf design solutions are facilitated, even
with felatiVely inefficiently written analysis programs or with experi-
méntallylobtained data. An efficient technique for evaluating the multi-
dimensionél approximations and their derivatives is also given. Formulas
for yield and yield sensitivities in the case of independent designable
parameters, assuming uniform distribution of outcomes between tolerance
extremes, are also presented. In addition, this procedure facilitates
an iﬁexpensive yield estimate using Monte Carlo analysis in conjunction
with the multidimensional approximations. Simple circuit examples illus-
trate worst-case design and design with yields of less than 100%. The

examples also provide verification of the formulas and algorithms.
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I. INTRODUCTION

The optimal tolerance problem, which is also known as the design
éentering and tolerance assignment problem, is now an integral part of
the design process. Design centefing is the process of defining a set-
of nominal parameter values either to maximize the allowable parameter
tolerances, in the wofst-case design, or to maximize the yield for known
but unavoidable statistical fluctuations. Several approaches have been
applied to solve this problem. The nonlinear programming approach was
used by Bandler et. al. [1, 2] and by Pinel and Roberts [3]. The branch
and bound approach was discussed by Karafin [4]. A method which makes
use of Monte Carlo analysis was used by Elias [5]. An approach involving
approximations of the feasible region is that used by Director and Hachtel
[6].

The approach described in this work can make use of any simulation
program, whether efficiently written or not, or not containing sensitivity
information, for the purpose of design centering and yield determination or
optimization. Nonlinear programming is used to inscribe an orthotope
inside the feasible region by minimizing a suitable scalar objective
function. This orthotope will actually be the optimum tolerance region
for a worst-case design problem with independent variables. In the
process of inscribing this orthotope an updated sequence of second-order
multidimensional polynomial approximations describing the different cons-
traints in certain critical regions are obtained. These second-order
approximations can further be used, for example, for inexpensive statis-
tical circuit analysis in the parameter space without any need for the
~usual multitude of circuit simulations. Théy can be used for yield

determination or optimization directly in the case of -independent



designable parameters assuming uniform distfibution of outcomes between
folerance extremes. The readily differentiable polynomial approximations
are also used for solving the nonlinear programming problem using an
efficient gradient technique.

This paper describes a method for choosing interpolation base points
‘in order to guarantee a one-dimensionally convéx feasible region if the
interpolated region is so. It contains an efficient technique for evalu-
ating the approximations and their derivatives at different vertices in
different well-chosen interpolation regions. In the case of independent
designable parameters and assuming uniform distribution of outcomes between
tolerance extremes, formulas for yield and yield sensitivities are given
for the linear constraint case as well as theirlexténsion in the quadratic
constraint case.

Some illustrative examples are also included. A two-section quarter-
wave transmission-line transfbrmer is used to explain how a worst-case
-design is obtained and, furthér, is used for yield determination and
optimization. A worst-case design and a well-centered dgsign for yield
less than 100% for a three-section lowpass LC filter as well as a check
using Monte Carlo analysis are included. A practical example of a non-
ideal two-section waveguide transformer is described. The worst-case
design as well as yield determination for the enlarged tolerance région
and a comparison between execution times for the Monte Carlo analysis
. applied to the actual‘constraints and the approximated constraints are

given.

1I. OPTIMAL CENTERING AND TOLERANCING

The tolerance assignment problem can be stated as: minimize some



cost function

c’, o

~ ~

subject, for example, to the constraint on yield

v’ e >y, ey
where
¢2 el‘
S ET R . @
;g “k

k is the number of designable parameters, ¢O is the nominal point, e 1is

the tolerance vector and Y. is a yield specification.

L

RC is the constraint region defined by m. functions gi(¢) and given
by

cFle @0, i=1,2, o m} (3)

R

Thus, for the worst-case design [1, 7], sometimes called the 100% yield,
it is required that

R.< R_ - (4)

where R is the tolerance region given by

o

He

R

Pl e =l e <1, 020,20, K, (5)

where fi is a k x k matrix with diagonal elements sct to e
For a one-dimensionally convex region [7] it is sufficient that the

set of all vertices RV satisfy the following condition

R SR, , (6)

where R is defined by



4 {¢ | ¢ = 60 + E y, wye {-1, 1}, i=1,2, ..., k} . (7

~ ~ o~

III. INTERPOLATION BY QUADRATIC POLYNOMIAL

An approximate representation of a function f(¢) by uéing its values
at a finite set of points is possible [8, 9]. These points are called

nodes or base points, and denoted by
" ,n=1,2, ..., N .

Interpolation can be done by means of a linear combination of the

set of all possible monomials. Hence,

N _
f(?) = WA a, ¢v s (8)
where
A %1 %2 %% k
L T S .Z a; <m (9)

and m is the degree of the interpolating polynomial; in our case 2. The

number of such monomials is given by

_ ()]
N——’-nm— . (10)

Let
= 10,061 o (6D ... o (41" (11)

be an N-dimensional column vector, and

~

= [y ¥y e (2

be an N x N matrix. In the case of m = 2, A has the form

1.2 1.2 1.2 1 1 1 ! 1
(¢1) (0507 ... (¢k) | ¢1 95 ¢i 03 -ee Bp_g ¢k : 1 ¢2 cee 9y 1
22 2.2 22, 2 2 2 2 2 2 2
(¢1) €% R % Ll I Y S G CAN Sl IS ¢ 1
A=| : | l
- ﬁ 2 N.2 N2 | NN NN NN NN N
(007 (6307 «ee(9y) | 4192 01 %5 --- 0 ¢k | 41 0 oo O 1

St 13)
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The values of the polynomial at the base points ¢n are given by
P(¢") = Aa=£0T) (14)

where a is the unknown coefficient column vector.

The solution of (14) exists if A is nonsingular. This is satisfied
when the set of base points is a degree-2 independent [10]. For a
particular choice of base points the quadratic interpolating polynomial
will be one—dimensionaily convex/concave if the approximated function
is so (see Appendii).

Now, let $'be the centre of the interpolation region and § be a
step vector defining the size of the interpolation region in the following
manner. For any base point ¢n, n=1, 2, ..., N, we have

le% - 3,

i - 9l i=1,2, ..., k . (15)

<8

The set of base points is given by

o

+ [

1o

@'... %], (16)

o
[6° ¢°...¢1=0D| o1 |- |
o

where 0 is the zero vector of dimension k, D is a k x k matrix with

diagonal elements 8., I, is a k x k unit matrix, B is a k x (EL%:EQJ

~ ~

matrix defined by

2 .
B = [u1 VR uL] s (17)
in which
L = Kk-1) (18)
2
and
-1 < pi < 1, j=1,2, ..., L . (19)

This choice of base points allows a check for one-dimensional convexity/
concavity of the approximated function, since there are three base points

along each axis.
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IV. EFFICIENT CALCULATION OF POLYNOMIAL AND
| GRADIENTS AT VERTICES
The method used for computing the polynomiél and its gradients at
the vértices exploits the simple properties of a quadratic approximation.
The following two equations are used to obtain the polynomial value and
its gradients at any vertex ¢r using values at another vertex ¢s;

s T S

POT) = P%) + (07 - 09T v P + 36T - oD HGT -

~

) (20)

S

TPOD = TP ¢ HE - ) | o en

where H is the Hessian matrix for the quadratic dpproximation.

~

Let ¢r and ¢5 be related as follows

of = ¢° + 2¢, e, _ (22)

where e, is the unit vector in the ith direction.
Hence, we have
i-1

r=5s+2 (23)

according to the following vertex enumeration scheme:

kK @ +1) .
r=1+ ) -—353———— A-1 T a1, 1y (24)
. 1
i=1
where
oF = ¢" s BN L (25)
Then (20) and (21) reduce to
T, _ s s 2
P(? ) = P(? ) + Zsi Vi P(? ) + 25i Hii _ (26)
T s
VP(¢) =V P() + 2 H o, (27)

where Hii is the ith diagonal element of H and Hi‘is the ith column of H.

If ¢r and ¢S fall into two different interpolation regions, which is



- 8 -

the case if e > éi (see Fig. 1), (26) and (27) can not be used because
of the different polynomials.

Now, let ?g, L =1, 2, ..., Nin denote the Hessian matrix at the
different interpolation regions, where Nin is the number of interpolation
regions.

Define the set I as

120G e <83 . @28
i- i :
It is clear that if n. is the number of elements of I, then

_~ ,k-n.
in =2 1 - (29)
The efficient algorithm is described by the following steps.

Step 1. Compute P£(¢S) and V P2(¢s) for all s € S, where
otep - P ¢ v ¢ :

Coien

S={s|s=1+ ] —5—2"7", u =-1ifiel, Woe {-1,1} if i ¢ 1)
‘ i=1
% . (30)
k oo+ e Pt
=1+ ) 23= (31)
; 2 |
i=1

0 ifj el - |
p. = { (32)
J 1 ifj #1

Step 2. If I is empty stop.

Step 3. Set i<« i1 where ile .I'and il < i for all i e I.

Step 4. Find T = es + € -

. . A ) e
Step 5. Find the vectors Gi =T Hi for all % defined by (31).

Step 6. For all s e S and for all &, calculate

PPe™) = PPe%) T v PP e 6 (33)

PPt = TP v g | (54



where r is defined by (23) and Gii is the ith element of Gi.

lsesy (35)

Step 7. Set S« SU{r [ r=s5+2
I«1-{1, 2, ..., 1} ~ (36)
and refurn back to step 2.
This scheme is illustrated in Fig. 2 for different cases. The compufational

effort required for considering all vertices compared to that required for

one vertex only is shown in Table I.

V. ALGORITHM FOR WORST-CASE DESIGN

Approximation is only done for complicated functions (objective,
responses or constraints) or functions for which gradient information
is not available. Choose initial values for ¢O, e and §.

~

Step 1. Set $, the centre of the interpolation region, to ¢O.

Until 8. >e., i=1, 2, ..., k, set 6. « 4§..
1-"1 1 1

~Step 2. A set-of base points ¢n, n=1, 2, ...; N, are chosen to satisfy
(i5) and (16).

Step 3. Interpolation is carried out in this region by solving the system
of linear equations (14).

Step 4. A worst case design is to be obtained with respect to these
approximations.

Step 5. Set ¢O and € fo the optimum values obtained in step 4.

Step 6. If |¢2 - 5&] >1.5 8, foranyi=1,2, ..., k, go to Step 1,
otherwise set & < 6/4 and one of the following two cases results:

~

i) If 8. > e,

i 1512, ., k, set ¢ = ¢0 and go to Step 2.

i) If 8, < g for any i = 1, 2, ..., k, then interpolation is

. -
done around the centre points ¢, where



- 10 -

Fertiplo=g"erEy

LR .
,ugp e {-1,13, i =1, 2, ..., k},(37)

where ? is a k x'k diagonal matrix with elements pi:along the diagonal.

Thus, (-El pi)
n =2 , (38)

where P; is defined by (32). (This will reduce computétion in formulation

and solving (14).)

Step 7. The.step sizé § is reduced to §/4 only if'all active vertices

satisfy the fdilbwing condition:

T —L .o ' .
|¢i - ¢i[v5 26, , 1=1,2, ..oy k (39)
where
T 2 . :
Wy =My for i é1 . (40)

Step 8. This procedure is performed several times until components of §

become smaller than certain prescribed values.

VI. YIELD ESTIMATION AND YIELD SENSITIVITIES

The Linear Constraints Case

An estimate of the yield in the case of uncorrelated uniformly

distributed parameters is given by

%
Ly Vv | (41)
R s
2 T—T €.
i=1 *t
where
n'Q 2e
L 1 k . j k o Y v iB k
Vel TTalpdns 30 ] [ 1- ] (42)
©o§=1 Y v=1 p=1 1
: i

is the nonfeasible hypervolume in the tolerance region according to the

2th constraint given by
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T &
g9 =¢ ¢ -c20. (43)
ni is the number of vertices differing in v paramcters iB from the
nonfeasible reference vertex ¢r = ¢O + E ur.and do not satisfy the &th

conétraint. We take

W= - osign(a), i=1,2, o, ko (44)

§ ni is the total number of vertices which do not satisfy the 2th
z;istraint. a? is the distance from the reference vertex to the point
of intersection along the jth direction (a§ may be greater than 2 ej].
Fig. 3 illustrates some cases for volume calculation when k = 3. The
assumption of no overlapping of nonfeasible regions defined by different
constraints inside the orthptope is required in order to use (41), 1i.e.,

R.OR N R =9 d,j=1,2 ...,m

1Y o (45)

where
R, S (o | gy(e) < 0} | (46)
and § is the empty set.
in order to find Vl the intersections between the hyperplane gz(?) =0
and the orthotope edges arc required. Any of these intersections is

obtained by solving the linear equation
f‘ qg-c=0 (47)
knowing that the,q)j are fixed along a certain edge. They arc given by
6. = 6. +e. u. u?e {-1,1), § =1, 2, ...; i~1; i+l, ..., k.(48)

Hence,

. = j#i s i=1,2, ..., k . (49)

Then
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Lo r _ . T T .
of = o] - ol =uf G} -6 , i=1,2, .k (50)
The yield sensitivities are calculated according to the gradients

of these k intersections.

N _
aY 1 Vv -
R —" L =% - G
99 . 2 I > 2 0¢.
i . J 1
j=1
% k
3Y 1 % 3V ok
e R A DI I R (52)
i ig 2 i j=1 7
where
5 . V)
k q \
g r i L
Eyﬁ-: %T~ur TwT_ a§ o i up 7 TuT & ‘ k X
3. ’ j=1 p=1l qp 3_:1 ) I
* j#i p#i j#p ’
)]
k Y ni ( v ‘Eig}k»l
A B G S M A R e
v=1 5=1 Toof
8
3
2 Z_E. W ll
voo% Tl s (53
) ) i 2 J (53)
1 oq; (e )
B B
and where 1 o 2¢. )k
< v 1}\) b il’%i .
X=1+ ) (") |1 - ) —¢ (54)
v=1 B=1 { I |
i}
53
k .
Z=-r |1 o (55)
| ]
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2
L k : k q. k
Vv 1 T r{ 1
N L ITT « ‘ = T X
doe; k! - Ty zlup qIL =1 %3
j#i p#i P j#p
K ! ! v € LS
vz4k Y DY Y-} ;
v=1 B=1 1 ay
B
v ql 2¢€.
20 T r i B
i R ) ’ (56)
ay 1 R CH (ai )
B B
where 0 = 1 if i = iB ,otherwise o = 0.

It is to be noted that the gradients are discontinuous when a vertex

¢S say satisfies the equation g2(¢5) = 0 for any constraint.

The Quadratic Constraints Case

The procedure described befove, in which a quadratic approximation
is obtained for each constraint, can also be used forvyield estimation.
Since the region 5n which there is an active vertex for the worst-case
design is the most probable location for violating the constraints, the
approximation performed there will be é‘reasonablevone.

It is possible to obtéin a linzar upproximation using lcast squares
and the base points used for the quadratié interpolation. In such a case,
we can follow the same procedure described before for the linear constraint
case, however, a better procedure for the case of k distinct points of
intersection between the orthotope edges and the hypersurface gl(?) is
‘given below.

Consider the intersgctions between the hypersurface gé(?) = 0 and
thevorthotope edges. Any of these intersections is obtained by solving
a quadratic eQuation. The quadratic pqunomial approximation is expressed

along the orthotope edge in the form
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o2

i + 2 ¢1 g(q)l’ ¢2’ eo ey ¢i-1’ ¢i+1, s ey ¢’k)
£ 1(0ys bgs cves 5 15 b5,qs cees B =0, o (57)

where £ and n are constant functions, ¢. being the only variable alon
i g y g

that edge of the orthotope and ¢j = ¢? + ej'u§, ui e {-1,1}, j # 1.
Thus,
= 2 0 - 0
I A T T (58)

i-"i i
A hyperplane is constructed containing k distinct points of intersection
between the approximated constraint and the orthotope edges. The equation

of this hyperpléne is given by

r ]
SRS o 1
1 1 1
¢1 ¢2 ¢k 1
det 2 2 2 =0 |, (59)
¢1 ¢2 oo ¢k 1
k k k
,¢1 ¢2 e ¢k 1‘
whereiéJ, j =1, 2, ..., k are the vectors representing the points of

intersection.
The yield sensitivities are calculated according to the gradients
of the k intersections.

A

i ag 1 9 an . (60)
5. - 3¢, - > 28 367 T 30, 0 ) 7 i
J J 2/& -7 J J,
ax,
1.9 . 1
5%, 0 (61)

Thus, if a; is the distance from the vertex ¢r to the point of -

intersection along the orthotope edge in the ith direction, then
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Bai r 8A1
—0 = " Y35 ¢ i#gi ' (62)
¢ j
]
Bai r Bal
e, - Yo v Ift (63)
J 9%
]
ao‘i T
LT, (64)
3¢i
aai
—-—ae =1 . . (65)
i

VII. EXAMPLES

Examgle 1

Consider a 2-section 10:1 quarter-wave lossless transmission-line
transformer [1]. The worst-case tolerance optimization problem denoted

by PO of impedences Z. and Z2 over 100% bandwidth is shown in Table II,

1
for two different objective cost functions. The constraint region and

the resulting optimum solutions in the two cases are shown in Fig. 4

and Fig. 5. An equal value of 61 and 62 was used.

Subsequently, the approximation obtained at the two active vertices
shown in Fig. 4 was used for yield optimization. A rough estimate of ¢
was obtained in the following way. For a yield constraint

Y > 90%
the nonfeasible hypervolume (it is area in this example) is given approxi-
mately by
A=(-0.9) (281) (282).

The area cut off by each constraint is

1
Ll
A > A
But, assuming equal intersections o = a; = e,
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Hence,

o = /0.1(2e)) (25,) = 0.27 ,

where € and €, are the worst-case absolute tolerances. The approximation

with 6§ = 0.1 was used for solving the following two problems:

Minimize C1 = %—-+ %—
1 2
P1 subject to
Y > 90%
e e 1 1
P2 Minimize C, = |[— + —| / Y
2 €4 €,

The optimum solutions for P1 and P2 are shown in Table III and Fig. 6.
The program used for solving the nonlinear optimization problem is
FLNLP2 [11]. Because of the convex feasible regiqn the values of yield
obtained are lower bounds for the true yield.
Example 2

A normalized 3-components LC lowpass ladder network, terminated
with equal load and source resistances of 1Q, is considered [1].
-Although this filter is symmetric, a 3-dimensional approximation was
required in order to perform the yield optimization technique described
before.

Using equal step size § for all components, a worst-case solution
was first obtained with final § = 0.01. The base points used are given

by (16) with

0.5 -0.5 1.0
B=10.8 0.8 1.0
-0.5 0.5 1.0

The final solution is given in Table IV. The active frequency point

constraints at the solution were 0.55, 1.0 and 2.5 rad./sec. Now,



consider the optimization problem given by

_ LO L0 CO
. 1 2
Minimize — + — + =
1 2 C
subject to
Y > 96% .

In a similar way to the previous.example an estimate of § = 0.04 was
obtained. The quadratic approximation obtained with & = 0.04 after and
before averaging symmetric coefficients is shown in Table VI. Symmetry
between L1 and L2 was used for reducing computation in finding the value
and the gradients of the intersections between the orthotope edges and
the quadratié constraints. The results are shown in Table IV and in
Fig. 7.

To check our results a uniformly distributed set of 10,000 points
was generated inside the tolerance region. The results are shown in
Table V. Also shown is the computation time saving when the approximation
is used for statistical analysis instead of the exact constraint.
Example 3

Consider a practical example of a nonideal two-section waveguide
transformer [12, 13]. The general situation is illustrated by Fig. 8.
The two-sectioﬁ transformer was optimized with a design specification of
a rcflection coefficient of 0.05 over 500 MHz centered at 6.175 Gliz.
Table VII shows the dimensibns of the input and output waveguides and
the width of the two sections. The program given in [13] was used to
obtain the reflection coefficient. It shouid be noted that the program
calculates only the reflection coefficient. No sengitivities are pro-

vided. An equal absolute tolerance ¢ was assumed for the heights and

lengths of the two sections. The assumption is reasonable if they are



machined in the same way. The objective is to maximize e. All vertices
of the tolerance region were considered and the efficient method to
obtain the values of the relevant constraints and their gradients was
applied. The optihum nominal point and tolerances for the worst-case
design is given in Table VIII. The active vertices at the worst-case
solution indicate that the reflection coefficient is more sensitive to
the error in bi.

To gain an impression of the utility of our approach we show in
Table IX the effect of assuming e = 0.01, keeping other parameters at
the appropriate values in Tables VII and VIII. Based on a uniform
distribution, 500 Monfe Carlo analyses were conducted with both the quad-
ratic model and with the actual response program. The model yields

excellent results 11 times faster.

VIII. CONCLUSIONS

It is felt that a significant step has been taken in bridging the
gap between available analysis programs, which may or may not be effici-
ently written and probably do not supply derivative information, and the
advancing artvof optimal centering, tolerancing, and tuning. Thus,
efficient gradient methods, which are essential in such general design
problems, can be usefully employed.

The yield optimization technique described for quadratic constraints
can be extended for general nonlinear constraints. The efficient technique
for calculation of the function and gradients at the different vertices
may also be implemented with a large-change sensitivity algorithm.

Yield estimation for other statistical distributions, different

from the uniform distribution, can be done efficiently using the Monte
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Carlo method and the quadratic approximations for the constraints.
Avoiding the use of the Monte Carlo method entirely is still a topic

for further research.
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APPENDIX

" Theorem If there exist three distinct base points ¢1, ¢2 and ¢3 in

the ith direction, i.e.,

¢j = ¢ + C. e. (A1)

where cj, j = 2, 3 are scalars, and ?i is the unit vector in the ith
direction, then the interpolating polynomial is one-dimensionally
convex/concave in the ith variable if the interpclated function is so.

Assume that

PO 6% + (1-1) 6°) 2 A P(P) + (1-2) P($), 0<<l (A2)

b . . . . .
where ¢ = ¢a +ce. and c is a scalar, i.e., P(¢) is not one-dimensionally
M i M

~ ~

convex/concave in the ith variable.

AV

P(¢% + (1-1) ¢ e.) <A P(6%) + (1-1) P(¢% + ¢ e,)

~

2P + (1-2) c el VP + 2(1-n) Z el He.
. -1 . : 2 -i L Si
P(?) + (1-1) ¢ el v P($?) + l{l-k)z 2 el He,
M i y 2 It R |
2Pd) + (1-2) ¢ ez v P(s?) + %{1-x) ? ez He,
Thus,
2 T > T
(1-2)" e; Hey < (1-2) e; He,
but since 0 < (1-1A) < 1, hence,
el He., S0 (A3)
~1 . 1

Without any loss of generality we can assume the base points to

be such that,

6% =y b+ (1-v)e?, 0 <y <1 (A4)

~
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Then,
3 1 2
P(¢7) = Ply ¢7 + (1-v)¢97)
1
2 1 .
where ¢ = ¢~ + B e, and B is a scalar.

~ ~1

R A R RE [ R

1. 2 1 2. T
=y P(¢7) + (1-v) P(¢7) - 5 v(1-v)8" e, He,
But, using (A3),

P4%) v POON) + (ev) P(6T) (45)

£00%) <y £061) + - £665) (A6)

which contradicts that f(¢) is one-dimensionally convex/concave in the

ith variable. Hence, the assumption (A2) is never true.

Corollary

A quadratic polynomial is one-dimensionally convex/concave if and
only if all of the diagonal elements of the Hessian matrix are nonnegative/
nonpositive. The proof follows from inequality (A3).

It is to be noted that the number of base points required to keep
the one-dimensional convexity/concavity is 2k+1 which is less than the
required number of basevpoints (k+1) (k+2)/2.

This corollary indicates whether the approximate constraint region

is one-dimensionally convex or not.
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TABLE III

YIELD DETERMINATION AND OPTIMIZATION OF THE TWO-SECTION
10:1 QUARTER-WAVE TRANSFORMER

Problem ZO ZQ € /Z0 . € /ZO Objective Yield
1 2 1’71 272 %)
) ) (]
(%) (%) ~
P1 2.5273 5.3998 21.09 13.51 3.2465 90.0
P2 2.5290 5.1513  31.44 22.13 3.2597 65.5
TABLE IV

WORST-CASE AND YIELD CONSTRAINED RESULTS OF
» THE LC LOWPASS FILTER

. 0 0 0
Ytz;d L? Lg c e/lg ey/Ly ec/C
(%) (%) (%)
100 1.999  1.998 0.9058  9.88  9.89 7.60
96 1.997  1.997 0.9033 11.23 11.23 12.46

Frequency points used 0.45, O:g; 0.55; 1.0 in the passband and 2.5

in the stopband 0

I t“
-0
.0

0
Ly
— 4

Objective cost function is +

m

€
1 2 C
Insertion loss specification | o | < 1.5 dB in the passband and

| o | > 25 dB in the stopband

TABLE V

COMPARISON OF METHODS OF YIELD ESTIMATION
FOR THE LC LOWPASS FILTER

Description Yield CDC Time
%) (sec)

Exact Constraints 96.59 20.98

Approximate constraints 96.58 10.43

Yield estimation using a set of 10,000 uniformly distributed points
inside the tolerance region for the case of 96% yield according to
the hyperplane approximation. All of the five frequency points were
used.
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TABLE VII

FIXED PARAMETERS AND SPECIFICATIONS FOR THE
TWO-SECTION WAVEGUIDE TRANSFORMER

Description Width Height Length
(cm) (cm) (cm)
Input guide 3.48488 0.508 ©
First section 3.6 variable variable
Second section 3.8 variable variable
Output guide 4.0386 2.0193 ©

Frequency points used 5.925, 6.175, 6.425 GHz
Reflection coefficient specification |p| < 0.05
Minimax solution (no tolerances) |p| = 0.00443

TABLE VIII

RESULTS CONTRASTING THE TOLERANCED SOLUTION AND
THE MINIMAX SOLUTION WITH NO TOLERANCES FOR THE
TWO-SECTION WAVEGUIDE TRANSFORMER

Description b1 b2 ll %, € number of complete CDC
(cm) (cm) (cm) (cm) (cm) response evalua- Time
tions (sec)
Toleranced 4 55917 1 41782 1.51317 1.39463 . 0.00687 45 10
optimum _
Minimax 0.71315 1.39661 1.56044 1.51621 0 - -
optimum
TABLE IX
COMPARISON OF METHODS OF YIELD ESTIMATION FOR THE
TWO-SECTION WAVEGUIDE TRANSFORMER
Number Tolerance Yield (%) CDC Time (sec)
of points € Approx. Actual Approx. Actual

500 0.01 99.4 1100 < 0.5 5.
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Fig. 1 Three situations created by certain step sizes
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Fig. 2 Illustration of the efficient technique for evaluation

of the approximations and their derivatives.
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Fig. 3 The nonfeasible volume obtained by a linear constraint.

(@ v *.,}1,_:‘“1 @y %3 2o 3
- (L - 2 :
®) V= Gy e e 1-a- R



6.5

Z
max lpl £0.55
. final region ,
6.0- A © —initial
AT solution
. initial .nominol
- 5.5¢ |
/ ofinal nominal
)
Z2 / - /’
/ final s ;./—"
507 solution - /,/
_ / __ | final region
4.5+ .min!max
optimum A7 initial region
4.0t 3
: exact functions
—-— initial approximation
~-— final approximation
3.5 | 1 i
1.5 20 2.5 30

Fig. 4 Minimization of l/s1 + 1/52

Zy

3.5

for the two-section transformer.



6.5

max lpl £ 0.55
6.0t
final o .
a ‘ Linitial solution
55 region . :
Y]. .
_ | |
z, o ‘7 1] _final solution
Y |
50" [ | initial
/ nominal
[ J
final | | ]
N *nominal | I /-
4.5+ minimax |
optimum / initial
N ay ‘reglon
y l i 7
7
2
- = —
4.0r final region”, :
—— exact functions
Q —-— initial approximation
——- final approximation
N
N
35 Lol — : ' -
1.5 _ 20 25 30 35

- Zy

Fig. 5 Minimization of Z(l)/e1 + Z(Z)/s2 for the two-section transformer.
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Fig. 6 The optimum tolerance regions and nominal values for the

worst-case, 90% yield and optimum yield designs.
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Fig. 7 The tolerance regions for the worst-case design and 96%

yield for the LC filter. The linearized active constraints

are also shown.
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Fig. 8 Illustrations of an inhomogeneous waveguide transformer.



S0C-132

OPTIMAL CENTERING, TOLERANCING AND YIELD DETERMINATION USING MULTI-
DIMENSIONAL APPROXIMATIONS

J.W. Bandler and H.L. Abdel-Malek
September 1976, No. of Pages: 36
Revised: June 1977

Key Words: Tolerance assignment, design centering, yield estimation,
worst-case design, modeling

Abstract: A method is described for efficient optimal design centering
and tolerance assignment. In order to overcome the obstacle of scarcity
of simulation programs incorporating both the efficient analysis of
performance and its sensitivities, a suitable modelling of the functions
involved using low-order multidimensional approximations is used. As a
result, rapid and accurate determination of design solutions are
facilitated, even with relatively inefficiently written analysis programs
or with experimentally obtained data. An efficient technique for
evaluating the multidimensional approximations and their derivatives is
also given. Formulas for yield and yield sensitivities in the case of
independent designable parameters, assuming uniform distribution of
outcomes between tolerance extremes, are also presented. In addition,
this procedure facilitates an inexpensive yield estimate using Monte Carlo
analysis in conjunction with the multidimensional approximations. Simple
circuit examples illustrate worst-case design and design with yields of
less than 100%. The examples also provide verification of the formulas
and algorithms.

Description: Superceded by S0C-173. A paper based on SOC-132 was
presented at IEEE International Symposium on Circuits and
Systems (Phoenix, Apr. 1977). See also the symposium
proceedings, pp. 219-222.

Related Work: As for SOC-1.

Price: $ 5.00.






