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Abstract

Based upon a uniform distribution inside an orthocell in the tolerancea
parameter space, it is shown how production yield and yield sensitivities can
be evaluated for arbitrary statistical distributions. Formulas for yield and
yield sensitivities in the case of a uniform distribution of outcomes between
the tolerance extremes are given. A general formula for the yield, which is
applicable to any arbitrary statistical distribution, is presented. An
illustrative example for verifying the formulas is given. Karafin's bandpass
filter has been used for applying the yield formula for a number of different
statistical distributions. Uniformly distributed parameters between tolerance
extremes, uniformly distributed parameters with accurate components removed
and normally distributed parameters were considered. Comparisons with Monte

Carlo analysis were made to constrast efficiency.
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I. INTRODUCTION

Design centering and enlarging parameter tolerances, particularly for
mass-produced designs such as integrated circuits, is a requirement for cost
reduction. It is this aim which emphasizes the problem of yield estimation
and makes it an integral part of the design process.

The yield problem has usually been treated through the Monte Carlo method
of analysis. Elias [1] presented an approach which applies the Monte Carlo
analysis directly to the nonlinear constraints. In an effort to reduce compu-
tational time Director and Hachtel [2] suggested applying the Monte Carlo
method in conjunction with a polytope describing the constraint region. This
polytope (a simplex being a special case [3]) might be defined by quite a
large number of hyperplanes. For example, for a space of k dimensions, as
described by the algorithm, this number may initially be Zk. Scott and
Walker [4] suggested an efficient technique using Monte Carlo analysis with
space regionalization. However, the number of required analyses increases
exponentially with the number of variables in order to get the response at
the center of each region. Regionalization was later used by Leung and
Spence [5] exploiting the technique of systematic exploration. This technique
is only applicable to linear circuits.

Karafin [6] used a different approach. The yield was estimated according
to truncated Taylor series approximations for the constraints. In the approach
presented here we assume a reasonable nominal point and reasonable linear
approximations to the constraints. These will usually be available if a
centering or a worst-case tolerance assignment problem is solved first. The
assumption of a reasonable nominal point was also required by Karafin [6].

The approach is based upon partitioning the region under consideration

into a collection of orthotopic cells (orthocells). A weight is assigned to



each orthocell and a uniform distribution ié assumed inside it. The weights

are obtained from tabulated values for knowg distributions or obtained according
to sampling the components used. The freedom in choosing the sizes of the
orthocells allows the use of previous information about the problem. A formula
for the yield is derived according to these assumptions and it is applicable to
any statistical distribution, whether we have independent parameters or correlated
parameters with discrete or continuous tolerances.

An illustrative example was used to verify the yield and the yield sensi-
tivity formulas for the uniform case. A comparison with the Monte Carlo analysis
method as applied to Karafin's bandpass filter [6] is given for the following
statistical distributions:

(a) A uniform distribution of outcomes between tolerance extremes
using different values for the tolerances.

(b) A uniform distribution of outcomes between tolerance extremes,
but with more accurate components selected out.

(c) Parameters with normal distributions for different values of

the standared deviation.

Since the uniform distribution is basic to thé presentation, we solve the
problem of a uniform distribution first and generalize it for any distribﬁtion.

later.

II. YIELD WITH A UNIFORM DISTRIBUTION

The yield is simply defined by
Y2 NN, (1)
where N is the number of outcomes which satisfy the specifications and M is the
total number of outcomes.

Define the tolerance region Re by
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where k is the number of designable parameters, ¢0 is the nominal parameter
vector and € is the vector of absolﬁte tolerances of the corresponding para-
meters.

Now, define the function V(R) as the hypervolume of the set R. Thus, for

the case of independent parameters and assuming a uniform distribution of out-

comes between the tolerance extremes, (1) reduces to

V(R_no R)
Y:———.—S._——c.— , (3)
V(Re)
where
Rcé{‘f [gz(?)20,2=1, 2, m} (4)

is the constraint region defined by m linearized constraints

T 2 %
g(9) =¢ q -c’,2=1,2, ...,m . (5)

Assuming no overlapping of nonfeasible regions defined by different constraints

inside the orthotope Re’ i.e.,

R. 0 R. =0 |, (6)
Ty )
where :
A
Rz—{f | g, (9 <0} R, (7)
the yield can be expressed as
m
M B Xl (®)
V(Re)

Define the set of all vertices of the orthotope Re by [7]

ue>

R, {¢ | ¢ = ¢0 +Euw o, u e {-1, 1}, i=1, 2, ..., k} , (9)

where E is a k x k diagonal matrix with €55 i=1, 2, ..., k along the diagonal

~

and using the following vertex enumeration scheme:



21 . (10)

Corresponding to each constraint g£(¢) > 0, let us define a reference vertex

¢r = ¢0 + E ur R (11)
where
W= -sign (@) ,i=1,2, ..., k . (12)

If g£(¢r) > 0, then V(Rz) = 0. Otherwise we find the distance between the
intersection of the hyperplane gl(¢) = 0 and the reference vertex ¢r along

an edge of RE in the ith direction given by

L _ T L
rfo. r 1 |&8 ¥ 4.0
= ui {¢1 + ]Ji €i i c - Z qJ(¢J + W, o€.) } , 1=1,2,...,k (13)
q; J'?
j#i

In order to derive an expression for VZ = V(Rl), consider the two-dimensional

examples shown in Fig. 1. The nonfeasible area in Fig. 1(a) is given by

A ¢¥ab - A ¢%ac - A ¢ibd

rr 3\ 3
—}.a o _1_ o 1 _2._3.:!"_ o 1 _Ee_l
T271 2 T2 171t T« 2 o

\Y

= \ 1 J od J
r~ N\ = N

- l.. o r]_ - _2._6._?. o 1 - 2:2-
2 I 1\ e, ] 2 a, /)

I
N =

251 2 252 2
(110.2 -l-r -l-r
1 2 )
Also, in Fig. 1(b), the nonfeasible area is given by

V=0 ¢ab - A ¢%ac - A ¢'bd + A ¢2cd



A three-dimensional example is shown in Fig. 2. In that example the
linear constraint cuts the orthotope at the polygon a b ¢ d e and the volume

is given by

V = l—a d o .— l-a o, a 1 Eil ; - l-a o, o 1 - Eig ’
“6 1273 6 1 7273 T a 6 1 273 o.

1 I P 1S Y e S 1
6 “1 %2 %3 ) 6 %1 %2 %3 o o .

Hence, the general formula can be written as

1 k L v® s k
VR = i [ Tetql D ) (14)
L J
j=1 S€S _
2
where
S X ej s T
$=1- ) 3], (15)
j=1 a.
J
5,5 {s | g,(9%) < 0,4° = o° + E us} , (16)
s X s T
v = .2 Hi = ui / 2 ¢ (17)
i=1

An illustration of (14) for the case of k = 3 is shown in Fig. 2. Since
X k
VR) =20 T Je. > (18)
€ j=1 j

the yield sensitivities can be expressed as

5Y
—5 I =5 /V®R) (19)
29



oY 1 ’i‘ P !
or |- VYoo ) — V(R .. (20)
i |1 e=1 =1 %%3) /T
We take
L L
VY _ ave
0 9, 00 g0,
. i
1
otherwise
2 T
L q. k |u. Kk
Vv i 2
0~ kT ) "%.I lo‘j A
9 p=1 9, j=1
i#p
k ur €
. - : ]
+Bkq; I DY &) 1 (‘Z ) u; -u§| , (21)
ses, j=1 d; (o3) J
2 2 S
A YL YN 'etis I GS AN O b 3 (22)
€. i 0 2 i 1 2
i 9. o. seS
i 1 2
where
vs s k
A=) DY, | (23)
seSz
k
1 2
B = ET'I l Gj . (24)
Yl

It is to be noted that the yield sensitivities are discontinuous whenever

a vertex ¢s satisfies the equation g2(¢s) =0 for any ¢ =1, 2, ..., m. Also
for the case of having aj + » there exists a limit for the hypervolume formula

and its sensitivities.

For an alternative way of calculating V(Rg) we define a complementary

vertex



?=?+Eu , (25)

?
2

where

|
Pt
-
N
-

W = -] = sign (qf;), i= ., k. (26)

If g2(¢r) < 0, then V(R)) = V(Rs)' Otherwise we find the distance between the

intersection of the hyperplane g2(¢) = 0 and the complementary vertex ¢r along

an edge of RE in the ith direction given by

—2 T T '
Oti—ui gz(?)/qi,l"‘ls 2, ..., k. (27)

Hence we find the following equations:

L k k 1 k -4 V2 sk
Vi =VR,) =2T [ e. -4 | o Y17 G, (28)
L Lo k! P o 7j L
j=1 j=1 sesl
where
55_1,12(3_ s _ T (29)
[ ) uJ uj >
j=1 a
J
§£={slg2(¢s)>0, ¢s=¢°+Eus} : (30)
-5 K s T ‘
I L (31)
i=1

Equations (19) and (20) remain as before.

We take
2 2 k -
¥-=0 and NV K TTe if g0 <0 ,
d€. s J 2°s -
3¢ i j=1
1 « g
j#i

otherwise



% T _
L q. k |m k
oV i —L —
iR i) ‘%.H“j A ‘
i#p
T
= 2 ¥ s k-1 kowy ey s T
-Bikq I DY (@) L S —— -, 32)
1 seS % j=1 qz (a%)z J J
L ] ,
- k % o= —s
Vv k \') - F k-1
e - 2 |Ie.+ur§-3+3k7z_ Tl IS D AN €39 ) (33)
. L J 1 1 L
i j=1 9. a. seS
s - 1 1 2
J#i
where
- 35 —s.k
A=) D7 G, (34)
seS
2
k
B=4-T1T a;.‘ (35)

In order to

use the following criteria:

i) If g£(¢r) > 0 , use reference vertex approach.

ii) If g2(¢¥) < 0 , use complementary vertex approach.
. T T
iii) If g2(¢ ) < 0 and g2(¢ ) > 0, then
if lg2(¢r)| < |g2(¢r)|, use reference vertex approach,

if Igz(?r)| > |g2(?r)|, use complementary vertex approach.

obtain the hypervolume and its sensitivities efficiently we

The cases i) and ii) are clear since the hypervolume will be either completely

feasible or completely nonfeasible, respectively.

Case iii) follows from the

theorem in the Appendix.
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Example 1

Consider the following four-dimensional example, with a linear constraint

¢ ¢ ¢ ¢
=L, 2, 3,4
g =750t w120 o

and where
9 l’s
7 2
0
¥ =l ’ £ |4
26 l 6
Hence,
9 5 0 0 o'l -1 4
7 0 2 0 0! -1
q)r: + =
2 9 0 0 4 0 -1 5
26 0 0 0 -1 20
and

<
]

1 414 8 |4 1214
[‘Z—!"SXSXZOXSO][I—(].-'S—]—(1-—2—6] —(l-gﬁ]

+ |1 - L 22-4‘+ 1 - 8 _12)4
5 80 20 80

1034.15

Table I shows the nonfeasible vertices. A check for the analytical
formulas for the gradients and the numerical gradients obtained by central
differences is shown in Table II.

The alternative approach will lead to

9 5 0 0 O 1 14

T 7 0 2 0 O 1 9

¢ = + =

~ 9 0 0 4 0 1 13
26 0 0 0 6 1 32

and
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ve2*x5x2x4x6- [%T (8x1.6)(5x1.6)(20x1.6)(80x1.6)]

10 )4 4 )a 8 )4 4 8 )4
[1 - [1 - Bki?%} - [1 - 3&1?3} - (1 - 2611?3} * {1 " EX1.6 20x1.6]

-1 - 12 14, 1 10 12 14, 4 4 12 4
80x1.6 T~ 8x1.6 ~ 80x1.6 T 5x1.6 80x1.6

efp o8 12 Y& 4 8 12 |4
20x1.6 ~ 80x1.6 5x1.6 ~ 20x1.6 ~ 80x1.6
= 3840 - 2805.85 = 1034.15 . ¥

III. YIELD WITH STATISTICAL DISTRIBUTIONS

The probability distribution functionr(PDP) might extend as far as (-», «),
however, for all practical cases we consider a tolerance region R, such that
J F(?) d¢1 d¢2 ces d¢k =1 (36)
Re
where F(?) is the PDF.
The orthotope Re is now partitioned iéto a set of orthocells R(il, iz, cees ik)
as in Fig. 3, where i. =1, 2, ..., nj,vnj.is the number of intervals in the jth
direction and j = 1, 2, ..., k. A weighting factor W(il, i2, e ik) is

assigned to each orthocell and is given by
W(11, iy wees ik) = w(11, 12, cees 1k) / V(R(ll, iyy «ees 1k)) , (37)

where

w(il, iz, ooy ik) = J F(¢) dv , (38)



- 12 -

V(R(ll, 1,y eees 1k)) = I dv = l [ ej,i. , (39)
R(i.,i iy =t 77
1°72°°° "7k
dv = d¢; d¢, ... do, | (40)
and e, . , €, . , ..., € . are the dimensions of the orthocell.
1,i 2,1 k,1

’71 2 M 3
~ In principle, the problem of finding the yield is now reduced to finding the

contribution to the yield given by any of these orthocells. However, it will

be a tedious job to consider I | n. orthocells. By exploiting the way (14) is
j=1

constructed, a formula for the weighted nonfeasible hypervolume with respect to

the 2th constraint is constructed and is given by

+1 n+1 n, +1
g |1 K- oaf | b X K
VY= e [ | o .Z .2 e _2 BW(Eg a0 e ei)) (8,(i,d0,0 01 D)7 5 (41)
j=1 11=1 12=1 1k=1

where, for indexing with respect to ¢r (see Fig. 3), a? = the distance from the

reference vertex to the point of intersection in the jth direction,

5 (i, i i) =max |0, [1- ) =7 ¢ (42)
fps 1 eees Iy ’ Lo =gl %5 p1||
j=1 aj p=1
e. =0 ,j=1,2, ..., k (43)

3,0

k
AW(11,12,...,1k) = W(11,12,...,1k) - W(11,12,...,1j_1,1.—1,1j+1,...,1k)

j=1 !
k-1 k
3 ) Wi, iz,...,ij-l,...,ip—l,...,ik) - ...
j=1 p=j+1

+ -1k W -1,ip-1,0 00,0y -1) (44)

2

W(i ,ik) =0 if ij =0 or ij = nj+1 for any j. (45)

1,12,...

For the case of independent parameters (41) can be written as
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X n,+1 n,+1
L (1 ol & . 2
Vo=l T T ol ) AW (i,) ) AW, (i)
kL DTy LE 1Y, 2472
j=1 11-1 12=1
nk+1 L
iz=1 MW () (8, (0 ,1n,00001)) (46)
k
where
AW.(i.) = W.(i.) - W.(i.-1 , 47
J(13) J(13) J(1J ) ENCY)
W.(0) = W.(n.+1) = 0 48
J( ) J(nJ+ ) , (48)

wj(ij) =R {i )fj(¢j) d¢j e.,.j , i.=1,2,...,n. , (49)
it
fj(¢j) is the PDF of the jth parameter and Rj(ij) is the ith interval for that
parameter. Table III illustrates the calculation of weighted hypervolﬁme.
Again, assuming nonoverlapping, nonfeasible regions defined by different

constraints inside the orthotope Re’ the yield can be expressed as

v (50)

1

Y=1-

[ e =]

L
In short, the method approximates the integration of the PDF over the
feasible region. It allows freedom in discretizing the PDF which is an advantage

particularly if a worst-case solution is already known.

Example 2

The bandpass filter [6, 8], shown in Fig. 4, was used for verification of
the yield formula. The specifications are shown in Table IV. All inductors
have the same Q at the noﬁinal value given in [8] as the corresponding inductors
in [6]. The results given in [8] as indicated by the authors violates the
specifications at unconsidered frequency points. The adjoint network technique

was used for evaluating the sensitivities and, hence, linearizing the constraints
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at these frequency points. The linearization was done at the worst violating
vertex, i.e., the vertex which gives the most negative value for that particular
constraint. The yields obtained by the present approach and appiying the Monte
Carlo method with the nonlinear constraints for a uniform distribution are shown
in Table V. Further, as the tolerances were increased more frequency
points were considered. In order to avoid overlapping constraints, for each
nonfeasible vertex the frequency point corresponding to the worst violated
constraint is considered.

In addition, a uniform distribution of outcomes was considered but with
the more accurate components removed. This gives wi(l) = wi(S) = 0.5 and
wi(2) = 0. The problem is equivalent to having 28 different orthotopes. The
results are shown in Table VI.

Consider now the case of a normal distribution which has a probability

distribution function [9]

1 1 1 0.T -1 0
F(¢) = exp [— 5 (-9¢) (Cov)y = (¢ -9 )} s
M (Zﬂ)k/z /-I—E(Wr 2 2 2 l b
where

k is the number of parameters,

¢0 is the mean value of the parameter vector ¢,

COV is the covariance matrix.

5
In the case of no correlation, COV is a diagonal matrix with variances 0ss

i=1, 2, ..., k, along the diagonal. Hence,

F($) = —7 g e
¢) = exp |- —_—
- (zﬂ)k/Z k . .
1.

i=1
Using the described approach and dividing the interval [42 - 20i, ¢g + 2°i]

for each parameter into three different subintervals the weights are obtained
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in the following manner. Let [10]

-20/3 0y2
1, = 1 f exp |- %% d¢. = 0.2298
1 /Eﬁ'oi e 95 1
i
29;/3 A 0y2
1 1% - %
I, = = exp |- |—5— d¢i = 0.4950 ,
2w o, i)
i -201/3
2 0y 21
! 1 o5 - ¢
13 = exp |- |— d¢. = 0.2298
Vom o, 2973 % |
i

Considering a probability of unity for finding 5 in the interval [¢i-201,

¢i+201], the weights for each interval are given by (see Fig. 5)

w = 0.2298/ (I +1+1)

1~ Y3

w 0.4950/(Il+12+13) .

2
The results are shown in Table VII for equal standard deviations for all of the
eight parameters and for two values, namely, 5% and 6%. Table VIII shows the
execution time if Monte Carlo analysis is applied to the linear constraints for

the case of normally distributed parameters.

IV. CONCLUSIONS

It has been shown how yield may be estimated for arbitrary statistical
distributions in an efficient way without recourse to the Monte Carlo method.
Examples involving a number of distributions have been presented and the
results contrasted with those given by the Monte Carlo method.

For the case of a uniform distribution between tolerance extremes yield

sensitivity formulas have been derived with respect to nominal parameter values
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and tolerances assuming independent variables. These can be useful in opti-
mization [11,12]. Since the uniform distribution is basic to the subsequent
consideration of arbitrary distributions, it is felt that the ideas on sensi-
tivity could be carried through to effect design centering with respect to
given distributions.

As usual in iterative schemes the choice of starting point may be impor-
tant. In the present work it is recommended that a rough solution to a worst-
case centering and tolerance assignment problem be used to provide and identify
suitable active constraints. This allows only essential constraints to be
considered and provides some justification for a worst-case solution even if

less than 100% yield is subsequently contemplated [11,12].

APPENDIX
Theorem
1£ g, (67) < 0, g, (o)) > 0 and |g, 6] < |g, (4], then
Order (S,) < Order (S,).
In the case under consideration the order of a set is simply the number

of its elements. Assume that s e SQ, then

r)T

g,(0%) = g, (47) + (¢° - ¢7) Vg (41 <0,

k
T S T L
gﬂ,(? ) + izl ei (ui = Ui) qi <0 H

or

k
r, 2
- gz(djr) + z € (-ui + ui) q; > 0

But, since

- gz(?r) 5 gz(?r) and ug = -u;‘ s
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then
g, 05 + ) e (¥ - D) @f >0,
i=1 ,

i.e.,

g, 05 > 0
where

RN
Hence,

s e §£

This means that for each vertex s e S, there exists a vertex s e §£, thus

Order (Sz) < Order ( Z) .
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TABLE II

HYPERVOLUME GRADIENT CHECK FOR EXAMPLE 1

Parameters Analytical Numerical
gradients gradients
0
9 -337.50 -337.50
0
2 -540.00 -540.00
0 -
2 -135.00 -135.00
0
¢y - 33.75 _ 33.75
1 337.50 337.50
52 573.60 573.60
€3 268.20 268.20
€ 173.18 173.18
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TABLE III

EXAMPLE OF CALCULATION OF WEIGHTED HYPERVOLUME BY THE GENERAL FORMULA

Orthocell i1 0 1 2 3 4
dimensions €. . 0 3.0 3.0 2.0 -
1,11
12 %21,
0 0 w,W 0 0 0 0 0
w 0 18/100 12/100 3/10 0
1 2.0 1) 0 3/100 1/50 3/40 0
y AW - 3/100 -1/100 11/200 -3/40
8 - 1 3/4 1/2 1/3
w 0 12/100 8/100 2/10 0
2 3.0 W 0 1/75 2/225 1/30 0
) AW - -1/60 1/180 -11/360 1/24
§ - 1/3 1/12 0 0
w,W 0 0 0 0 0
3 - AW - -1/75 1/225 -11/450 1/30
) - 0 0 0 0

Reference vertex ¢ given by ui = -1, ug =1
Intersections of the linear constraint are a; = 12, a, = 3
Weighted volume V = 1813/3600
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TABLE IV

SPECIFICATIONS FOR THE BANDPASS FILTER

Frequency range (Hz) Relative insertion loss (dB) Type
0 - 240 35 lower (stopband)
360 - 490 3 upper (passband)
700 - 1000 35 lower (stopband)

Reference frequency 420 Hz (fixed, therefore, ripples higher than 3 dB
are to be expected in the passband)

Nominal values L)=3.0142, C=4.975 x 107, 19=2.902, cg=5.o729 x 1078,
Lg=o.82836, c2=5.5531 x 1077, Lg=0.30319 and Cg=1.6377 x 1077
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TABLE VI

COMPARISON WITH THE MONTE CARLO ANALYSIS FOR
ACCURATE COMPONENTS REMOVED

;- ¢g Yield (%) CDC Time (sec)
(%)

¢g Approx. M.C. Approx. M.C.

[-10,-5], [5,10] 68.9 71.0 4.9 45.6

Frequency points used are 190, 240, 360, 480, 490, 700 and 860 Hz

TABLE VII

COMPARISON WITH MONTE CARLO ANALYSIS FOR
NORMALLY DISTRIBUTED COMPONENTS

o Yield (%) CDC Time (sec)
—= (%)
¢g Approx. M.C. Approx. M.C.
5.0 96.5 95.1 4.9 69.2
6.0 88.4 87.0 7.4 68.0
TABLE VIII

EFFECT OF NUMBER OF MONTE CARLO ANALYSES ON THE YIELD
BASED UPON THE LINEARIZED CONSTRAINTS

o‘.
-%-(%) N.O.M.P.* Yield (%) CDC Time (sec)
21
(2000 - 94.4 24.6
5.0 { 500 94.2 7.0
[ 200 91.5 2.8
([ 2000 86.6 24.3
6.0 { 500 85.2 6.9
| 200 84.0 2.8

* N.O.M.P. denotes the number of Monte Carlo points used




(a) 222

h:
(&
<.
-
'
1

A _ _ >”d
ay yy“
(b)

?

Fig. 1 Two-dimensional examples illustrating the calculation of
the nonfeasible hypervolumes, (a) tolerance region partially

feasible, (b) tolerance region nonfeasible.
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Fig. 3 ‘Two-dimensional illustration of the partitioning of
the tolerance region into cells indicating the dimensions
and weighting of those cells relevant to the calculation

of the weighted nonfeasible hypervolume.
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Abstract: Based upon a uniform distribution inside an orthocell in the
toleranced parameter space, it is shown how production yield and yield
sensitivities can be evaulated for arbitrary statistical distributions.
Formulas for yield and yield sensitivities in the case of a uniform
distribution of outcomes between the tolerance extremes are given. A
general formula for the yield, which is applicable to any arbitrary
statistical distribution, is presented. An illustrative example for
verifying the formulas is given. Karafin's bandpass filter has been
used for applying the yield formula for 'a number of different statis-
tical distributions. Uniformly distributed parameters between tolerance
extremes, uniformly distributed parameters with accurate components
removed and normally distributed parameters were considered. Compari-
sons with Monte Carlo analysis were made to constrast efficiency.
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