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A brief review of mathematical concepts in linear, nonlinear and
discrete optimization is made. Following statements and classifications
of problems in optimization, convexity and partial derivative concepts
are discussed. An abstract approach to evaluation of first-order
sensitivities is presented, indicating its relationship with the adjoint
network method. Branch and bound concepts for discrete optimization
are sketched out. Linear inequalities, along with descent, optimality
conditions and feasible direction approaches are noted. Definitions
are given of the Lagrangian function, primal and dual problems. A
discussion of quadratic models, scaling and transformations leads the
reader to Newton, modified Newton and quasi-Newton algorithms. Considera-

tion of linearly constrained problems is followed by linear programming.
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Introduction

A brief review of mathematical concepts in linear, nonlinear and
discrete optimization is made. Following statements and classifications
of problems in optimization, convexity and partial derivative concepts
are discussed. An abstract approach to evaluation of first-order
sensitivities is presented, indicating its relationship with the adjoint
network method. Branch and bound concepts for discrete optimization are
sketched out. Linear inequalities, along with descent, optimality
conditions and feasible direction approaches are noted. Definitions are
given of the Lagrangian function, primal and dual problems. A discussion
of quadratic models, scaling and transformations leads the reader to
Newton, modified Newton and quasi-Newton algorithms. Consideration of

linearly constrained problems is followed by linear programming.



The Optimization Problem

The optimization problem is to minimize with respect to parameter

vector ¢ restricted to the domain @k the scalar objective function U(Q)

subject to inequality constraints ¢(¢) > Q+ and equality constraints

k(%) =0, where
i ¢, ] e ] [ h, ]
1 1 1
%2 €2 hy
A A A
4 ’ S, | = : )
L ¢k ] L ‘n ] i hs )
2 means ''equal to by definition'. Thus, ¢ defines a k-dimensional parameter

space. The vectors ¢ and h contain constraint functions, which may be linear

or nonlinear in ¢. The symbol @k is used to denote any extraneous restrictions

on the k-vector ¢ not covered by ¢ > 0 and h = 0.

We may classify some optimization problems as follows:

linear programming: U, ¢, h linear in ¢

quadratic programming: U quadratic, ¢, h linear

nonlinear programming: U, ¢, k, nonlinear in 9

integer programming: @k = {integer k-vectors}

discrete programming: @k = {specified~H k-vectors}

mixed integer programming: @k = {k-vectors with some components integer}

Terms such as unconstrained optimization, discrete nonlinear programming,

and so on, follow in an obvious manner.

A constraint region RC may be given by

R 28| &) >0 k@ = Q) - )

t The notation a > 0 means all elements of g must be nonnegative.

t

A finite number of possible solutions is specified.



Convexity and Convex Programming

We present a number of important related ideas on convex functions
and regions.

A function of f(x) is said to be convex if a linear interpolation
between every two points x? and xb on its surface never underestimates the
function, i.e.,

£+ AGD - xM) < £+ AEGD) - £(x) for all 0 <A <1 . (6)

Strictly convex functions are similarly defined but must have strict

inequalities in (6) for x2 # xb.

A function f(x) is concave (strictly
concave) if -f(x) is convex (strictly convex).

A region (set of points or domain) is convex if for every x% and x
in the region

x = x% + A(xb - xa) , for all 0 < A <1 (7)

~

lies in the region. Thus, R is convex if

8%, oP, 0% + A6 - M ER for all 0 < A <1 . (8)

~

. . . . i,
Given a distinct number of points x*, 1 =1, 2, ..., n a convex

combination x of the points is described by

n i n
X=)A X, JA =1,A >0,i=1,2, ..., n . (9)

A region is convex if every possible convex combination of all sets of

distinct points is in the region.



5% f 5%f 3%f
aX12 axlaxz Bxlaxn
X 5°f 32
. axzaxl 8)(22 axzaxn (14)
G=v vlf=
-~ ~X X
X 3%f 3%f
anaxl axnaxz ax 2 |
- n

and is symmetrical for twice differentiable functions. If we identify

y as V_f then ayT/Bx =V VTf, where m = n.
2 ~X ’ X X

Consider the function, for m > n,

T
y y . (15)

1

f =

T

Then

-3

4 T
Yx £ = 3 Z - g X (16)

R

and, neglecting second derivatives of y w.r.t. x, it is readily shown that

'
G =V

g

1
z £ 9Ty . (17)

~

X

The minimization of f' of (15) is called least squares approximation. The

!
n x n Hessian G of (17) is exact if y is assumed linear in x.
If xO is some reference point and x arbitrary then Taylor's theorem

gives

f(x) f(xo) + AxT fo(xo + Ale)
1

f(xo) + ax fo(xo) + §-AxT G(xo + A,AXx) Ax

2

f(xo) + axT fo(xo) + %—AXT G(xo) AX + ... (18)
for some 0 < Al, Az < 1, where
Ax 2 X - XO . (19)

- Furthermore, we denote first-order changes by 6§ so that

T

of Eaxl v sy (20)



Sensitivity Evaluation

An abstract approach to the evaluation of first-order sensitivities
will be presented. It is desired to evaluate fo where f is calculated

through a set of intermediate variables y obtained from a solution of the

system
A(x) y = Db (26)
which is linear in y. We assume that
-1
y=A (X)b = fx yx) . (27)
Then . T
of . °Y of
V= =+ 7 —
~X 9X  9x 9y . (28)

Differentiating (26) w.r.t. X, we have

9A ay

o YA =0 (29
1 1

Given y from a solution of (26) and assuming that the calculation of BA/axi
presents no difficulty the calculation of By/axi is obtained from the
solution of the linear system

3y 9A (x)

A(x) a%i = - S Y : (30)

Clearly, n such analyses yield the matrix ByT/ax, if it is desired.
Suppose, for example, that

y = é'l(f) b — f(y;(x)) for some i . (31)

Then 3f/3y is zero except possibly for the ith component. Let u, be the

ith unit vector. Then T

9y
_ L of
Yxf T x wi Byi (32)

follows from (28). Thus, only the ith column of ByT/Bx, namely ayi/ax,
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Branch and Bound

We consider the general optimization problem

minimize U(¢) s.t. ¢ € R s
¢

(37)

where R was defined by (4). The branch and bound method employs a

tree enumeration approach and upper and lower bounds on the objective

function to accelerate the process of finding optimal discrete solutions.
Consider a tree structure of nodes and branches. Associated with

each node is a bounding procedure and a strategy for choosing the next

node, or branching. The nodes are numbered in the order in which they

are considered, node 0 representing the original problem. Each node has

a unique predecessor tracing one's way back along the path to node 0.

Constraints effective at node j are those associated with the path back to

0 as well as those defining R and result in a region Rj. Note that R = RO.

As constraints are added to a problem one expects the minimum objective

function value to increase or stay the same.

A lower bound at node j is found as follows. Let

(min U(¢) if &J exists
v, s R’
L . (38)
= if R = p
L - otherwise

. . V.
Relax the constraints suitably to give B? to find a lower bound g? < ul.

Thus R C R’ and let

V. V.
y?= min U(¢) if ¢J exists
g? = 4 ¢é§B?

(39)

© if 5? =P

| - otherwise




- 13 -

Farkas Lemma

A statement of central importance to optimization is Farkas Lemma.

Given the vectors {po, Pis «ees pn} one can write
n
Po = 1% Pj» % 20 (40)

if and only if

Pp 920 (41)
for all q satisfying

p,'q20,i=1,2, ..., n (42)

i.e., there is no q which simultaneously satisfies pOT q < 0 and (42) if

and only if Py is in the convex cone spanned by the p; -
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Let
A ..
J(9) = {1 | M(¢) = £,(¢)) (50)
denote the set of active functions at any point ¢. Let
A
g, =V, £.(9) (51)
Then, for differentiable functions
T .
gg sT <0 foralli€J (52)

implies that éfg < 0 for all i € J and, corresponding to (44),

M(e) + @ sT) < M(g?) (53)
for sufficiently small o > 0 and where we assume that J(d)j + Q sj) g;J(¢j).
sj can be described as a descent direction for M(?) at ?j. The condition

g, s >0, i€ J(9) (54)

is a necessary condition for a minimum of M(¢) w.r.t. a along s7.
A necessary condition for a minimum $ assuming differentiability is

the existence of u i=1, 2, ..., n such that

n
DETACRE. =
1=
n
izlui =1 (56)
u, > 0, i=1, 2, ..., n (57)
u; =0, ig J(%) , (58)

i.e., the origin must be a convex combination of the gradient vectors of
the active functions at %.
Consider the problem

minimize U(¢) s.t. h(¢) = 0 . (59)

The Lagrangian function is given by
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Since, for any AO and ¢O,

min L(¢,AO) < max L(¢O, A) (68)
) T - AEO - -

~ ~ T~

the dual problem yields a lower bound for the primal problem and the
solutions, if they exist, give the same L.

If U(?) is convex and c(¢) concave and the functions are differentiable
then

m
VL=g- ) A a =0,1>0 (69)

imply that the dual requirements are satisfied. Hence, maximizing L w.r.t.
¢ and A subject to the constraints (69) is an equivalent problem to the
dual problem.

Assume that a minimum exists at ¥, that the functions concerned are

differentiable and that constraint qualifications are satisfied. Then

there exists an m-dimensional vector u such that

m
g - Ju a, @ =0 (70)
SR T s R
u; >0,i=1,2 ..., m (71)
u; = 0, i J($) (72)
where
A
33 =V & (73)

The conditions (70) to (72) are usually called the Kuhn-Tucker conditions

and the u contains the Kuhn-Tucker multipliers. The multipliers are non-

negative since they correspond to c, 2 0. If c; < 0 the corresponding
multiplier would be nonpositive. If c; = 0, then the multiplier is un-
restricted.

The conditions may be interpreted as: the gradient vector of the
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The feasible direction strategies outlined above are quadratic
programs. A linear programming approach can be suggested with the same

. AP T . - .
constraints but where we minimize g s subject to the additional constraints

T . s . .
a, s> 0 in the general case and minimize Skl subject to the additional

constraints Sie1 2 giT s for the minimax problem.

~
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Scaling and Transformations

'
Consider a nonsingular linear transformation of ¢ into ¢ , forming

the image space. Thus,

o =T e (79)
where, obviously, T
3¢
Te o
Incremental changes or directions are then related by
R (81)
and gradients by
£=Te (z2)
Consider
s=0g . (83)
Then
s' = aTT T g' , (84)

1
hence the conventional directions of steepest ascent, namely g and g ,

correspond if TT T is a multiple of an orthogonal matrix. Equal changes
of scale and simple rotations of coordinates are permitted. Other trans-
formations or unequal changes of scale may cause a well-conditioned
problem in one set of variables to be badly conditioned in another, and
vice versa. In any case we note that gradient directions are scale
dependent.

The quadratic function Q(s) under the linear transformation becomes

1 1] l'Tl 1 'Tl
Q(s)=%s Qs +g s +c , (85)

where

Q =T QT . (86)



Newton and Modified Newton Methods

Following our discussion on partial derivatives we observe that
the basic Newton-type iteration involves solving for Ej the system
ISR R (92)
where Qj and gj are calculated at Qj. If Qj is positive definite we obtain
a gj which is downhill since éj Qj aj > 0 for nonzero gj implying that
—éj %j > 0. To make sure of a descent direction when Qj is not sufficiently
positive definite we may consider the solution of
R (93)
where gi is a suitable modified matrix.
Two important possible modifications will be singled out. The first
may be described as the Levenberg-Marquardt approach. In general, we let
Qm - Qj . A 1 (94)
choosing Xj > 0 to make Q% positive definite. In essence, we havé added a
term A(ET 5 - h2) to the objective function, A being interpreted as a
Lagrange multiplier and h as a step size. New parameters have thus been
introduced which must be determined at each iteration. For A = 0 we
regain the undamped Newton step, whereas with large positive A the steepest
descent direction is obtained. Methods based on this approach would attempt
to ensure a sufficient decrease in the objective function at each iteration
by appropriately selecting a value of A.

A second method is due to Gill and Murray. Here, we let

=6 +E (95)
where EJ is a diagonal matrix, and where QJ is factored as
. .. LT
g =k R Y : (96)

where kJ is a lower triangular matrix and QJ is a diagonal matrix whose elements

are sufficiently large to ensure stable factorization. EJ can be set to zero

if QJ is sufficiently positive definite.



In general, if HO is a positive definite symmetric matrix then B is

j

also a positive definite symmetric matrix so that s” always points downhill.

A consequence of Dixon's work is that for the same ¢0 and HO these and other

special cases of Huang's family generate the same sequence ¢1, ¢2,
Under the conditions of full linear search sz gj+1 = 0, thus post-
multiplying both sides of (98) and (99) by yj we find that
pitl 3o g ) . (103)

~ ~

This is a condition analogous to one which is fulfilled by positive definite

quadratic functions, which the updating formulas are attempting to force.



A= (A GTATTA G g , (110)

A (AT 61 A)“1 AT) ¢! g . (111)

1

S

-1 - 9'
% is in effect a second-order estimate of the Lagrange multipliers at

the solution, i.e., an attempt is made to satisfy the optimality conditions
for the main problem with selected active constraints and a quadratic model
for the objective function. s is a projection of -g onto the constrained
space.

Suppose Q = 1. Following through the derivations we obtain the special

case +
A=A g , (112)

S

-1 -AADY g . (113)
yielding a first-order estimate of the Lagrange multipliers at the solution
and the constrained steepest descent direction. Letting P 2 A AT we
recognize the more familar projection onto the subspace spanned by the
active a;s and z - ? as the orthogonal projection onto the constrained space.

Negative multipliers indicate constraints which may be dropped from the
set of constraints currently held active. During minimization new constraints
can be added to the active set when necessary.

Quasi-Newton methods for unconstrained minimization can be extended to

the linearly constrained case.

So-called reduced-gradient methods use linear equality constraints to

eliminate variables from the optimization problem.
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where, for convenience, we have taken the first n variables are the basic

variables corresponding to an admissible basis B containing n linearly

~

independent columns. We have set ¢i =0, i =n+l, n+2, ..., k.

By analogy with the foregoing discussion

Tore
A 1) 1

~ ~

B 0 * b
CT 1 A c
C C

where A and c have been appropriately partitioned. The solution of

i i T
By =g

provides the simplex multipliers for investigating
T

%c = S - 9 §b ’

namely, the Lagrange multipliers for the inequality constraints ¢ > 0

which are active.

! '
Now since B provides a basis we can expand any column a; of A

as B X, = a,. Note that X, = u., i=1, 2, ..., n. Consider

1
B(¢, - 6x3) + 8a; ='b
and

T
¢y (9 - 8X3) + Bcy

~

and suppose that Ar < 0 for some n+l < r < k and therefore we want to

move away from ¢r = 0. Let the nearest constraint be ¢s = 0. Choose

6 = GS such that ¢b - exr has a zero in the sth row, i.e.,

~

-©-

min i
x. >0 x.
ST ir ir

><|-e
7

(118)

(119)

(120)

(121)

(122)

(123)

(124)



-2 -
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simplified", IEEE Trans. Circuit Theory, vol. CT-20,1973, PP-
285-288,




Note that RC as given by (2) admits all its boundary points and hence this
region is said to be closed. An open region does not contain any of its
boundary points. The notation $E RC signifies that $ is in the constraint
region.

U(g) generates a response hypersurface. The goal of optimization is

to locate a % in R such that
U($) < U(¢), for all g €ER (3)
where

A k
R = RC(\ o . 4

This gives a global minimum. A somewhat more difficult concept to define

is a local minimum. A local minimum of U(%) occurs at é in R with respect

to a suitably defined neighborhood N(%) if

U($) < U(9), for all ¢ & R \N($) . (5)

In continuous optimization the neighborhood is taken as an open hypersphere
containing %.
Depending upon the nature of the problem and the algorithm employed
we may find the global minimum, a local minimum, several local minima, or
no minimum. The processes of determining the existence of an optimal solution,

characterizing it and searching for it fall into the domain of mathematical

programming.



Partial Derivatives

We consider now some important classical concepts applicable to
continuous functions with continuous first and second partial derivatives,
as appropriate.

Consider the differentiable functions f(x) and y(x), where

X1 "1
X y
x& 20, y 2|’ (10)
L Xn - - ym -
Let the n-dimensional partial derivative operator w.r.t. x be
r 3 A
axl
2
A X
V.= 2 . | (11)
2
X
- n -
Then fo is the gradient vector of f w.r.t. x and J given by
T oy A
{ X [nyl ny2 T nym] (12)

. . . d
is termed the Jacobian matrix of y w.r.t. x. Observe that VX = 55 and

1 0.
BxT A 0 1
it as)
) 0 0...1

The Hessian matrix G of f w.r.t. x is given by
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It is a simple exercise to prove that, with respect to the Euclidean

measure of distance, fo provides the steepest ascent direction and —fo

~

the steepest descent direction. In other words, &f is maximized (minimized)
for the norm || Ax || = (AxT sx)1/2 = 1 if Ax is aligned with the steepest
ascent (descent) directions at xO.

Now,

Y00 =y () + G bx e (21

The solution x1 to y(x) = 0 obtained from a linear approximation at xO is

~ o~ ~

interpreted from (21) as
=Xl -0 vy (22)
Taking y = fo we have, correspondingly,

- 0
xl = xO -G l(xo) fo(x ) (23)

1]
and, for f = %—yT y, we have following (15) to (17)

NSRS G L R T et B (24)

i.e., we have the basis for the well-known Newton methods of solving non-
linear equations, function minimization and least squares approximation,
respectively, xO being the current estimate and x1 the next (hopefully better)
estimate of the solution.

If G(x) is positive semidefinite (negative semidefinite) for all x
then, from Taylor's theorem (18),

£(x) > (<) £(x) + of (25)

from which it can be shown that f(x) is convex (concave). f(xo) +

(x - xO)T VX f(xo) defines a tangent hyperplane at xO.
If G(xo) is positive definite the Newton step —G_l(xo) Vx f(xo) can be
thought of as providing the steepest descent direction for the norm

|| ax I] = (AXT G(xo) Ax)l/2 = 1, 8f being accordingly minimized.



- 10 -

is required. Now

—L = u, == -u, A (x) ~‘" y . (33)

T S
Ay =Y (34)
Then
oy . oA (x)
i _ T "M
ax.  Yi ax. Y (35)
J J
Thus,
% | o1 A oop A oo A0 T (36)
x| Vi 8%, y Yy 8x, yoo. i 9x Y

and is obtained numerically through the solutions y and gi and matrix
multiplications. Observe that if A is factored into upper and lower
triangular forms in the solution of (26) then the solution to (34) is
obtained following one forward and one backward substitution. Using
sparsity and system structure appropriately the sensitivity expressions
(35) may reduce to simple formulas.

The relationship of the foregoing presentation to the adjoint network

method should be clear. See Branin (1973).



- 12 -

The choice of 5? must be such as to result in a convenient problem to
be solved and to yield a useful (not too low) lower bound. This lower

bound is also valid for successor nodes. An example of an B? would be

one leading to a continuous optimization problem.
. V.
An upper bound U’ > v’ can, for example, be found by calculating U
at any convenient point in R7. We note that this bound is valid for

predecessor nodes.

A node j is fathomed if g?= L (for obvious reasons) or if g? > ﬁo,
since ﬁO represents the best discrete solution available and a successor
to node j can not improve the situation. No further branching takes place

from fathomed nodes.



Descent and Optimality

During minimization of U(¢) a sequence of points {¢O, ¢l, ...} is

generated. If

A

ue? ™ < ugeh) (43)

then the step from ¢J to ¢J+l is a descent step.

J is said to be a downhill direction at ¢J if

The vector s
U + a s < ueed) (44)

for sufficiently small o > 0. It is also a feasible direction if the

constraints are satisfied.

Descent algorithms usually attempt to obtain a suitable value o’
such that
¢j+1 = ¢j + aj sj » (45)
where sj is a downhill search direction at ¢j and (43) is satisfied.
Differentiating U(¢>j + 0 sj) w.r.t. a at ? = ¢j + 0 fj we have
e s (46)
where
g= v, U un

implies that su? < 0, (44) is satisfied and s is downhill. The condition

g s- =0 (48)

is a necessary condition for a minimum of a differentiable function U(¢)

. . LT
. .. . +
w.r.t. o along s?. An exact linear search for a minimum gives gJ 1 s’ =

Consider minimax optimization for which

M(?) £ max fi(?) . (49)

1<i<n
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L(g, 1) = U A" h(e) (60)

where A is an s-vector of Lagrange multipliers. A stationary point ¢O, AO

~

is found from the solution of

VL =g - Z A; V,he =0 (61)
121 ¢ i -

vwi=h=0 (62)

where the multipliers are unrestricted in sign.

Now consider the problem

minimize U(¢) s.t. c(¢) > O . (63)
o Z -l ~

~

Let

J(4) 4L | ¢ () = 0 (64)

denote the set of active functions at any feasible point ¢, where ci(¢) >0
for all i ¢ J. We can write down the Lagrangian
T
L(g, A) = U(9) - A" c(9) (65)

where A 1s an m-vector.

~

Observe that max L(¢, A) is simply U(¢) where c> 0 and +« where c ? 0.
A0 ~

~T o~

This is called the primal function. The problem

minimize max L(¢, A) (66)
¢ A>0 -

is referred to as the primal problem which is essentially the original

nonlinear programming problem.
The problem

maximize min L(¢, A) (67)
A0 g

~

is referred to as the dual problem. The function min L(¢, A) is called the
o DA

dual function.
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objective function is in the cone spanned by the gradient vectors of the
active constraints at §.
If we identify a new independent variable ¢k+1 and reinterpret the

Kuhn-Tucker conditions for the special problem, for m = n,

U= o, (74)

¢; = fpa - F1 (9 (75)

we have g = 9, 8U/8¢k+1 =1, a; = -g;» 3ci/8¢k+l = 1 and, given ?, c; = 0
corresponds to ¢k+1 = M(?) so that the conditions (55) to (58) and (70) to
(72) correspond. In fact, this special nonlinear (linear) program is often
set up to solve nonlinear (linear) minimax approximation problems.

If at some point ¢ the vector g is not in the convex cone spanned by
the active gradient vectors we would normally expect a feasible descent
direction. Thus, if there exists an s such that §iT s > 0 for all ie J
and gT s < 0 then g is not in the cone. It can be proved that the smallest

s in the Euclidean sense w.r.t. o, subject to

~

s=-g+ . a

L8, 0 >0 (76)

Lo ay
ieJ
provides the steepest feasible descent direction also in the Euclidean sense.

This is the principle of the method of feasible directions. Indeed, if the

minimal s = O the necessary conditions for optimality are satisfied.

~ ~

Similarly, the smallest s w.r.t. o, subject to

s = - Z a. g., Z a. =1, a. >0 (77)
~ iey 1t qeg? *

provides the steepest downhill direction in the Euclidean sense for the

minimax problem, with appropriate optimality conditions satisfied.



Quadratic Models

The most common model with respect to which, for example, unconstrained
minimization methods are derived is the positive definite quadratic model.
By analogy with (18) we consider

Qs) =35 Qs+g s+c (78)

where Q is a k x k constant symmetric matrix, g is a k-vector of constants and
c is a constant. The gradient vector is Q s + g and the Hessian matrix is

Q. The solution of Q s + g = 0, if Q is positive definite, yields a unique
minimum of Q and can be found in a finite number of steps. If Q is the

Hessian matrix of the nonlinear objective function under consideration and

g is the gradient vector then Q is a quadratic approximation to the

objective function. If Q = 1 then the step to the minimum s = -g. This

indicates that the minimum lies in the direction of the negative gradient
when the contours of the function are spherical, which brings us to the

important subject of scaling.



'
We are at liberty to set Q = 1 which can be effected if

T = x /2 , (87)

where X contains the unit eigenvectors of Q and A is a diagonal matrix

with corresponding distinct eigenvalues. The transformation X_1 QX =47

is called the diagonalization of Q.

Steepest descent algorithms might benefit from such an analysis, however,
it is not convenient to implement, in general, minimization algorithms less
sensitive to scaling being more desirable.

A nonlinear transformation is given, for example, by

6 = £(4) : (88)
A matrix T can be defined as in (80) leading to
s =T Ag (89)
g =T g, (90)
which should be compared with (81) and (82), respectively.
Suppose
?' = log_ ¢ , (91)

t
hence T is a diagonal matrix with ith element 1/¢i. We have 6¢i = A¢i/¢i
! !
and g = ¢i g5 hence first-order changes and gradients in the ¢ space

are scale independent.
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Quasi-Newton Methods

Instead of using local second partial derivative information at the
jth iteration, quasi-Newton methods, using only first derivatives, can be
thought of as building up information from previous iterations to ensure
good downhill directions of search. The information results in a matrix

H) which may tend under certain conditions to approximate the inverse of

the Hessian.

J

The direction s- is obtained from

s = - ¢’ ) (97)

Two important and effective updating formulas for H? can be stated.

The first is the Davidon-Fletcher-Powell (DFP) formula

.. LT N
ie1 ; o) s) §J SRRV NPVt
. (98)
sJ 1(J Y B’ Y
and the complementary DFP formula
R .. LT T . . LT
ie1 ; s 47 W v oyd s? ; W T LY
L s A R S T (99)
sy st y? s I sy
where
N .
Y2t -, (100)

which was discovered by Fletcher, Broyden and Goldfarb.

The formulas are special cases of a general family derived by Huang.
On a positive definite quadratic function the minimum is attained in at
most k iterations if a full linear search for a minimum is made along each
of the k conjugate directions which are generated and Hk is the inverse

Hessian. Thus,
(101)

1 oQ
1]
o
-

?

H = A . (102)



Linearly Constrained Problems

An important class of problems features constraints of the form

T
3 vz hy

, 1=1,2, ..., m . (104)
Consider a point ¢ at which one or more of these constraints are satisfied

as equalities. In particular, let
Al o= b (105)

represent the active set, when A is a rectangular matrix assumed of full
rank, necessarily less than k, the number of variables, and b is a vector
of corresponding dimension.

Let Q(s) be a suitable quadratic model to the objective function at ¢.
Then a steepest descent direction s may be found by solving the quadratic
program

minimize Q(s) , s.t. AT s =0 . (106)

S

~

The directions s are thus forced to be orthogonal to the gradient vectors

~

a; of the active constraints, i.e., they are to be kept active.
The Lagrange multiplier solution to this problem provides the basis
for minimization algorithms subject to linear constraints. We have,
taking Q = G,
Gs+g=AN\ . (107)
Observing that the form is the same as that of a least squares problem

linear in A we can write down the solution as

A=AY Gs + @) ) (108)
If we premultiply both sides of (107) by AT G_l, however, we obtain using
the fact that AT s =0

ATglg=aTglan (109)

from which



Linear Programming

In linear programming we have the linear objective function cT ¢

where ¢ is constant k-vector. The gradient vector g = c¢. In linear

programming m > k and the solution will lie at a vertex of the feasible
region. Suppose we consider k active constraints at a time. The
Lagrange multipliers are found from the k equations in k unknowns

AXx=c . (114)
If any of the multipliers is negative, cT ¢ can be reduced by dropping
the corresponding constraint and moving in a direction parallel to the

remaining k-1 constraints. This is effected by solving

AT s = u, (115)

~

for s. Observe that AT s = 0 has been relaxed and that a; and s are no

~ ~ ~ ~ ~

longer orthogonal. The procedure is repeated when a new constraint is

encountered resulting in a new A matrix.

~

The standard form has the constraints

A ¢=b,6>0 . (116)

1
Assume A is of full rank n < k. A basic solution is obtained by letting

k - n variables be zero and solving the remaining n equations in n unknowns.

A basic feasible solution is a basic solution satisfying ¢ > 0. Note that

|
A ¢ = b is always active. A nondegenerate basic feasible solution occurs
when the n variables corresponding to the n linearly independent columns of

'
A are all positive.

The Simplex Method

1
Partition A as

>

= [B C] , (117)
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1 1
Thus, ag has been removed from the basis and replaced by a.. Clearly,

the new parameter values are

¢1 - es Xsr i#s, 1 <ic<n
¢i+ GS i=r (125)
0 otherwise
and the value of the objective function has decreased by Gs(ch X, - cr).
In fact, from (119)
T T T _
I T T T e T T T T (126)



- 31 -

Duality in Linear Programming

Consider
A T =T
minimize ¢ ¢ s.t. A" ¢ > b,¢ > o . (127)
o - X . 2 2L ~
The Lagrangian is
o-n T A b)), (128)

where m, and 7., are vectors of dual variables. The function can be

-1 2

rewritten as

T T +
mob-e BTy - (129)
where K'nl + M, -cC= 0 leads to a dual function wlT b. Ty > 0 is
handled by K'wl - ¢ < 0 so that the dual problem is succinctly stated as
maximize b A s.t. A A <c, A >0 : (130)

N ~ o~
The pair of problems we have considered are called the symmetric
primal-dual problems. An important consequence of this analysis is that
we are at liberty to choose either the primal or the dual problem to
solve. Generally, if the primal has many inequalities and relatively

few variables, the dual problem will have few inequalities and many

variables and may be easier to solve.



