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Abstract This paper presents a new approach to optimal design
centering, the optimal assignment of parameter tolerances and the
determination and optimization of production yield. Based upon
multidimensional 1linear cuts of the tolerance orthotope and uniform
distributions of outcomes between tolerance extremes in the orthotope,
exact formulas for yield and yield sensitivities w.r.t. design
parameters are derived. The formulas employ the intersections of the
cuts with the orthotope edges, the cuts themselves being functions of
the original design constraints. Our computational approach involves
the approximation of all the constraints by low-order multidimensional
polynomials. These approximations are continually updated during
optimization. Inherent advantages of the approximations which we have
exploited are that explicit sensitivities of the design performance are
not required, available simulation programs can be used, inexpensive
function and gradient evaluations can be made, inexpensive calculations
at vertices of the tolerance orthotope are facilitated during
optimization and, subsequently, inexpensive Monte Carlo verification is
possible. Simple circuit examples illustrate worst-case design and
design with yields of 1less then 100%. The examples also provide

verification of the formulas and algorithms.

e e e e e

This work was supported by the National Research Council of Canada
under Grant A7239. This paper is based on material presented at the
1977 1EEE International Symposium on Circuits and Systems, Phoenix,
Ariz., April 25-27, 1977.

The authors are with the Group on Simulation, Optimization and
Control and Department of Electrical Engineering, McMaster University,
Hamilton, Canada, L8S ULT.



I. INTRODUCTION

Optimal tolerance assignment is the process of associating the
largest tolerances with design parameters to minimize cost. 'Design
centering is the process of defining a set 6f nominal parameter values
to maximize the tolerances or to maximize tﬂe ?ield for known but
unavoidable statistical fluctuations. 'Thié paper'integrates the
concepts of design centering, the optimal assignhent of parameter
tolerances and the determination and optimization of production’yield
into an overall optimal design process.

Our computational approach should be viéwed in the context of the
following important work inv this area: the nonlinear programming
approach of Bandler et. al. [1,2] and by Pinel and Roberts [3], the
branch and bound method of Karafin [4], the Monte Carlo approach of
Elias [5] and the Director and Hachtel technique involving
approximations of the feasible region [6]. It makes use of
approximations of all the constraints by low-order multidimensional
polynomials. These approximations are continually updated in critical
regions identified during optimization and integrated with the nonlinear
program which inscribes an orthotope in the constraint region by
minimizing a suitable scalar objective function. This orthotope will
actually_be the optimum tolerance regibn for a worst-case design problem.
with independent variables.

The readily differentiable approximations permit efficient gradient
methods of minimization to be employed as well as inexpensive
calculations at vertices of the tolerance orthotope, which tend to
locate the critical regions. The yield problem commences when the

orthotope is allowed to expand beyond the boundary of the constraint
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region. Attention is then directed to the critical regions which
contribute to the yield calculation.

Section II describes the nature of the tolerance problem and
discusses the implications of the assumption of one-dimensional
convexity [7,8]. Section III formally introduces the multidimensional
polynomial. Our approach to choosing suitable interpolation base points
is given. The section includes an efficient algorithm for evaluating
the approximations and their derivatives at different vertices in
different well-chosen interpolation regions. Section IV presents
algorithms for worst-case design: Phase 1 deals with a single
interpolation region, Phase 2 involves two or more interpolation
regions. These interpolation regions are updated according to desired
accuracy for the approximate constraints in critical regions.

Based upon multidimensional linear cuts of the tolerance orthotope
and uniform distributions of outcomes between tolerance extremes in the
orthotope, Section V presents exact formulas for yield ahd yield
sensitivities w.r.t. design parameters. The formulas employ the
intersections of the cuts with the orthotope edges, the cuts themselves
being functions of the original design constraints. Ways of treating
linear and quadratic constraints (actual or approximate) are discussed
so that results obtained by implementing the material of the previous
sections can be followed up.

Section VI details an algorithm embodying all the ideas and results
of Sections II to V. It deals with optimization involving yield less
than 100%. Appropriate approximations to the boundary based on a single
function of least pth type [9] within each critical region are utilized.

Some illustrative examples are also included. A two-section
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quarter-wave traﬁsmission-line transformer is used to explain how a
worst-case design is obtained and, further, is used for yield
determination and optimization. A worst-case design and a well-centered
design for yield less than 100% for a three-section lowpass LC filter
are included. Practical examples of non-ideal th-section and

three-section waveguide transformers are described.

II. NONLINEAR PROGRAMMING FORMULATION OF’THE TOLERANCE PROBLEM
Introductory Conepts |
An engineering design can be described by a vector of nominal
parameters ¢O and an associated vectof of manufacturing tolerances E,

where

01
*y €
0
P €
Q8 120, e8], |20 (1)
0
| %% | ‘K |

and where k is the number of designable parameters. Accordingly, any
design outcome is represented by a point which lies inside a tolerance
region RE as shown in Fig. 1. For simplicity as well as the
implications of a uniform distributiqn of outcomes between tolerance

extremes ¢g i_ei, we define

o=+ By u eI, @)



where

R, 2 ful-1 S KT i=1,2 oy K (3)
and where ? is a k x k matrix with diagonal elements set to €5 and E is
a random vector distributed according to the joint probability
distribution functidn of the outcomes. Any value for u idenﬁifies a
point in Re' The tolerance region Re as defined in (2) is an orthotope
in the k-dimensional space (see Coxeter [10]). Consequently, the
tolerance region will often be referred to as the tolerance orthotope.
The vertices of this orthotope are the points for which all parameters
are at extreme values (positive or negative extremes), i.e., My e{-1,1},
i=1,2, ..., k. See Fig. 1. The number of these vertices is 2k and

they are, for convenience, uniquely indexed by ¢r, r e Iv’ where

1,40, 2 ..., 2. (4)
Thus, the set of vertices is given by
R, = {o'|r eI} ; (5)
v - v

This numbering scheme will allow us to identify a vertex by the number r
only.
Let Rc be the constraint region, illustrated in Fig. 1, defined by

m, functions gi(O) and given by

A
R, = (8] g(¢) 20, forall 1 eI}, (6)



where
1801, 2, o, m ) | M

Worst-case Design
For a worst-case design [1,2], sometimes called a design with 100%
yield, it is required that all design outcomes satisfy the

specifications, i.e.,
R @« R_. (8)

If the constraint region Rc is one-dimensionally convex [7], it is
sufficient that all vertices of Rs belong to Rc to guarantee that (8) is

satisfied, i.e., it is sufficient to have
R. = R_, (9)

where, formally,

0

R tole = o + By, uy €l-1,10, 12 1,2, oou, KD (10)

v
Bandler and Liu [8] and Brayton et. al. [11] have considered the
implications of one-dimensional convexity for certain classes of
circuits.

The foregoing discussion leads to the following nonlinear
brogramming problem for worst-case design involving, in general, both

centering of ¢0 and optimal assignment of ¢:
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r minimize C(¢0, €)
0
AR

WCD { subject to

gi(g”) 20, forallieI andallreI, (11)

where C is a suitable cost function and the constraints (11) are an
explicit formulation of the constraint (9). The total number of
constraints involved in WCD is m, X 2k. The one-dimensional convexity
assumption allowed us to have this finite number of coﬁstraints rather
than the infinite number of constraints implied by (8).

Methods for solving nonlinear programs are well developed in the
literature. We simply note here that efficient evaluation of the
constraints, rapid determination of active constraints as well as the
use of gradient techniques in the search for the optimum values of ?0
and € are computationally highly desirable.

The active vertices at the worst-case optimum, i.e., at the solution
of WCD, are those which lie on the boundary of Rc. The set of active

vertices is given by
s. 8 {r|g.(¢") =0, re I, icI} (12)
av ~ Bi'¢ ! v’ c’

See Fig. 2 for an illustration of a worst-case design.

Yi L T 100

When the yield is allowed to drop below 100% we have Re & Rc‘ An

appropriate nonlinear program in this case is



, minimize C(¢0, €, u)

0 ~
¢, €
INP 4 subject, for example, to
1% e W 2Y (13)

where YL is a yield specification. A design with yield < 100% is
depicted in Fig. 2. '
Again, this nonlinear program is to be solved for optimum values of
0

¢ and e. It is not necessary that all components of ¢0 and € be

~ ~

allowed to vary. Some of them might be fixed. The constraint on yield
might be removed if the yield is represented in the cost. This case
might arise, for example, if the distribution of outcomes is fixed and
?0 is allowed to vary in order to meet maximum yield. Although design

constraints do not seem to appear explicitly in YNP . they . are all

implicitly accounted for in the consideration of yield.

Approximations to R

Unlike optimization problems in which a single point is of interest,
tolerances and uncertainties create a region of interest. The solution
is usually characterized by several critical points or regions so that
more information about the constraint region is required. Under the
foregoing assumptions it seems reasonable to assume that for a high but
less than 100% yield the active vertices determined by a worst-case
design will indicate regions where constraint violations are most
likely (see Fig. 2). Accordingly, our interest mgst be directed to the
active vertices as locations for centering reliablé approximations to

the boundary, which is the subject of the foilowing section.
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III. INTERPOLATION BY QUADRATIC POLYNOMIALS

Worst-case design, yield analysis and optimization involve a mass of
calculations; Inadequate information on cost functions, component
distributions, model uncertainties, etc., already hinders precise design
solutions. Consequently, multidimensional approximations to design
constraints appear to be a computational necessity without, it is felt,
any significan£ sacrifice in design accuracy.

An approximate representation of a function g(?), typically a
constraint, using its values at a finite set of points ? is possible.
These points are called nodes or base points. Interpolation is adopted
since it is not only a simple approach to approximation but also because
it requires relatively few actual function evaluations. In general,
interpolation can be done by means of a linear combination of the set of
all possible monomials [12,13]. A monomial in f of the order m is given

by

m
0(0) = (0) () Sl (0, I v =m, (14)

whére the integers Yi >0, i =1, 2, ...y k.

Since the accuracy of the approximation depends upon the size of the
interpolation region, the critical parts of Re may not be covered by a
single interpolation region. Thus, the use of more than one

interpolation region will be discussed.

The Quadratic Polvnomial

A quadratic polynomial in k variables can be written as



P(g) = a1(¢1)2 + a2(¢2)2 + el + ak(¢k)2

L L P L L F A SRR M L P L
+ aN-k¢1 + aN-k+1¢2 + e +.aN—1¢k + ay | (15)

where

N = (k+1)(k+2)/2 o (16)

is the number of monomials and at the same time the number of the
unknown coefficients ag, 85y .-y Ay In order to find these
coefficients, the values of P(¢) at N base points ¢b are required. By

setting
P(ot 1 1
gb)=g(gb),i=1, 2, v, N, (17)
a set of N simultaneous linear equations is constructed. A solution for
this system exists if the base points are degree-2 independent [14]7. A

set of N points is said to be degree-m independent if there exist no

constants Bj, except BJ =0, j=1,2, ..., N, such that

8. 0(63) = 0, - (18)

where ¢ is the monomial given in (14).
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S i B Poi
Suppose that the function g(¢) is to be approximated at a particular

region in the parameter space. We identify this interpolation region R

through a "center" of interpolation ; and a step size §. We define,

accobdingly,

nup

R2 (0l 1oy -0l <8;,1=1,2 ..., k) (19)

and require.that the base points should satisfy
€eR,i=12, ..., N. ' (20)

This requirement is satisfied if the set of base points is given by

1 .2 N : -
[gb o gb] z 9[91 —Jk 1}] + [2 ® .e 6] , (21)

~

where D is a k x k diagonal matrix with elements si’ 0 is the zero

vector of dimension k, 1

~

kis a kxk unit matrix, B is a k x (k(k-1)/2)

matrix defined by

1 2 L

§ = [gb Eb ces Eb] ’ (22)
in which
L = k(k-1)/2 , - (23)

where ug are randomly selected such that

wWerR ,3=1,2, ...,L. (21)



See, for example, Fig. 3.
This choice of base points preserves one-dimensional convexity/
concavity of the approximated function, since there are three base

points along each axis (see Appendix).

P ' ial B i v

In solving the nonlinear program WCD the values of the constraints
and their derivatives at the vertices are required. Here, we develop an
efficient technique for evaluating approximations to the constrainﬁs
along with their derivatives for subsequent use in ‘conjunction with
gradient optimization methods.

The technique exploits simple properties of a quadratic
approximation. The following two equations are used to obtain the
polynomial value and its gradients at any vertex ¢r using values at

~

another vertex ¢s.

T T :
P(oT) = P(4%)+(47-0%) ¥ P(4%) + 3 (67-4%) B (47-¢°) (25)
v P(eT) = ¥ P(e%) + H (8" - ¢7), (26)
where
a/a¢1
v & |asa0 (27)
~ 2
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and

Hdvolp (28)
is the Hessian matrix for the quadratic approximation.
Suppose ¢Jr and ¢s are adjacent vertices, i.e.,
r s .
¢ = ¢+ Zei e » v (29)

where ei is the unit vector in the ith direction. In this case (25)

and (26) reduce to

P() = P(4%) + 2, V. P(4%) + 26 H,, (30)

ii *

TR =T PG+ 2 Hy 6D

where Vi is the ith row of Y, Hii is the ith diagbnal element of g and
Ei is the ith column of g.

Different approximations may Dbe ‘considered in diffehent
interpolation regions. To this end some relevant notation is

introduced, as follows.

Let

L)
ne

1] 68; 2e5}, | (32)

ne

(] e >} (33)
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and the number of elements of I6 and Ie be k6 and ke’ respectively. In
an effort to describe the minimal number of interpolation regions Nin
which collectively contain all the vertices we consider each element of

Ie in.such a way that

ke : v

Nin = 2 . (34)

and (see, e.g., Fig. 4) that the centers of interpolation -;1 are
associated with ¢ ¢ R_ through

o = o0 + P(p" - ¢0) ’ (35)

where the projection matrix P is the diagonal matrix

- . -

Py
P2
pé (36)
i Pi |
and where
0, i€ I6
b, = { . | (37)
1, i€l ‘
€ .
A suitable numbering scheme for identifying vertices is (7]
r
k p.+10 .
r=14+ I [—%—~J21'1, u; e {-1,1}, (38)
i=1



so that adjacent vertices (i.e., vertices different in only one

parameter) are described by
r=:s+ 21-1 . » - (39)

An analogous numbering scheme for interpolation regions is given by

r
k p.+1 le-1 r
z=1+_zpi-32:--2, , oy €1=1,11, (40)
i=1
where
i
i = I p.. (41)

Intuitively, ie is a renumbered index derived from i and the projection
components pj to include only the elements of Ie in such a way that a
doubling of the number of interpolation regions occurs for every such

element. For example, if Py = 1, i=1, 2, ..., ke'we have

-1
2" ey, (42)
since ie = i follows from (41).
Since a given rth vertex belongs to a particular interpolation
region % given by (40) we can, without ambiguity, let

PY(s") (43)
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where PL(¢) is the polynomial constructed for the &th interpolation

region. With this notation we rewrite (30) and (31) as

r _ ps s 2
P* = P° &+ 2¢ vy P° + Zei Hii , (uu)
vpel =v PS4+ 2, HY, (45)
~ ~ 1 ~1

where the superscript % identifies the relevant components of H (defined

earlier) and where r and s are related by
p=s+ 27, i I, | (46)

implying that ¢r and ¢§ are adjacent (see (29)) and belong to the same
interpolation region, viz.,

r, s e Ii e il ieI, ¢. € R}, ECYS

where Iv is given by (4) and-ﬁn is the &th interpolation region.

A i P i E tion (APE

This algorithm is illustrated in Fig. 5. The figure indicates two
situations in three dimensions. Polynomial and gradient evaluations are
made during each iteration at corresponding vertices in certain
interpolation regions, starting with one vertex per region. New
vertices are systematically considered in successive iterations, their
number being doubled until the candidates have been exhausted.

This algorithm assumes that quadratic polynomial values P along with
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corresponding 7P associated with a subset Ip of the Nin available

interpolation regions are to be computed. The required subset will

generally be determined during worst-case design in accordance with

‘candidates for active vertices for the cohstraint under consideration.

Comment

Comment

Step 3
Comment

Evaluate P and vP° for all s ¢ I, where

I ={i|i= min j, & € Ip} .
.Eil
J€4y
This is an initialization of the set of vertices, one vertex
per interpolation region being considered, as required to start
the computation of the polynomials and their gradients. Each

vertex selected is the closest possible to the origin.
J+ I, !
J is a working set of indices, initialized here to correspond
to all those designable parameters which can vary within each
interpolation region. ‘

If J = @ stop.

This step tests whether there are any (remaining) candidates in
J. If J is empty polynomials at all the vertices within the

considered interpoiation regions have been evaluated.

i « min j.
jed

This orderapg process selects the index i corresponding to the
parameter to be varied in the following steps.
T « € + €4

G « T H® for all 2 ¢ I_.
~1 ~1 P
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Step T For all s e 1

Pr7+Ps+TviPs+e. Gt

i Tii?

ZPr « ZPS + 9;,

where r and % are given by (46) and (40), respectively.

Comment The values of the polynomials and the cérresponding gradient
vectors are calculated at all appropriate adjacent vertices.
The number of vertices at whichievaluations have been made are
thus doubled in this step.

Step 8 I« IU{r| r=3s8=+ 21-1, s ¢ I}.

Comment The set of vertices already considered is updated.

Step 9 J « J\{i}.

Comment The index i, already exploited, is removed from the working»set‘
J.

Step 10 Go to Step 3.

The computational effort required for considering all possible
vertices, i.e., all Nin available interpolation regions, compared to

that required for one vertex only is shown in Table I.

IV. WORST-CASE DESIGN ALGORITHMS

The steps taken by these algorithms are shown in detail for the
two-section transmission-line transformer example given in Section VII
(refer to Fig. 10).
P 1: _Si I i R
Step 1 Choose initial values for ?O, € and f 2 €.
Sten 2§+’
Step 3 Choose N base points to satisfy (21).
Step 4 Evaluate the constraint functions at these base points.

- 18 -



Comment

Comment

Step 9

Comment

Solve (17) to obtain the coefficients of the interpolating
polynomials.

Starting with the current 90 and € solve the nonlinear program
WCD for optimal values 90* and f" employing_the constraint
approximations defined by Step 5.

Since values of design constraints as well as their
sensitivities at vertices are required in solviné WCD, the

efficient technique for polynomial evaluation at vertices is

used, namely, APE. Obviously, Ip'= {1} for all constraints,
since there is only one interpolafion region.

¢0 - ¢0‘ and € « e*.

If |¢g -%.1 <1.58 foralli=1, 2 ...,k go to Step 10.

This tests whether the new nominal point go_is close enough to
? to ensure confidence in the accuracy of the approximations.
Until 6i 2'€i for all i = 1, 2, ..., Kk, set-Gi + uﬁi. Go to
Sfep 2.

Here, we ensure that all the vertides are contained in the
interﬁolation region before répeating Phase 1.

Stop if f is sufficiently small.

§ « §/U.

If § 2_5 go to Step 2.

This check ensures that a single interpolatibn region is still
applicable. If it is, Phase 1 is repeated.

Go to Phase 2.
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P 2:  Multi I ion R

This phase of the worst-case design problem is executed if greater
accuracy of the solution is required than is possible with the single
interpolation regién employed in Phase 1. The efficiency will be
improved if suitable candidates for active constraints are determined so
that not only would fewer interpolations be necessary bUt'also4fewer
constraints would enter WCD. Step 1 of the presént algorithm,
therefore, calls for executing Phase 1, and collecting information about
candidates fof active vertices Iav and corresponding candidates for

: . s :
active constraints I , s ¢ I_ .
ac av

Step 1 Choose Gac as a small positive number and execute Phase 1 to get
A s .
Iy = {s | Pl <8, 1€ I, 8¢ Iv}’
s A g. s
= P i
Iac {i] 1 £8 o1 eI, sce Iv}'

Comment The set Iav is termed the set of candidates for active
vertices. The set I:c identifies the corresponding candidates
for active constraints associated with the sth vertex.

Step 2 Use (35) to locate centers of interpolation'§2 for all f € Iav'

Comment Note that a subset of all possible interpolation regions 1is
hereby identified because Iavc Iv‘

Step 3 For each interpolation region'ﬁl identified by‘§2 and §
(a) Choose N base points to satisfy (21),

L s
(b) Iac « U [3 Iac
ser

(c) Evaluate g; for all i e I:e at the N base points ,
(d) Solve (17) to obtain the coefficients of the corresponding

polynomials for all i € I;c.
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Comment

Step U4

Comment

Step T
Step 8
Step 9
Step 10

The set I:c identifies all the constraints to be evaluated in

E”.

Starting with the current ¢0 and € solve the nonlinear program
% #
WCD for optimal ¢0 and ¢ employing the constraint

~

approximations defined by Step 3; Algorithm APE is called for

~each constraint i to be evaluated by setting Ip(i) « {zlielgc}.

Note that the set It replaces Iv and I:c replaces Ic, thereby
reducihg the computational effort. Furthermore, Ip(i) which

becomes Ip on entry to APE concentrates evaluations in critical

interpolatién regions. (See the Comment following Step 2.)

* *
¢0 + ¢0 and € « ¢
) L L
ieI , sce Iv}’

s
I v « {s] Pi S'Gac’ ac

a
S
ac

. s . 2 [
I « {i IAPi S'sac’ ie Iac’ S € Iv}.
The set of candidates for active vertices and associated
candidates for active constraints is updated by examining all
the constraints used during Step U. Refer to the comment
following Step U.
If, for any s € I, |¢§ - $§l > 26j for any j go to Step 2.
Stop if 6 is sufficiently small.
§ « 8/,

Go to Step 2.

V. YIELD ESTIMATION AND YIELD SENSITIVITIES

For a uniform distribution of outcomes inside the tolerance

orthotope, computation of hypervolume plays the basic role in yield

evaluation. A formula for the nonfeasible hypervolume (hypervolume

outside the constraint region but ihside the tolerance orthotope) is
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hereby derived. It is based upon linear cuts of the orthotope.

The Linear Cut and E
Based upon either 1inéérization or intersections (as elaborated on
later in this section) of the hypersurface g(¢) = 0 with the tolerance

orthotope Ré, we construct the linear cut
qg¢-c20, , (48)

where q is a column vector of k components and c is a scalar. We will

~

derive a general expression for the nonfeasible hypervolume defined by

this linear cut and Re, denoted by V(R), where
R = {Q | g(g) <o} n Re . - (49)

Define a reference vertex

r 0

¢ = v Ey - 6O

(<o)

where

1]
-
N
-
~

r .
;= -51gn(qi) , 1 (51)

The general formula for the hypervolume can be written as

k

2 s

V= —‘k—;TkT a ||z =Y 6|, (52)
j=1 J s=1

where

€ .
~1 8 r
o s (53)
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lwf-ull/z72 o (54)

<
"
"o~ X

i=1

and uj is the distance between the intersections of the hyperplane qT¢ -

¢ = 0 and the reference vertex ¢r along an edge of Re in the jth
direction. It is to be noted that ss is positive if and only if the
vertex ¢s violates the linear cut (48).

Fig. 6 illustrates the evalﬁation'of hypervolumes for two cases when

k = 3.

Hypervolume Sensitivities

The hypervolume sénsitivities can be expressed as

k .
k 3da 2 s k-1 s
3 i :
'lo =-l1<-!- I ol I ap B+ Alk £ (-1)° (%) —-360 , (55)
3¢ j=1 8¢1 p=1 s=1 3¢i
p#J
k
2 s k-1
Vv oV k
%¢e i 0 a, . i’i
a¢i i s=1
where

1 - | |
A = ki TKT aj ’ (57)

B= 1 (-1)° (%) | | (58)
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and

0 if s =0,
- . ! | (59)
a¢i k ei S r _a_a_i S

T > Iuj-ujl 0 if 8§ > 0.

J=1 (aj) 204

It should be mentioned that the hypervolume and its sensitivities are
defined when a; * for any i, since the limit exists. But, the

e s s . s e o
sensitivities are discontinuous whenever a vertex ¢ satisfies the

equation
g 8% -c=0. o (60)
The Linear Constraints Case

Let the constraint region be defined by the m linear constraints

g,(¢) =¢q -c 20,2=1,2 ..., m (61)

Assuming no overlapping of nonfeasible regions defined by different

constraints inside the orthotope Re, i.e.,

R n R, =0, (62)
1yyy
where
A
Rg = {2 ¢ Re | gz(f) <0}, (63)
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the yield can be expressed as

m

Y=1- % VR)INR) . (64)
. =1

Knowing that

V(R ) = 2“ﬁ ey | (65)

m [} '
AL -zi’—g/[z“ kaej], (66)
™.

m m L
%%—-: %—- r v op A0 AR (67)
i i =1 =1 i J=1
L
where V denotes V(Rz). The linear constraints can be used as linear.

L
cuts directly. Hence, the nonfeasible hypervolume V and its
sensitivities can be obtained using (52), (55) and (56) for each

constraint and where

Q
]

_.r r 2

r

. _
L ,.0 r L, L
= ¥ i g (5 +wy €) -l /ay, (68)

i=1
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8az

i | = . a* L 6
0= Y5 ay / - (69)
304 .

If qg = 0 we have am =z o, however; a limit exists as indicated after

J
(59).

The Quadratic Constraints Cagse

Consider a vertex ¢r detected to be active w.r.t. a quadratic

constraint 82(°)*Z 0 after the worst-case design process (see Section
IV). If the tolefances are allowed to increase slightly beyond their
worst-case values, intersections between the orthotope edges passing
through ¢p and the hypersurface gz(?) = 0 will arise. The number of
these intersectibns is k, which is the number of edges passing through
o, if
2g, (47)/20, # 0, for all j. (70)
In order to find the intersection point along the jth edge, or its

extension in the direction -ugej, where

ej is a unit vector in the jth

direction, we express g2(¢) = 0 as

(¢j)2

+ 205 £, (075 030 wes B3qr Ogpqr eees b)

+ ﬂz(‘b?’ ¢gr cesey ¢g_1v ¢§+1""" ¢£) =0 y ‘ (71)

where 52 and n, are constant functions and ¢j is the only variable.

Hence, the point of intersection is (¢2, ¢g, veey xg, ceey ¢E), where
L /2 r,.r 3
Aj = =g t YE, =y uj(cbJ - Xj) >0, (72)
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is a real root of (71). The condition imposed on the root insures that

it is in the direction -ugej w.r.t. ¢7. If both roots lie to this

~

direction, the one closer to tr is chosen.
The equation in 9 of the hyperplane, representing the linear cut,

which passes through these k points of intersection is |

[ LR ¢5 “es Oy 1]

L

| R SR o, 1

$°q - = det r . - : =0, (73)
6 Ag e b

N =

r r
K2 o5 A
and ¢r is a reference vertex for this cut.
The yield sensitivities are calculated according to the gradients of

the k intersections.

;%i = - zi“ + ] 2, ;;i-- ;E&- L1435, (74)
i i zéf;_nz 1 i |
3¢i =0 . (75)

Thus, if ag is the distance from the vertex ¢P to the point of
intersection with the &th constraint along the orthotope edge in the jth '

direction, then

L r,r 1 - '
= - 6
O.J uj (¢j )\J), (7)

= -y , 1 £3, (77)
a¢§ J 20y
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aaz

i _.r
a¢° "N
J

(78)

Equations (76), (77) and (78) are substituted directly into formulas
(52), (55) and (56) whichever is relevant. Yield and its sensitivities
are also obtained from (64), (66) and (67)., |
Overlapping Constraints

We discuss in this section an approaéh which is directed at solving
some of the problems arising from constraints overlapping within the
tolerance region. since the analytical formulas for yield and yield
sensitivities assume nonoverlapping linear cuts (see (62)), methods to
avoid‘describing the boundary of the constraint region by overlapping
cuts are required.

A single function of the least pth type [9] can be used to describe
the boundary of the feasible region if the boundary is defined, as is

usual, by more than one constraint. The least pth function is given by

o , M=0 |,

R MLz (g ()M, ms0,
ied ~
| where
M = min g (¢) , ' (80)
Cied - :

(81)

{ilgi(¢) <0,ieI} ifrM<O,
J:{ - :

Ic iftM> 0,

p = -q sign M,
and p is given to be > 1.
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The constraiht G > 0 exactly describes ﬂhe boundary of the
constraint region Rc'

In order to define a linear cut based on G, we can either linearize
G at an appropriate point or use intersections of the hypersurface G = 0
with the orthotope edges. A possible implementation is suggésped in thé

éppropriate steps of the followihg algorithms.

VI. ALGORITHM FOR YIELD LESS THAN 100%
It is assumed that Phase 1 and Phase 2 of the worst-case design
algorithm have been suitably executed. Information has, therefore, been

gathered relating to active vertices Iav’ associated active constraints

I:c at the sth vertex and also polynomial approximations Pi(¢)

corresponding to the (generally) nonlinear gi(¢). The 1least pth

© .8
function Gs(Pi(?)’ I

o? p), s € Iav’ can be formulated according to the

notation introducéd by (79) and is associated with the sth vertex.
# #
Note also that optimal values 00 and ¢ are known for worst-case
design. See Fig. T.

. .
Step 1 For x, > 1 set e, + i=12, ..., k.

1 TR Rt
Comment This initializes the yield to be less than 100%. Thevnci are

chosen such that all active constraints are violated, as

indicated by Fig. T(b).
0  O%
Step 2 ¢ + ¢ .

~

' # *
Step 3 Solve the nonlinear program YNP for optimal values 00 and e

employing algorithm.YAN (which follows) for evaluating yield

and yield sensitivities.
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é%

D ic Y | A is (YAN

This algorithm is called for each evaluation of yield and its

sensitivities as required during optimization.

Step 1

Comment

Comment,

Step 3

Step 4

Step 5
Step 6
Comment

s s

S« {s ]| se Iav' Gs(Pi(? ), Iac’ p) < 0}. |

S is a working set of indices of references vertices (1, 2 and
3 in Fig. 7(a)). We consider only those vertices which
currently violate the design constraints for the nonfeasible

hypervolume evaluation (1, 2 and 3 in Fig. T(b)).

V.0,V +0andV <0, i=1,2 ...,k

v, V4>i anz Vei are tolbe updated to store the total nonfeasible
hypervolume and its sensitivities w.r.t. QO and €
respectively. |
r « min s.

sS€S

This ordering process selects the index r corresponding to the
reference vertex to be considered.

Fof j=1,2, ... k, execute Step 5 and Step 6.

In this loop we consider the edges of the Qrthotope passing

through ¢ as indicated in Steps 5 and 6.

~

Find xg, for all g € Igc, using (72).
If Ag is undefined for any g € Igc’ go to Step 14.

The hypersurface Gr = 0 has an intersection Qith an orthotope
edge if Pl has an intersection with the edge for all g e Igc.
We go to Step 14 if such intersections are not found for all k

edges.

If I;c contains more than one element, go to Step 10.
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In case I:c contains one element only, % say, there is no need

to consider Gr’ since Gr = Pz'

r r, 0O o X
Find of and 2aj/ae;, 1, 3 = 1, 2 ..oy Ky where Igc = {2},

using (76), (77) and (78).

Notice that we wili identify the cut by‘index of.the reference
vertex r rather than using 2.

Go to Step 12.

ag + max ag, j=1,2, ..., k, where ag is obtained by (76).

ge1t
ac

The furthest intersection, from ¢r, among the intersections of

PL = 0, & ¢ I:c’ corresponds to ‘the intersection of the
hypersurface Gr = 0.

r

J

Set q© and ¢’ for the rth linear cut according to (73).

Find 3a /3¢g, i, 3 =1, 2, ..., k, using (77) and (78).
In general, the explicit formulation of the linear cut is not
necessary since information about “S is the only requirement
for hypervolume calculation. But this cut will be used later
in the process as a default if less than k intersections are
obtained (Fig. 7(d)).
Go to Step 17.
If this is not the first yield evaluation, go to Step 16.

r r .r '

a - Y Gr(Pl’ Iac’ P),

r r r r\T r
¢ ¢ Gr(Pm’ Iac’ P) - (? ) Q-

Initially if less than k intersections exist, linearization at
the vertex ?r is used to provide a default cut. Cut b in Fig.
7(b) is an example.

Find of and 3a”

J J
No updating of thé rth cut is performed.

/a¢g using (68) and (69).
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<3
4
<
+
<
3

[

]
—_
n

cees k,
r
V «V +V ,1=12, ..., k,

where V' is given by (52), V: by (55) and VZ by (56),
respectively. : ' :

Step 18 S « S\{r}.

Comment The index r, already exploited, is removed from the working set
S.

Step 19 If S # @ go to Step 3.

Comment This step checks if all reference vertices have been
considered.

Step 20 Y « 1 - V/V(Re),

aY/a¢g eV, VR, 11,02, K
i €

BY/aei « [V/si - Vei]/V(Re), i=1,2, ..., k,

where V(Re) is given by (65).

VII. EXAMPLES

WMML@M&L

Consider the two-section 10:1 quarter-wave lossless transmission-
line transformer used by Bandler et. al. [1]. The specifications and
results of the worst-case tolerance optimization problem Qf the
characteristic impedances Z1 and Z2 over 100% bandwidth are shown in
Table II for two different objective functions. The constraint region
and the resulting optimum solutions in two éases are shown in Fig. 8 and
Fig. 9. An equal value of 81 énd 32 was used. The figures show the
interpolation regions and the resulting approximations for the
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constraint boundary. The results obtained are ébnﬁrasted with thé
fesults obtained in [1]. Furthermore, the steps‘taken by the worst-case
design algorithm using the objective function C1, shown in Table II, are
detailed in Fig. 10.

Subsequently, the approximations obtained at the two active vertices
. for the worst-case problem having the objective funétion C1, shown in
Table II and Fig. 8, were used for yield optimization. This problem is
denoted PO. A rough estimate of § used for stopping Phase 2 was

obtained in the following way. For a yield constraint
Y > 90%

the nonfeasible hypervolume (it is area in this example) is given

approximately by
A= (1 - 0.9)(2e1)(252) .

The area cut off by each constraint is

1
" . = .
A > A

But, assuming equal intersections a = a, = a,,

A'

"
N
R

Hence,

a = /0.1(261)(252) = 0.27 ,
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where €4 and €5 are the worst-case absolute tolerances. The

approximation with § = 0.1 was used for solving problems:

minimize 1/e1 + 1/e2 ,

P1
sub ject to
Y > 90% ,
P2 minimize (1/e1 + 1/52)/Y

assuming a uniform distribution of outcomes betweeh tolerance extremes.
The optimum solutions for P1 and P2 are shown in Table III and
contrasted with the worst-case solution PO in Fig. 11. The program
FLNLP2 [15] was used for solving the resulting nonlinear programming
problem. Since a convex constraint region appears in this problemn, the

values of yield obtained are lower bounds for the true yields.

T LC.

A normalized three-component lowpass ladder network, terminated with
equal load and source resistances of 1 @ is shown in Fig. 12. The
circuit was considered for worst-case design by Bandler, Liu and Chen
[1]. Although this filter is symmetric a three-dimeﬁsional
approximation was required in order to perform the yield technique
described before.

Using an equal step size § for all components, a worst-case design
was first obtained with final § = 0.01.. The base points used are given

by (21) with
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0.5 -0.5 1.0
B =|-0.5 0.5 1.0

0.8 0.8 1.0

consistent with the vector of components

The specifications and the objective function are given in Table IV.
The convergence of the quadratic approximation coefficients as the step
size ¢ is reduced is shown in Fig. 13 for the insertion loss constraint
at the frequency point 2.5 rad/s. The,coéfficient au is not shown in
the figure. Its value is close to zero and hence the normalized value
is highly oscillatory. Corresponding parameter values are shown in Fig.
14 as a function of execution time. At the worst-case opﬁimum, given in
Table IV, the active frequency point constraints are 0.55, 1.0 and 2.5
rad/s.

Now, consider the problem given by
0 0 0
minimize L1/e1 + L2/e2 +C /eC ,

subject to

Y > 96% .
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The quadratic approximation with 6 = 0.04, which was used in this
problem, is shown in Table V after and before averaging symmetric
coefficients. The diagOnél elements of the Hessian matrix, as defined
by the coefficients of the approximating polynomial, suggest a one-
dimensionally convex constraint region. Symmetry between L1 and L2 was
used to reduce computation in finding the values and the gradients of
the intersections between the orthotope edges and the quadratic
constraints. The results are shown in Table IV and in Fig. 15. The
tolerance for the capacitor €c Was approximately doubled, with respect
to its value for the worst-case design, by allowing the yield to drop to
96%. (A Monte Carlo analysis at the solution indicated 96.6% yield by

both the exact constraints and by the approximate ones).

Iwo-section Waveguide Transformer

The two-section waveguide transformer, investigated for a minimax
(equal-ripple) response by Bandler [16] was selected to perform a
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