INTERNAL REPORTS IN

SIMULATION, OPTIMIZATION AND CONTROL

No. SOC-174

DISOPT3 - A USER-ORIENTED PACKAGE FOR NONLINEAR
CONTINUOUS AND DISCRETE OPTIMIZATION PROBLEMS

J.W. Bandler and D. Sinha

July 1977

FACULTY OF ENGINEERING
McMASTER UNIVERSITY
HAMILTON, ONTARIO, CANADA

AVAILABILITY OF REPORTS

In addition to extensive publications by G-SOC members, a series of reports covering simulation, optimization and control topics is published by the group. Preprints or extended versions of papers, reprints of papers appearing in conference proceedings, fully documented computer program descriptions including listings, theses, notes and manuals appear as reports.

A free list of SOC reports including numbers, titles, authors, dates of publication, and indication of the inclusion of computer listings is available on request. To offset preparation, printing and distribution costs the charges as noted must be made*.

Any number of these reports may be ordered. Cheques should be made out in U.S. or Canadian Dollars and made payable to McMaster University. Requests must be addressed to the Coordinator G-SOC. Reports will not normally be sent out until payment is received.

Some reports may be temporarily restricted for internal use only. Some may be revised or ultimately superceded. Availability, descriptions or charges are subject to change without notice.

Some of the 174 reports published up to July 1977 are:

SOC-82	Optimal Choice of the Sampling Interval for Discrete Process Control	Mar.	1975	41	pp.	\$5
SOC-113	Notes on Numerical Methods of Opti- mization with Applications in Optimal Design***	Nov.	1975	396	pp.	\$150
SOC-121	Computer Programs for Control Applications***	Feb.	1976	53	pp.	\$25
SOC-145	The Use of Versatec Printer Plotter and Variable Formats in Computer Plotting Routines***	Dec.	1976	49	pp.	\$60
SOC-151	FLOPT4-A Program for Least pth Optimization with Extrapolation to Minimax Solutions***	Jan.	1977	97	pp.	\$60
SOC-174	DISOPT3 - A User-Oriented Package for Nonlinear Continuous and Discrete Optimization Problems***	July	1977	182	pp.	\$150

Subscriptions and discounts are available.

Special reduced rates will be quoted for multiple copies.

^{***} Include FORTRAN listings. Source decks usually available. Details and prices are contained in the 174 page SOC Catalog (\$10.00).

DISOPT3 - A USER-ORIENTED PACKAGE FOR NONLINEAR CONTINUOUS AND DISCRETE OPTIMIZATION PROBLEMS

J.W. Bandler and D. Sinha
July 1977

ACKNOWLEDGEMENTS

The authors would like to thank Dr. C. Charalambous, Department of Systems Design, University of Waterloo, Waterloo, Canada, for making available prepublication copies of his manuscript of his important paper published in <u>Mathematical Programming</u> [2]. Discussions with John Hickin, Department of Electrical Engineering, McMaster University, leading to the idea of the pointers are acknowledged here.

TABLE OF CONTENTS

		Page
Abstract		1
Chapter 1	INTRODUCTION	2
Chapter 2	USING DISOPT3	4
	Example 1: the modified banana shaped function	7
Chapter 3	OPTIONS IN DISOPT3	20
	Only ONE discrete solution or are ALL required?	20
	VERTICES to be checked for an UPPER BOUND?	20
	TOLERANCES?	21
	Alternatives for PRINTING results?	22
	Check the user's definition of the gradients?	23
	Hold a DISCRETE VARIABLE constant?	23
	Branching on the FIRST or the LAST variable?	24
	Other options?	24
	Example 2: the Beale constrained problem	27
	Example 3: the voltage divider problem	74
Chapter 4	UNDERSTANDING DISOPT3	88
	Use of pointers to arrays DIS, IAR and X	89
	Storage of the essential information about the	90
	discrete variables	
	Implementation of the branch and bound algorithm	90
	Optimization with some variables held fixed	92
	The feature of ONE or ALL discrete optimal	92
	solutions	

Chapter 4	Subroutine DISOPT3	93
(cont'd)	Feasibility check	93
	Continuous solution of the nonlinear programming	93
	problem	
Chapter 5	SOME RESULTS WITH DISOPT3	101
	Example 4: the Beale problem	103
	Example 5: the Rosen-Suzuki problem	114
	Example 6: the Wong problem 1	127
	Example 7: the Wong problem 2	140
Appendix 1	LISTING OF SUBROUTINES BOUND, DISOPT3, FIND,	154
	GRDCHK3, LEASTPD, OBJ, QUASID AND UOPT	
	Subroutine BOUND	155
	Subroutine DISOPT3	157
	Subroutine FIND	166
	Subroutine GRDCHK3	168
	Subroutine LEASTPD	170
	Subroutine OBJ	172
	Subroutine QUASID	173
	Subroutine UOPT	178
Annandiy 2	DEPEDENCES	182

LIST OF FIGURES

Figure		Page
1	Tree structure for Example 1	8
2	Tree structure for Example 2	28
3	Tree structure for Example 3	75
4	Calling sequence for all the subroutines	88
5	Updating IAR to add a node	91
6	Basic logical structure of subroutine DISOPT3	95
7	Flow chart for subroutine DISOPT3	96-98
8	Charalambous algorithm as implemented in	99,100
	subroutine UOPT	

LIST OF TABLES

Table		Page
I	Summary of results for Example 1	8
II	Default values	26
III	Summary of results for Example 2	28
IV	Summary of results for Example 3	75
V	Comparison between the results of DISOPT3/DISOPT	102
VI	Performance of DISOPT3 with different options	102
VII	Results of some tests with DISOPT3	102
VIII	Comparison between the results of Charalambous/	104
	DISOPT3 on Example 4	
IX	Comparison between the results of Charalambous/	115
	DISOPT3 on Example 5	
X	Comparison between the results of Charalambous/	128
	DISOPT3 on Example 6	
XI	Comparison between the results of Charalambous/	141
	DISOPT3 on Example 7	

DISOPT3 - A USER-ORIENTED PACKAGE FOR NONLINEAR CONTINUOUS AND DISCRETE OPTIMIZATION PROBLEMS

J.W. Bandler and D. Sinha

Abstract

A package of FORTRAN subroutines called DISOPT3 for solving continuous and discrete, constrained or unconstrained general optimization problems is presented. The method used for arriving at the discrete solution involves conversion of the original constrained problem into a minimax problem by the Bandler-Charalambous technique, solving the continuous minimax problem using the latest (1977) Charalambous least pth algorithm, Fletcher's 1972 method for unconstrained minimization and use of the Dakin branch and bound technique to generate the additional constraints. These steps are iteratively implemented until all the discrete solutions have been found. is based conceptually on the DISOPT program developed by Bandler and Chen. All of the desirable features of DISOPT have been retained in DISOPT3 and some more have been added. DISOPT has been used as a yardstick against which the performance and validity of DISOPT3 have been measured. A CDC 6400 computer was used for developing and running this program.

This work was supported by the National Research Council of Canada under Grant A7239.

The authors are with the Group on Simulation, Optimization and Control and Department of Electrical Engineering, McMaster University, Hamilton, Canada, L8S 4L7.

CHAPTER 1

INTRODUCTION

DISOPT3 is a package of FORTRAN subroutines for solving continuous and discrete, constrained or unconstrained general optimization problems. The method used for arriving at the discrete solution involves basically, three steps: (1) Conversion of the original constrained problem into a minimax problem by the Bandler-Charalambous technique [1], (2) Allowing all the variables to be continuous for solving this minimax problem using the latest (1977) Charalambous algorithm [2] and Fletcher's 1972 method for unconstrained minimization [3] and (3) Use of the Dakin branch and bound technique [4] to generate the additional constraints. These steps are iteratively implemented until all the discrete solutions have been found.

DISOPT3 is based conceptually on DISOPT [5,6], a program with similar objectives, developed by Bandler and Chen in 1974. All of the desirable features of DISOPT have been retained in DISOPT3 and some more have been added. DISOPT has been used as a yardstick against which the performance and validity of DISOPT3 have been measured. A CDC 6400 computer was used for developing and running this program.

The goal in developing DISOPT3 was to create an efficient user oriented program. This goal has been amply achieved. DISOPT3 not only incorporates some of the most efficient optimization algorithms but also conforms to the precepts of structured programming. For example, each subroutine performs only one function or some strongly related

functions, the program listing is segmented into logical modules by means of comment cards, the use of GO TO statements is minimal, the logical structures are simple, and last but not least, descriptive comments are an integral part of the program listing enhancing its readability and ease of understanding.

This documentation is so organized that it should be possible to solve problems using DISOPT3 after only reading Chapter 2. Chapter 3 has a discussion of the many available options. Chapter 4 deals with the concepts used in developing this program. Chapter 5 summarizes some results obtained by this program. The program listing and some useful references are appended. The reader and potential user of this package should consult, in addition to the references mentioned already [1-6], the following material dealing with the least pth approach in optimization: the paper by Bandler and Charalambous [7] introducing the least pth approach, some extensions [8-10] and a review article by Charalambous [11].

CHAPTER 2

USING DISOPT3

DISOPT3 may be used for solving a mixed continuous-discrete nonlinear programming problem which can be formulated as follows:

minimize
$$f(x_1, x_2, \ldots, x_N)$$

subject to

$$g_1(x_1, x_2, ..., x_N) \ge 0$$

$$g_2(x_1, x_2, ..., x_N) \ge 0$$

where \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_K or $\mathbf{X}(1)$, $\mathbf{X}(2)$, ..., $\mathbf{X}(K)$ (K.LE.N) are variables that can vary continuously but must assume only certain specified values. These are called discrete variables. Out of the N variables, it is always the first K variables that may be discrete. There are two kinds of discrete variables. The first kind of variable can only assume a finite number of values. The second kind of variable can assume values that correspond to uniformly spaced points on a line, i.e., any value belonging to the infinite set (..., -3a, -2a, -a, 0, a, 2a, 3a, ...) where a is a finite positive quantity. The number a may be called the step size of a uniformly discrete variable. Each of the \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_K can be a discrete variable of either kind (but always the first K out of the N variables must be discrete).

To use DISOPT3 the main program and a subroutine called FUN have to be provided by the user. The main program is used for dimensioning and initializing some variables and for calling subroutine DISOPT3.

Subroutine FUN evaluates the objective function, the constraints and the gradient vectors at a given point X. Example 1, at the end of this Chapter, illustrates these two subprograms as well as the resulting output. According to a convention used in DISOPT3 the objective function is described as the first constraint and must be counted in along with the constraints.

The arrays and variables that are used in the main program and subroutine FUN are described here.

- CONS An array storing the constraints of the problem. The objective function is, by convention, called the first constraint. It must be dimensioned in subroutine FUN as CONS(1) or CONS(NORCONS).
- DIS An array of M + IEXTRA * (N+2) elements that must be dimensioned in the main program. The first M elements of DIS must be initialized in the main program according to the following convention:
 - (a) If a discrete solution is required go to step (b); otherwise, let DIS(1) = 0. In this case M = 1 and skip the following steps.
 - (b) Let I = 1 and J = 1.
 - (c) If X(I) is not uniformly discrete go to step (d); otherwise, let DIS(J) = 1 and DIS(J+1) = the step size of X(I). Let J = J+2. go to step (e).
 - (d) If the number of available discrete values, V(1) ... V(NI), for X(I) is NI, let DIS(J) = NI, DIS(J+1) = V(1), DIS(J+2) = V(2), ... and DIS(J+NI) = V(NI). Let J = J+NI+1. Go to step (e).

- (e) Is X(I) the last discrete variable? If yes, let DIS(J) =
- O. The initialization of array DIS is complete and M = J. Otherwise, let I = I+1 and return to step (b).

To further illustrate this convention, consider the following example. The problem considered has three variables which are discrete. X(1) has a set of values {1.0, 2.5, 3.7}; X(2) has a uniform step size of 1.5 and X(3) has a set of values {2.0, 5.0, 10.0, 15.0}. The correct initialization of DIS would require:

DIS(1) = 3.0 DIS(2) = 1.0 DIS(3) = 2.5 DIS(4) = 3.7

DIS(5) = 1.0 DIS(6) = 1.5

DIS(7) = 4.0 DIS(8) = 2.0 DIS(9) = 5.0 DIS(10) = 10.0 DIS(11) = 15.0DIS(12) = 0.0

GCONS An array of (N, NORCONS) elements storing the gradient vectors of the constraints. For each of the NORCONS constraints there are N elements storing its partial derivatives. It must be dimensioned in subroutine FUN.

IAR An array of 6 * IEXTRA + 4 * N + 2 * NORCONS elements used as working space. It must be dimensioned in the main program.

IEXTRA The default value is 2 * N. IEXTRA is a measure of the space allowed by the user to accommodate the additional constraints generated by the branch and bound algorithm.

IFN Serves as a counter for the function evaluations.

N The number of variables in the problem. It must always be greater than 1.

NORCONS The number of constraints in the problem. The objective function must be counted in along with the constraints.

An array of (10 * IEXTRA + N *** 2 + 15 * N + 2 * N * NORCONS + 10 * NORCONS)/2 elements used as working space. The first N elements store the starting point at the beginning and the solution point at all other times. This array must be dimensioned in the main program and the first N elements should be initialized. It should also be dimensioned as X(1) in subroutine FUN.

An array of N elements storing the best discrete solution. It must be dimensioned in the main program.

Example 1: The modified banana shaped function [5]

Minimize

$$f = 100((x_2+0.5) - (x_1+0.6)^2)^2 + (0.4 - x_1)^2$$

where \mathbf{x}_1 and \mathbf{x}_2 are constrained to be natural numbers.

The optimal solution is

$$f = 0.72$$

$$x_1 = 1.0$$

$$x_2 = 2.0$$

In order to arrive at this solution, many nodes are generated by the branch and bound algorithm. The solution and the constraint added at each node are shown in Table I and Figure 1. The nodes are numbered to reflect the order in which they are generated. A listing of the main program, subroutine FUN and the output are also presented.

TARLE :	Т	SUMMARY	OF	RESULTS	FOR	EXAMPLE	1
---------	---	---------	----	---------	-----	----------------	---

Node number	Upper bound	Objective function	Solution x ₁ , x ₂	Description
0	10 ¹⁰	0	0.40, 0.50	continuous
1	2.12	0.16	0.00, -0.14	feasible
2		2.14	-0.56, -0.61	nonfeasible
3		2.12	0.00, 0.00	discrete
4		0.36	1.00, 2.06	feasible
5		0.72	1.00, 2.00	discrete
6	0.72	0.75	1.26, 2.99	nonfeasible

Fig. 1 Tree structure for Example 1.

	PROGRAM TST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)	MAI	10
C		MAI	20
C	MAIN PROGRAM FOR EXAMPLE 1	MAI	30
C		MAI	40
	DIMENSION DIS(25), IAR(35), X(45), XD(2)	MA I	50
C		MAI	60
	COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP	MAI	70
C		MAI	63
	DATA X(1), X(2)/-1.8, 0.5/	MAI	90
	DATA DIS(1),DIS(2),DIS(3),DIS(4),DIS(5)/4*1.0,0./	MAI	100
C		MAI	110
	N=2	MAI	120
	NORCONS= 1	MAI	130
	CALL DISOPT3 (DIS, IAR, X, XD)	MΛΙ	140
	STOP	MAI	150
	END	ΜΛΙ	160-

	SUBROUTINE FUN (CONS, GCONS, IDCONS, IDVAR, X)	FUN	10
C		FUN	20
C	THE MODIFIED BANANA SHAPED FUNCTION	\mathbf{FU} N	30
C		FUN	40
C	THIS SUBROUTINE DEFINES THE CONSTRAINTS AND THEIR GRADIENT VECTO	RSFUN	50
C	ACCORDING TO THE CONVENTION FOLLOWED IN THIS PROGRAM THE OBJECTI	VEFUN	60
C	FUNCTION IS CALLED THE FIRST CONSTRAINT	FUN	70
C		FUN	80
	DIMENSION CONS(1), CCONS(2), X(2)	FUN	90
C	•	FUN	100
	COMMON /7/ IFN, IND1, IND2	4000	110
C		FUN	120
	A=X(1)+.6	FUN	130
	B=X(2)+.5	FUN.	140
	C= .4-X(1)		150
	D= B-A*A		160
\mathbf{C}			170
C	DEFINE THE OBJECTIVE FUNCTION		180
C			190
	CONS(1)=100.*D*D+C*C		200
C			210
\mathbf{C}	DEFINE THE GRADIENT VECTOR		220
C			230
	GCONS(2)=200,*D		240
	GCONS(1)=-2.*(GCONS(2)*A+C)		250
	IFN= IFN+1		260
	RETURN		270
	END	FUN	280-

INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPT3

INITIAL VALUE OF THE ELEMENTS OF AL ALMIN	=	.10000000E+02
OPTIMAL OBJECTIVE AT NODE 0 (GUESS) EST	=	0.
VALUE OF PARAMETER P IP	=	10
(-LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE	=	. 10000000E+11
ALLOWED FUNCTION CALLS AT EACH NODE MAXIFN	=	1000
ALLOWED QUASID CALLS AT EACH NODE MAXITN	=	15
ALLOWED NUMBER OF NODES MAXNODE	=	1000
NUMBER OF DISCRETE VARIABLES NDIS	=	0
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS	=	1
NUMBER OF UNIFORM STEP VARIABLES NUNI	=	2
TOLERANCE FOR THE CONSTRAINTS TOLCONS	=	10000000E-02
TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS	=	. 10000000E-02
STOPPING CRITERION FOR UOPT TOLHEXI	=	. 10000000E-02
TOLERANCE FOR THE MULTIPLIERS TOLMULT	=	. 10000000E-07
STOPPING CRITERION FOR QUASID TOLX	=	. 10000000E-06
INITIAL VALUE OF THE UPPER BOUND UPBND	=	. 10000000E+11
STARTING POINT FOR THIS PROBLEM X	1 2	18000000E+01 .50000000E+00
X(1) IS UNIFORM STEP WITH STEP SIZE	=	. 10000000E+01
X(2) IS UNIFORM STEP WITH STEP SIZE	=	. 10000000E+01
OPTIONS IN EFFECT		
GRADIENT CHECK AT THE STARTING POINT		•
ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION	Ą	

GRADIENT CHECK AT THE STARTING POINT
ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION
VERTICES AROUND NODE 0 SOLUTION EXAMINED
OPTIMAL SOLUTION AT EACH NODE PRINTED

GRADIENT CHECK AT THE STARTING POINT

ANALYTICAL GRADIENT VECTOR G(I)

NUMERICAL GRADIENT VECTOR Y(I)

PERCENTAGE ERROR VECTOR PERCENT(I)

.72116698E-05 .31356897E-08 2

THE GRADIENTS APPEAR TO BE CORRECT

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 0

THE SOLUTION WITH 1 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .40000000E+00 2 .50000000E+00

CONS 1 .25710870E-24

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 57 OUT OF THESE 52 WERE PERFORMED AT THIS NODE

THE UPPER BOUND HAS BEEN UPDATED AT THIS NODE. THE DISCRETE SOLUTION AND THE CONSTRAINTS (CONS(1)=UPPER BOUND) FOLLOWING A CHECK AT THE VERTICES SURROUNDING THE NODE 0 SOLUTION ARE

X 10. 20.

CONS 1 .21200000E+01

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 1

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.LE. $\,\,$ 1 0.

THE SOLUTION WITH 2 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 0. 2 -.14000000E+00

CONS 1 .16000000E+00 2 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 131 OUT OF THESE 69 WERE PERFORMED AT THIS NODE

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 2 THIS SOLUTION IS NONFEASIBLE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.LE. 2 -. 100000000E+01 1 0.

THE SOLUTION WITH 3 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 -.55673257E+00 2 -.60868830E+00

CONS 1 .21376967E+01 2 .55673257E+00 3 -.39131170E+00

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 177
OUT OF THESE 46 WERE PERFORMED AT THIS NODE

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 3 THIS IS A DISCRETE SOLUTION

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.LE. 10.

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.GE. 20.

THE SOLUTION WITH 3 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 10. 20.

CONS 1 .21200000E+01 2 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 248 OUT OF THESE 71 WERE PERFORMED AT THIS NODE

3 0.

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 4

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.GE. 1 .10000000E+01

THE SOLUTION WITH 2 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .10000000E+01 2 .20600000E+01

CONS 1 .36000000E+00 2 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 304 OUT OF THESE 56 WERE PERFORMED AT THIS NODE

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 5 THIS IS A DISCRETE SOLUTION

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.LE. 2 .2000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 1 .1000000E+01

THE SOLUTION WITH 3 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .10000000E+01 2 .2000000E+01

CONS 1 .72000000E+00 2 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 379 OUT OF THESE 75 WERE PERFORMED AT THIS NODE

3 0.

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 6 THIS SOLUTION IS NONFEASIBLE

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.GE. 2 .30000000E+01 1 .10000000E+01

THE SOLUTION WITH 3 CONSTRAINTS (CONS(1) = OBJECTIVE) IS

X 1 .12663456E+01 2 .29855667E+01

CONS 1 .75109331E+00 2 .26634555E+00 3 -.14433311E-01

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 396 OUT OF THESE 17 WERE PERFORMED AT THIS NODE

CHAPTER 3

OPTIONS IN DISOPT3

The feature of default values for many of the variables in DISOPT3 has been provided for the convenience of the user; but it is, indeed, possible and sometimes desirable to initialize these variables in the main program choosing different values. The user could, thus, opt for fast execution, no printout at all or, a detailed printout, etc. Table II at the end of this Chapter lists the default values of all the variables. Examples 2 and 3 illustrate the use of these variables.

By choosing appropriate values for the variables, by initializing these variables in the main program (without using DATA statements) and, by including a relevant CCMMON statement in the main program the user can greatly influence the performance of the program. In many alternatives to choose from will now be described.

1. Only ONE discrete solution or are All required?

If there are many optimal discrete solutions to a problem, will the user be satisfied with just one? If the answer is yes, let ONESOL, a logical variable, be TRUE; otherwise, FALSE. Finding all the solutions requires more effort than finding just one.

2. VERTICES to be checked for an UPPER BOUND?

The effort required to find an optimal discrete solution using the branch and bound algorithm strongly depends on how soon a good upper bound can be found. If the user thinks that the objective function for

his problem could not be larger than, say, 10.5 at the optimal discrete solution, he could set UPBND (the upper bound) = 10.5 in the main program. A value of UPBND which is lower than the actual objective function value (at the optimal discrete solution) will result in the program's inability to find any solution at all; whereas, too large a value will not save any effort.

An upper bound is automatically generated and updated whenever a discrete solution is found at a node but DISOPT3 also examines the discrete points surrounding the solution at node 0 if VERTCHK, a logical variable, is TRUE. This method of generating the upper bound could save a lot of effort if the user has no idea about the upper bound. If the user has a good idea, let VERTCHK be FALSE, and save some function evaluations.

3. TOLERANCES?

The choice of numbers for such variables as TOLCONS, TOLDIS, TOLHEXI, TOLMULT and TOLX is critical to the efficiency of the program. All the tolerances should be chosen sufficiently small with respect to the magnitude of numbers involved in a problem. While too small a value for TOLX and TOLHEXI may result in excessive effort, too large a value could lead to the program's inability to find any solution at all. In test runs and to gain information about a problem, one could use large values and then switch to tight values along with some of the above features to economize on effort and obtain a highly refined solution.

These tolerances are described as follows:

TOLCONS A small negative number. If a constraint value is smaller than 0 but larger than or equal to TOLCONS, it is considered as satisfied.

TOLDIS A small positive number. If a variable lies within TOLDIS neighbourhood of a discrete value, it is assumed to be discrete.

TOLHEXI A small positive number. Used by subroutine UOPT as a stopping criterion in the algorithm (see Charalambous [2]) that determines the continuous solution at each node.

TOLMULT A small positive number. Used in subroutine UOPT to select active constraints. If the multiplier (see Charalambous [2]) for a constraint exceeds TOLMULT, it is considered to be active. The active constraints are the only constraints that are used during the following optimization. By choosing TOLMULT as 0, the user can force all the constraints to be active all the time.

TOLX A small positive number. Used in subroutine QUASID (Fletcher algorithm [3]) to test the convergence of the solution.

4. Alternatives for PRINTING results?

Two hollerith variables, PRINTID and PRINTP, influence printing and offer the following options.

PRINTID = 3HYES if the input data is to be printed, 2HNO otherwise.

PRINTP = 4HNONE for no printing at all by any part of the program.

7HONLYDIS for printing discrete solutions only.

7HNODEOPT for printing the optimal solution at each node whether or not it is discrete.

3HALL for printing the details of the optimization at each node. Results are printed after every IPT

iterations of subroutine QUASID. IPT may also be changed by the user.

5. Check the user's definition of the gradients?

Often, there is a mistake in the definition of gradients in subroutine FUN. The results obtained as such will be meaningless. This waste of effort might be avoided by setting GRADCHK, a logical variable, as TRUE.

When GRADCHK is true, the gradients are calculated (at the starting point) numerically and also by the user's definition. If the discrepancy is less than 10%, the user's definition is assumed to be correct; the possibility that the gradients are wrong must not still be ruled out, though. If the gradients are correct, a logical variable WRONG is FALSE; otherwise, it is TRUE and the program is terminated. In either case a message is printed.

6. Hold a DISCRETE VARIABLE constant?

In the branch and bound algorithm, additional constraints e.g., $X \le XL$ or $X \ge XU$ are added to the problem if X is supposed to be a discrete variable but does not assume a discrete value in the optimal solution. There are two ways to implement it: (1) add the constraint and optimize, (2) do not add the constraint, hold X constant at the appropriate bound and optimize. The second alternative is, generally, more efficient and may be chosen by setting HOLDVAR, a logical variable, equal to TRUE. In the rare case when this method fails, it should not be used.

7. Branching on the FIRST or the LAST variable?

Many of the discrete variables may not have a discrete value in the solution. For the additional constraint, as explained above, should the first variable be chosen or the last? It is not possible to predict the best choice for every problem. However, if REVERSE, a logical variable, is TRUE the last variable is chosen.

8. Other options?

In addition to the variables described in the above options, the following could also be of interest to the user.

- ALMIN Used to initialize each element of vector AL. Vector AL is used to convert the nonlinear programming problem at each node into an exact minimax problem as proposed by Bandler and Charalambous [1]. ALMIN greatly influences the efficiency of the program but usually there is no way to predict a good value for a particular problem.
- EST An estimate of the optimal least pth function value at node 0.

 If initialized properly, this could save some function evaluations in the very first optimization.
- IDCONS An array identifying the active constraints, i.e., those constraints which are actually being used in the optimization at any node. This array may be used in subroutine FUN to evaluate only those constraints which are required.
- IDVAR An array identifying all the variables except the one which is held constant. If the evaluation of partial derivatives is very time consuming then IDVAR should be used in subroutine FUN to avoid the evaluation of those derivatives which are not

needed.

IP The parameter p of least pth optimization (see [2, 7-11]).

An exhaustive list and a complete description of the variables is provided in the program listing of subroutine DISOPT3.

TABLE II DEFAULT VALUES

Variable Name	Default Value
ALMIN	10.
EST	0.
GRADCHK	.TRUE.
HOLDV AR	.TRUE.
IEXTRA	2 * N
IP	10
IPT	500
LARGE	1.0 E+10
MAXIFN	1000
MAXITN	15
MAXNODE	1000
ONESOL	.FALSE.
PRINTID	3HYES
PRINTP	7HNODEOPT
REVERSE	.FALSE.
TOLCONS	-0.001
TOLDIS	0.001
TOLHEXI	0.001
TOLMULT	0.1E-7
TOLX	0.1E-6
UPBND	1.0E+10
VERTCHK	.TRUE.

A variable, with a default value, should not be initialized in the main program by a DATA statement.

Example 2: The Beale constrained problem [5]

Minimize, as in the Beale problem [12],

$$f = 9 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1 x_2 + 2x_1 x_3$$

subject to

$$x_{1} \ge 0$$
 $x_{2} \ge 0$
 $x_{3} \ge 0$
 $3 - x_{1} - x_{2} - 2x_{3} \ge 0$

but where x_1 , x_2 and x_3 are constrained to be natural numbers.

The optimal solutions are

$$f = 1.0$$
 $x_1 = 2.0$
 $x_1 = 1.0$
 $x_1 = 2.0$
 $x_2 = 0.0$
 $x_2 = 1.0$
 $x_2 = 1.0$
 $x_3 = 0.0$
 $x_3 = 0.0$

The tree generated by the branch and bound algorithm is shown in Figure 2 and results summarized in Table III. A listing of the main program, subroutine FUN and the output is also presented.

TABLE	TTT	SUMMARY	OF	RESULTS	FOR	EXAMPLE	2

Node umber	Upper bound	Objective function	Solution x ₁ , x ₂ , x ₃	Description
0	1010	0.11	1.33, 0.77, 0.44	continuous
1	1.00	0.22	1.00, 0.88, 0.55	feasible
2		1.34	1.41, 0.00, 0.59	nonfeasible
3		0.25	1.00, 1.00, 0.50	feasible
4		1.00	1.00, 1.00, 0.00	discrete
5		1.07	0.32, 0.91, 1.00	nonfeasible
6		0.50	2.00, 0.50, 0.00	feasible
7		1.00	2.00, 0.00, 0.00	discrete
8		1.00	2.00, 1.00, 0.00	discrete

Fig. 2 Tree structure for Example 2.

PROGRAM TST (INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)	MAI	10
	MAI	20
MAIN PROGRAM FOR EXAMPLE 2	MAI	30
	MAI	40
DIMENSION DIS(50), IAR(60), X(100), XD(3)	MA I	50
	MAI	60
LOGICAL HOLDVAR, ONESOL, REVERSE, VERTCHK	MAI	70
	MAI	80
COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP	MA I	90
	MAI	100
DATA X/1.0,2.0,1.0/	MAI	110
DATA DIS/6*1.0,0.0/		
N=3		140
NORCONS=5		150
PRINTP=3HALL		160
CALL DISOPTS (DIS, IAR, X, XD)		170
STOP	MAI	180
END	MAT	190-

•	SUBROUTINE FUN (CONS, GCONS, IDCONS, IDVAR, X)	FUN	10
C	THE BEALE CONSTRAINED FUNCTION	FUN FUN	20 30
C	THIS SUBROUTINE DEFINES THE CONSTRAINTS AND THEIR GRADIENT VECTOR	FUN	40
Ğ	ACCORDING TO THE CONVENTION FOLLOWED IN THIS PROGRAM THE OBJECTIVE	efun Efun	· 50 · 60
C	FUNCTION IS CALLED THE FIRST CONSTRAINT	FUN	70
C	DIMENSION CONS(5), GCONS(15), IDCONS(1), X(3)	FUN FUN	80 90
C			100
C	COMMON /7/ IFN, IND1, IND2		110
u	P=X(1)		120 130
	Q=X(2)		140
	R=X(3)		150
	A=P+Q		160
	B=P+R	FUN	170
C		FUN	180
	DO 60 I=1,5	FUN	190
	J= IDCONS(I)	FUN	200
	IF (J.GE.6) GO TO 60		210
	CO TO (10,20,30,40,50), J	FUN	
10	CONTINUE	FUN	
C	DEPLYS WIR OF TRANSPORTER STRANSPORT		240
C	DEFINE THE OBJECTIVE FUNCTION		250
C	CONS(1)=0 1/A & NWALCE O NUE D DIOUG	FUN	
	CONS(1)=9.+(A-6.)*A+(B-2.)*B-R-R+Q*Q IF (IND1.EQ.0) RETURN		270
	GCONS(1) = (-4.+A+B)*2.		2000
	GCONS(2) = (A+Q-3.)*2.	FUN FUN	
	GCONS(3)=-4,+2.*B	FUN	
	CO TO 60		930
30	CONTINUE	FUN	
	CONS(ff)=P		340
	CCONS(4)=1.		250
	GCONS(5)=0.		260
	CCORS(6)=0.	FUL	270
	- GO 190- GO	FUL	OFFIG
3 0	CONTINUE		399
	COMS(3) = Q		400
	CCONS(Y) = 0.		1 1 B
	CCONS(8) = 1.		450
	COONS(9)=0. CO-70-60		430
40	CONTINUE		640 4 50
TV.	CONS(4)=R		460
	CCONS(10)=0.		476
	GCONS(11) = 0.		480
	GCONS(12)=1.		490
	CO TO 60	FUN	
50	CONTINUE		510
	CONS(5)=3B-Q-R		520
	CCONS(13)=-1.	FUN	530
	GCONS(14)=-1.	FUN	
	GCONS(15) = -2.	FUN	
60	CONTINUE	FUN	
C	YANG TANG	FUN	
	IFN=IFN+1	FUN	
	NETURN END	FUN	
	EMU	r un	600-

INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPT3

INITIAL VALUE OF THE ELEMENTS OF AL ALMIN	=	. 10000000E+02
OPTIMAL OBJECTIVE AT NODE 0 (GUESS) EST	=	0.
VALUE OF PARAMETER P IP	=	10
(-LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE	=	. 10000000E+11
ALLOWED FUNCTION CALLS AT EACH NODE MAXIFN	=	1000
ALLOWED QUASID CALLS AT EACH NODE MAXITN	=	15
ALLOWED NUMBER OF NODES MAXNODE	=	1000
NUMBER OF DISCRETE VARIABLES NDIS	=	0
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS	=	5
NUMBER OF UNIFORM STEP VARIABLES NUNI	=	3
TOLERANCE FOR THE CONSTRAINTS TOLCONS	=	10000000E-02
TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS	=	. 10000000E-02
STOPPING CRITERION FOR UOPT TOLHEXI	=	. 10000000E-02
TOLERANCE FOR THE MULTIPLIERS TOLMULT	=	. 10000000E-07
STOPPING CRITERION FOR QUASID TOLX	=	. 10000000E-06
INITIAL VALUE OF THE UPPER BOUND UPBND	=	. 10000000E+11
STARTING POINT FOR THIS PROBLEM X	1 2 3	. 10000000E+01 . 20000000E+01 . 10000000E+01
X(1) IS UNIFORM STEP WITH STEP SIZE	=	. 10000000E+01
X(2) IS UNIFORM STEP WITH STEP SIZE	=	. 10000000E+01
X(3) IS UNIFORM STEP WITH STEP SIZE	=	. 10000000E+01
OPTIONS IN EFFECT		

GRADIENT CHECK AT THE STARTING POINT ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION VERTICES AROUND NODE 0 SOLUTION EXAMINED DETAILED PRINTING REQUESTED

GRADIENT CHECK AT THE STARTING POINT

	ANALYTICAL		NUMERICAL		PERCENTAGE
	GRADIENT		GRADIENT		ERROR
	VECTOR G(I)		VECTOR Y(I)	V	ECTOR PERCENT(I)
1	. 12900000E+02	1	. 12000000E+02	1	. 27853275E-09
2	. 14000000E+02	2	. 14000000E+02	2	.76291989E-09
3	.20000000E+02	3	.20000000E+02	· 3	. 45793058E-08

THE GRADIENTS APPEAR TO BE CORRECT

ITER.	FUNC. EVAL.	LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(1)
0	1	. 20000000E+01	1 2 3	. 10000000E+01 . 20000000E+01 . 10000000E+01	1 2 3	.10000000E+01 .10000000E+01 .20000000E+01
2	3	. 33333333E+00	1 2 3	.22727273E+00 .12272727E+01 .18181818E+00	1 2 3	23229083E+00 .17811275E-03 45361504E+00

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE $oldsymbol{0}$

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1 2 3 4 5	OBJECTIVE .10000000E+02 .10000000E+02 .10000000E+02	1 2 3 4 5	.28801653E+01 .22727273E+00 .12272727E+01 .18181818E+00

ITER.	FUNC. EVAL.	LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0	5	. 28801 787E+0 1	1 2 3	.22727273E+00 .12272727E+01 .18181818E+00	$\tilde{2}$	42730980E+01 63641762E+00 31833479E+01
22	47	. 11213 2 84E+00	1 2 3	.13346134E+01 .77692441E+00 .44231104E+00	1 2 3	.21623398E-08 .19607237E-08 .44486781E-08

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0 VALUE OF HEXI FOR THIS ITERATION HEXI = .11196611E+00 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(1) VECTOR AL(I) VECTOR CONS(I) NOT CALCULATED .11196611E+00 **OBJECTIVE** .10000000E+02 2 . 13346 134E+01 2 3 .10000000E+02 3 .77692441E+00 .10000000E+02 4 .44231104E+00 5 .10000000E+02 5 .38401338E-02 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH VARIABLE GRADIENT NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I) 49 -.99999564E-10 . 13346134E+01 1 -.22307559E+00 2 -.22307559E+00 .77692441E+00 3 .44231104E+00 3 -.44615117E+00

.13333449E+01

.77777004E+00 .44442512E+00 1 -.40486177E-04 2 -.40526508E-04 3 -.80986551E-04

1

2

77 -.84460118E-03

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE	OF	HEXT	FOR	THIS	TTERATION	HEXI =	.11111884E+00
A ETITION	OI.	111111277	I OIL	111113	IILLICHIICH	· · · · · · · · · · · · · · · · · · ·	* I I I I I I I I I I I I I I I I I I I

	MULTIPLIER		ALPHA		CONSTRAINT
	VECTOR RMULT(I))	VECTOR AL(I)		VECTOR CONS(I)
1	ACTIVE	1	OBJECTIVE	1	.11111884E+00
2	.666518 04E-45	2	INACTIVE	2	. 13333449E+01
3	.25037991E-42	3	INACTIVE	3	.77777004E+00
4	. 1179 7444E-3 9	4	INACTIVE	4	. 444425 12E+00
5	.22218895E+00	5	.44437 79 0E+00	5	.34790830E-04

ITER.	FUNC. EVAL.	LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(1)
0	81 -	.99 999564E-10	1 2 3	.13333449E+01 .77777004E+00 .44442512E+00	2	22222994E+00 22222998E+00 44445989E+00
8	96 -	. 7213 772 7E- 0 5	1 2 3	.13333333E+01 .77777777E+00 .44444445E+00	2	30262976E-05 30395519E-05 60223060E-05

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 0

THE SOLUTION WITH 5 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .13333333E+01 2 .7777777E+00 3 .4444445E+00

CONS 1 .11111111E+00 2 .13333333E+01 3 .7777777E+00 4 .4444445E+00 5 -.42769699E-09

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 107 OUT OF THESE 100 WERE PERFORMED AT THIS NODE

THE UPPER BOUND HAS BEEN UPDATED AT THIS NODE. THE DISCRETE SOLUTION AND THE CONSTRAINTS (CONS(1) = UPPER BOUND) FOLLOWING A CHECK AT THE VERTICES SURROUNDING THE NODE 0 SOLUTION ARE

X 1 .20000000E+01 2 0. 3 0.

CONS 1 .10000000E+01 2 .20000000E+01 3 0. 4 0. 5 .10000000E+01

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

 ITER. FUNC. LEAST PTH NO.
 VARIABLE VECTOR X(I)
 GRADIENT VECTOR G(I)

 0
 1 -.22608922E+00
 2 .77777777E+00
 2 .23810759E+00

 3 .44444445E+00
 3 .43072415E+00

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 1

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)	ALPHA VECTOR AL(I)	CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1 * OBJECTIVE 2 .10000000E+02 3 .10000000E+02 4 .10000000E+02 5 .10000000E+02	1 .40740741E+00 2 .10000000E+01 3 .7777777E+00 4 .44444445E+00 5 .33333333E+00
UNCONSTRAINED OPTIMIZATION	USING 1972 VERSION	OF FLETCHERS METHOD
ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION	VARIABLE VECTOR X(1)	GRADIENT VECTOR G(1)

110.	LIVE	· I ONGILON		7202020	
0	3	. 4074 07 41E+ 00	2 3	.7777 777 7E+00 .44444445E+00	288888891E+00 311111111E+01
1,1	27	. 22585559E+ 00	2 3	.88816768E+00 .55267076E+00	232797472E-06 360288207E-06

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 1

VALUE OF HEXI FOR THIS ITERATION HEXI = .22511639E+00

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1 2 3 4 5	OBJECTIVE .10000000E+02 .10000000E+02 .10000000E+02	1 2 3 4 5	.22511639E+00 .10000000E+01 .88816768E+00 .53267076E+00 .64908043E-02

ITER.	FUNC. LEAST PTH EVAL. FUNCTION		VARIABLE VECTOR X(I)	GRADIENT VECTOR G(I)
0	2999999120E-10	2 3	.88816768E+00 .55267076E+00	244732927E+00 389465849E+00
6	5228363944E-02	2 3	.88887869E+00	241278681E-06 383238579E-06

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 1 والمن والم VALUE OF HEXI FOR THIS ITERATION HEXI = .22226302E+00 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(I) VECTOR AL(I) VECTOR CONS(I) ACTIVE 1 OBJECTIVE 1 .22226302E+00 .97235922E-38 2 .10000000E+01 3 .88887869E+00 INACTIVE .35513129E-37 3 3 INACTIVE .62385672E-35 4 INACTIVE .55551476E+00 5 .44448481E+00 5 .88896963E+00 5 .91787746E-04 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD TER. FUNC. LEAST PTH NO. EVAL. FUNCTION VARIABLE GRADIENT VECTOR X(I) VECTOR G(1) 0 56 -.99999120E-10 2 .88887869E+00 2 -.44448524E+00 3 .55551476E+00 3 -.88897048E+00

2 .8888889E+00

3 .5555556E+00 3 -.10631369E-07

2 -.53115074E-08

70 -.38064505E-04

6

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 1

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.LE. 1 .10000000E+01

THE SOLUTION WITH 5 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .10000000E+01 2 .8888889E+00 3 .5555556E+00

CONS 1 .2222222E+00 2 .10000000E+01 3 .88888889E+00 4 .5555556E+00 5 .75795015E-09

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 185
OUT OF THESE 74 WERE PERFORMED AT THIS NODE

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		CRADIENT VECTOR G(I)
Ø	1	. 119 7530 9E+01	1 3	.10000000E+01 .55555556E+00		28888889E+01 88888889E+00
10	11	. 53784145E+00	1 3	. 14102455E+01 . 58975458E+00	1 3	.28057037E-07 .76916869E-07

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 2 THIS SOLUTION IS NONFEASIBLE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

1 .10000000E+01 X.LE. 2 0.

THE SOLUTION WITH 6 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .14102455E+01 2 0. 3 .58975458E+00

CONS 1 .13478104E+01 2 .14102455E+01 3 0. 4 .58975458E+00 5 .41024536E+00 6 -.41024548E+00

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 197 OUT OF THESE 12 WERE PERFORMED AT THIS NODE

ITER. NO.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		CRADIENT VECTOR G(I)
0	1 .	. 11111111E+00	1 3	. 10000000E+01 . 55555556E+00	1 3	. 10000000E+01 . 20000000E+01
1	2	. 11111111E+00	1 3	.95555556E+00 .46666667E+00	1 3	.83215416E+00 .99206532E-01

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 3

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER		ALPHA		CONSTRAINT			
VECTOR RMULT(I)		VECTOR AL(I)		VECTOR CONS(I)			
NOT CALCULATED	1	OBJECTIVE	1	.33580247E+00			
	2	.10000000E+02	2	.9555556E+00			
•	3	.10000000E+02	3	.10000000E+01			
	4	.10000000E+02	4	.46666667E+00			
	5	.10000000E+02	5	.11111111E+00			
	6	. 10000000E+02	6	. 4444444E-01			

ITER.	FUNC. EVAL.	LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0	4	. 33580247E+00	1 3	.95555556E+00 .46666667E+00		12444444E+01 11555556E+01
10	30	. 259163 55E+00	1 3	.99302956E+00 .49997180E+00	_	39806387E-07 85146215E-07

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 3

VALUE OF	HEXI FOR THIS ITE	RATION HEXI	=	.25709620E+00
	MULTIPLIER VECTOR RMULT(I)	ALPHA VECTOR AL(1)		CONSTRAINT VECTOR CONS(I)
	NOT CALCULATED	3 .10000000E+02 4 .10000000E+02 5 .10000000E+02	1 2 3 4 5 6	.25709620E+00 .99302956E+00 .10000000E+01 .49997180E+00 .70268309E-02 .69704366E-02

ITER.	FUNC. LEAST PTH EVAL. FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
Ø	3299998232E-10	1 3	.99302956E+00 .49997180E+00		10279381E+01 10139973E+01
8	6867967310E- 0 2	1 3	.99979308E+00 .49999997E+00	1 3	.21796770E-05 .23605788E-05

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 3 VALUE OF HEXI FOR THIS ITERATION HEXI = .25020704E+00 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(1) VECTOR AL(1)

 1
 ACTIVE
 1
 OBJECTIVE
 1
 .25020704E+00

 2
 .14850122E-33
 2
 INACTIVE
 2
 .99979308E+00

 3
 .14816379E-33
 3
 INACTIVE
 3
 .10000000E+01

 4
 .30115122E-30
 4
 INACTIVE
 4
 .49999997E+00

 5
 .50020819E+00
 5
 .15006246E+01
 5
 .20698885E-03

 6
 .50062184E+00
 6
 .15018655E+01
 6
 .20692153E-03

ITER. NO.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)	GRADIENT VECTOR G(1)
Ø	72 -	. 9999823 2E- 10	1 3	.99979308E+00 .49999997E+00	110008278E+01 310004139E+01
5	91 -	. 18550009E-03	1 3	.99999996E+00 .50000001E+00	143407569E-04 310513514E-05

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 3

THE K LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.LE. 1 .10000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 2 .10000000E+01

THE SOLUTION WITH 6 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .10000000E+01 2 .10000000E+01 3 .50000001E+00

CONS 1 .24999999E+00 2 .10000000E+01 3 .10000000E+01 4 .50000001E+00 5 -.11520996E-07 6 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 292 OUT OF THESE 95 WERE PERFORMED AT THIS NODE

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

 ITER.
 FUNC.
 LEAST PTH NO.
 VARIABLE VECTOR X(I)
 GRADIENT VECTOR G(I)

 0
 1 -.50000000E-10
 1 .10000000E+01
 1 -.12500000E+00

 2
 .10000000E+01
 2 -.12500000E+00

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 4 VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

NULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1 2 3 4	OBJECTIVE .10000000E+02 .10000000E+02 .10000000E+02	1 2 3 4	. 10000000E+01 . 10000000E+01 . 10000000E+01
	5 6	. 10000000E+02 . 10000000E+02	_	. 10000000E+01
	7	. 10000000E+02	7	0.

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0	3	. 11486984E+ 0 1	1 2	. 10000000E+01 . 10000000E+01	1 2	.57434918E+00 28717459E+01
10	17	. 11136726E+01	1 2	.99238094E+00 .10329596E+01	1 2	.35642626E-05 .30651024E-06

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 4

VALUE OF HEXI FOR THIS ITERATION HEXI = .10170247E+01

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1	OBJECTIVE	1	. 10170247E+01
	2	. 10000000E+02	2	.99238094E+00
	3	.10000000E+02	3	. 10329596E+01
	4	.10000000E+02	4	0.
	5	.10000000E+02	5	.97465949E+00
	6	. 10000000E+02	6	.76190631E-02
	7	. 10000000E+02	7	.32959577E-01

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0	19 -	. 9329 8335E-10	1 2	.99238094E+00 .10329596E+01	1 2	18329966E+01 .10879182E+00
10	45 -	. 15310072E-01	1 2	.99989059E+00 .10013870E+01	1 2	.29964347E-07 .34933965E-08

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 4

VALUE OF HEXI FOR THIS ITERATION HEXI = .10002224E+01

	MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
1	ACTIVE	1	OBJECTIVE	1	. 10002224E+01
2	.11842496E-29	2	INACTIVE	2	.99989059E+00
3	. 11649596E-29	3	INACTIVE	3	. 10013870E+01
4	.39985035E+01	4	. 15994014E+ 02	4	0.
5	.11995506E-29	5	INACTIVE	5	.99872237E+00
6	. 19976636E+01	б	.79906544E+01	6	. 10941300E-03
7	.53293373E-02	7	.21317349E-01	7	. 13870418E-02

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0	49 -	. 932 9833 5E-10	1 2	.99989059E+00 .10013870E+01	_	18638860E+01 .49724512E-02
7	66 -	. 19529393E-03	1 2	.99999950E+00 .100075 07 E+01	1 2	. 126 15736E-04 . 49573347E-06

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 4 THIS IS A DISCRETE SOLUTION

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.LE. 3 0. 1 .10000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 2 .10000000E+01

THE SOLUTION WITH 7 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .10000000E+01 2 .10000000E+01 3 0.

CONS 1 .10000000E+01 2 .10000000E+01 3 .10000000E+01 4 0. 5 .10000000E+01 6 0. 7 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 362 OUT OF THESE 70 WERE PERFORMED AT THIS NODE

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0 .		. 10000000E+01	1 2	.10900000E+01 .10000000E+01	1 2	. 10000000E+01 . 10000000E+01
11	16	.25455486E+00	1 2	.31608494E+00 .90870323E+00	1 2	.26094082E-07 .14392533E-07

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 5 THIS SOLUTION IS NONFEASIBLE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.LE. 1 .10000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 3 .10000000E+01 2 .10000000E+01

THE SOLUTION WITH 7 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .31608494E+00 2 .90870323E+00 3 .10000000E+01

CONS 1 .10770283E+01 2 .31608494E+00 3 .90870323E+00 4 .10000000E+01 5 -.22478816E+00 6 .68391506E+00 7 -.91296773E-01

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 379
OUT OF THESE 17 WERE PERFORMED AT THIS NODE

ITER. NO.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0	1 .	.66666667E+00	2 3	.7777777E+00 .44444445E+00	2 3	. 10000000E+01 . 20000000E+01
2	3 .	88888887E-01	2 3	. 28730158E+00 . 16349 207 E+00		79204268E-01 37338345E+00

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 6

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)	VE	ALPH.			CONSTR VECTOR C	
NOT CALCULATED	2 .1 3 .1 4 .1	00000 00000	VE 00E+02 00E+02 00E+02 00E+02	1 2 3 4 5	.6172108 .2000000 .2873015 .1634920	0E+01 8E+00 7E+00
CONSTRAINED OPTIMIZATION	USING	1972	VERSION	OF.	FLETCHER	s method

UNC

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(1)	GRADIENT VECTOR G(I)
Ø	5	.61721089E+00	2 3	.28730158E+00 .16349207E+00	285079368E+00 3 .32698413E+00
12	20	.50063389E+00	2 3	.50000000E+00 .22570296E-01	275165179E-09 312247543E-08

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 6 VALUE OF HEXI FOR THIS ITERATION HEXI = .50050942E+00 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(I) VECTOR AL(I) VECTOR CONS(I) OBJECTIVE 1 .50050942E+00 .10000000E+02 2 .20000000E+01 .10000000E+02 3 .50000000E+00 NOT CALCULATED OBJECTIVE 3 .10000000E+02 4 .22570296E-01 .10000000E+02 5 .45485941E+00 4 5 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION VARIABLE GRADIENT VECTOR X(I) VECTOR G(I) 22 -.99998232E-10 2 .50000000E+00 2 -.74993523E-09 3 .22570296E-01 3 .45140592E-01

6

34 -.50940839E-03

.50000000E+00 2 .27638593E-08 .87027274E-04 3 .20734285E-06

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 6 VALUE OF HEXI FOR THIS ITERATION HEXI = .50000001E+00 MULTIPLIER ALPHA CONSTRAINT VECTOR CONS(I) VECTOR RMULT(I) VECTOR AL(I) ACTIVE 1 OBJECTIVE .29261078E-49 2 INACTIVE .12262675E-42 3 INACTIVE .17384720E-03 4 .34769440E-03 .12309725E-42 5 INACTIVE 1 .5000001E+00 2 .2000000E+01 .50000000E+00 3 .87027274E-04 .49982594E+00 4 5 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD GRADIENT ITER. FUNC. LEAST PTH VARIABLE NO. EVAL. FUNCTION VECTOR X(1) VECTOR G(1) 2 .50000000E+00 2 .27638976E-08 3 .87027274E-04 3 .17405455E-03 38 -.99998232E-10

23

5

47 -.75787222E-08

.50000000E+00 2 -.47857777E-08 .72849047E-05 3 .36575737E-06

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 6

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 1 .2000000E+01

THE SOLUTION WITH 5 CONSTRAINTS (CONS(1) = OBJECTIVE) IS

X 1 .20000000E+01 2 .50000000E+00 3 .72849047E-05

CONS 1 .50000000E+00 2 .20000000E+01 3 .50000000E+00 4 .72849047E-05 5 .49998543E+00

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 430 OUT OF THESE 51 WERE PERFORMED AT THIS NODE

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

 ITER. NO.
 FUNC. LEAST PTH NO.
 VARIABLE VECTOR X(I)
 GRADIENT VECTOR G(I)

 0
 1
 .52963856E-10
 1
 .20000000E+01
 1
 .14569809E-04

 3
 .72849047E-05
 3
 .14569809E-04

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 7

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

M	ILTI	PLIER		ALPHA		CONSTRAINT
VEC'	ror	RMULT(1)		VECTOR AL(I)		VECTOR CONS(I)
NOT	CAL	CULATED	1	OBJECTIVE	1	. 10000000E+01
			2	.10000000E+02	2	.20000000E+01
			3	. 10000000E+02	3	0.
			4	. 10000000E+02	4	.72849047E-05
			5	.10000000E+02	5	.99998543E+00
			6	. 10000000E+02	6	Ø.

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		CRADIENT VECTOR G(I)
0	3 .	. 11486774E+ 0 1	1 3	.20000000E+01 .72849047E-05		28721998E+01 28703172E+01
11	18	. 10795185E+01	1 3	. 20304293E+01 . 33399616E-01	1 3	.70968842E-09 .70612281E-09

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 7 VALUE OF HEXI FOR THIS ITERATION HEXI = .10050001E+01 ALPHA CONSTRAINT MULTIPLIER VECTOR CONS(I) VECTOR RMULT(I) VECTOR AL(I) 1 .10050001E+01 1 OBJECTIVE NOT CALCULATED . 10000000E+02 2 2 .20304293E+01 .10000000E+02 3 0. 3 4 .33399616E-01 .10000000E+02 4 .10000000E+02 5 .90277145E+00 5 . 10000000E+02 6 .30429322E-01 6 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH VARIABLE GRADIENT VECTOR G(I) NO. EVAL. FUNCTION VECTOR X(I) 1 .20304293E+01 1 .17589213E+00 3 .33399616E-01 3 .11910901E+00 20 -.93298335E-10

.20004823E+01

3 .51805758E-03

13

44 -. 46636242E-02

1 .41285727E-06 3 -.71255293E-06

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 7 VALUE OF HEXI FOR THIS ITERATION HEXI = .10000012E+01 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(I) VECTOR AL(1) VECTOR CONS(1) ACTIVE 1 OBJECTIVE 2 INACTIVE 1 .10000012E+01 . 11620716E-38 2 2 .20004823E+01 3 .49975167E+01 3 .19990067E+02 3 0. 4 .00. 5 INACTIVE 6 .11860048E-01 4 .20015491E-02 .80061963E-**02** 4 .51805758E-03 5 .24614314E-35 5 .99848155E+00 .29650120E-02 б .48233489E-03 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD GRADIENT VECTOR G(1) ITER. FUNC. LEAST PTH VARIABLE NO. EVAL. FUNCTION VECTOR X(I) 1 .20004823E+01 1 .27668671E-02 3 .51805758E-03 3 .18667984E-02 48 -.93298335E-10 .20000345E+01 1 -.64944963E-07 .50192967E-04 3 .19487942E-07 8 60 -. 11367681E-05 1

3

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 7 THIS IS A DISCRETE SOLUTION

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.LE. 20.

THE X CREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE 1 .2000000E+01

THE SOLUTION WITH 6 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

1 .20000000E+01 2 0. 3 0. X

1 .10000000E+01 2 .20000000E+01 4 0. 5 .10000000E+01 3 0. CONS

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 494 OUT OF THESE 64 WERE PERFORMED AT THIS NODE

FEASIBILITY CHECK AT NODE 8

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION

VARIABLE VECTOR X(I)

GRADIENT VECTOR G(I)

1 .14569809E-04

1 .20000000E+01 1 .10000073E+01 3 .72849047E-05 3 .20000000E+01

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 8

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER.		ALPHA		CONSTRAINT
VECTOR RMULT(I)		VECTOR AL(I)		VECTOR CONS(I)
NOT CALCULATED	1	OBJECTIVE	1	. 10000000E+01
	2	. 10000000E+ 02	2	.20000000E+01
	3	.10000000E+02	3	. 10000000E+01
	4	. 10000000E+02	4	.72849047E-05
	5	.10000000E+02	5	14569809E-04
	6	. 10000000E+02	6	0.

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER.	1 01.00	LEAST PTH FUNCTION		VARIABLE VECTOR X(1)		GRADIENT VECTOR G(I)
0	3	. 11487193E+ 01	1 3	. 20000000E+01 . 72849047E-05	1 3	.23011806E+01 .28807077E+01
6	13	. 11430524E+01	1 3	.19964769E+01 ~.12992859E-02	1 3	37383559E-07 .88105253E-07

THE ABOVE ITERATION HAS RESULTED IN A NONFEASIBLE SOLUTION. THE CONSTRAINTS AT THIS POINT ARE GIVEN AS FOLLOWS. IT MAY BE NOTED THAT THE STARTING POINT FOR THE NEXT ITERATION IS NOT THE ABOVE SOLUTION BUT THE BEST FEASIBLE POINT OBTAINED SO FAR

CONS 1 .99298957E+00 2 .19964769E+01 3 .10000000E+01 4 -.12992859E-02 5 .61216224E-02 6 -.35230506E-02

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 8

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1	OBJECTIVE	1	. 10000000E+01
	2	.10000000E+03	$\hat{2}$.20000000E+01
	3	.10000000E+03	3	.10000000E+01
	4	. 10000000E+03	4	.72849047E-05
	5	.10000000E+03	5	14569809E-04
	6	. 10000000E+03	6	Ø .

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER.		LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		CRADIENT VECTOR G(I)
0	16	. 11489108E+01	1 3	.20000000E+01 .72849047E-05	1 3	.26755462E+01 .29613417E+02
7	25	. 11438919E+01	1 3	.20002990E+01 35570137E-03	1 3	. 13693891E-04 . 29574785E-06

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 8 VALUE OF HEXI FOR THIS ITERATION HEXI = .10361683E+01 CONSTRAINT ALPHA MULTIPLIER VECTOR AL(I) VECTOR CONS(I) VECTOR RMULT(I) 1 .10005982E+01 2 .20002990E+01 3 .10000000E+01 4 -.35570137E-03 NOT CALCULATED 1 OBJECTIVE . 10000000E+**03** 2 . 10000000E+03 3 . 10000000E+03 .10000000E+03 5 .41235801E-03 5 .10000000E+03 6 .29904472E-03 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION GRADIENT VARIABLE VECTOR G(I) VECTOR X(I) 1 .20002990E+01 1 .20004848E+01 27 -.99988462E-10 3 -.35570137E-03 3 -.10000011E+03

45 -.31594360E-01

8

1 .20000087E+01 1 -.20403248E-03 3 -.10521519E-04 3 .32483524E-02

ITERATION NUMBER 4 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 8 VALUE OF HEXI FOR THIS ITERATION HEXI = .10015323E+01 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(I) VECTOR AL(I) VECTOR CONS(I) 1 .10000175E+01 2 .2000087E+01 3 .10000000E+01 ACTIVE OBJECTIVE . 17466675E-39 2 INACTIVE 2 3 .35702431E-36 3 INACTIVE 4 .35993559E+02 4 .14397424E+03 4 -.10521519E-04 5 .71994562E+02 5 .12303536E-04 6 .79995552E+02 6 .87395017E-05 4 .14397424E+03 5 .71994562E+02 .17998641E+02 5 . 1999888E+02 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH VARIABLE GRADIENT NO. EVAL. FUNCTION VECTOR X(1) VECTOR G(I) 49 -.99991633E-10 1 .20000139E+01 3 -.14397424E+03 .20000087E+01 3 -. 10521519E-04 62 -. 13339506E-02 1 .20000000E+01

3 .41434525E-09

1 .90536805E-02 3 .32372711E-01

ITERATION NUMBER 5 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 8 VALUE OF HEXI FOR THIS ITERATION HEXI = .10000001E+01 ALPHA CONSTRAINT MULTIPLIER VECTOR CONS(I) VECTOR RMULT(I) VECTOR AL(I) 1 .10000000E+01 2 .20000000E+01 1 OBJECTIVE ACTIVE . 17466675E-39 INACTIVE 2 INACTIVE 3 .10000000E+01 .14391288E+03 4 .41434525E-09 .72030811E+02 5 -.97013178E-09 .79989211E+02 6 .14145485E-09 .35702431E-36 3 INACTIVE 3 . 14391288E+03 .35978219E+02 . 18007703E+02 5 6 . 19997303E+02 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD GRADIENT ITER. FUNG. LEAST PTH VARIABLE VECTOR G(I) VECTOR X(1) NO. EVAL. FUNCTION 1 .74030811E+02 1 .20000000E+01 1 .74030811E+02 3 .41434525E-09 3 .14406162E+03 66 -.99992599E-10 3

74 -.99992599E-10

1

.20000000E+01 1 .74030811E+02

3 .41434528E-09 3 .14406162E+03

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 8 THIS IS A DISCRETE SOLUTION

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE X.GE. 2 .10000000E+01 1 .20000000E+01

THE SOLUTION WITH 6 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .20000000E+01 2 .10000000E+01 3 0.

CONS 1 .10000000E+01 2 .20000000E+01 3 .10000000E+01 4 0. 5 0. 6 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 572 OUT OF THESE 78 WERE PERFORMED AT THIS NODE

Example 3: The voltage divider problem [5, 13]

Minimize

$$f = 1/x_1 + 1/x_2$$

subject to

$$\begin{array}{c} x_1 \geq 0 \\ x_2 \geq 0 \\ 0.53 - (x_4 + 0.01x_2x_4) / (x_3 - 0.01x_1x_3 + x_4 + 0.01x_2x_4) \geq 0 \\ (x_4 - 0.01x_2x_4) / (x_3 + 0.01x_1x_3 + x_4 - 0.01x_2x_4) - 0.46 \geq 0 \\ 2.15 - x_4 - 0.01 x_2 x_4 - x_3 - 0.01 x_1 x_3 \geq 0 \\ x_4 - 0.01 x_2 x_4 + x_3 - 0.01 x_1 x_3 - 1.85 \geq 0 \end{array}$$

where x_1 and x_2 both belong to the discrete set {1.0, 3.0, 5.0, 10.0, 15.0}.

The optimal solution is

$$f = 0.4$$
 $x_1 = 5.0$
 $x_2 = 5.0$
 $x_3 = 1.0130514$
 $x_4 = 0.9901098$

The tree generated by the branch and bound algorithm is shown in Figure 3 and the results are summarized in Table IV. A listing of the main program, subroutine FUN and the output is also presented.

TABLE IV SUMMARY OF RESULTS FOR EXAMPLE	TABLE 3	ΙV	SUMMARY '	OF	RESULTS	FOR	EXAMPLE	3
---	---------	----	-----------	----	---------	-----	---------	---

Node number	Upper bound	Objective function		Solution x ₂ , x ₃			Description
0	1010	0.28	7.00,	7.00,	1.01,	0.99	continuous
1		0.31	8.99,	5.00,	1.01,	0.99	feasible
2		0.40	5.00,	5.00,	1.01,	0.99	discrete
3	0.40	0.35	10.00,	3.99,	1.02,	0.99	feasible
4		0.41	12.29,	3.00,	1.01,	0.99	nonfeasible
5		0.30	10.00,	5.00,	1.01,	0.99	nonfeasible
6		0.35	3.99,	10.00,	1.01,	0.99	feasible
7		0.41	3.00,	12.43,	1.01,	0.99	nonfeasible
8		0.30	5.00,	10.00,	1.01,	0.99	nonfeasible

Fig. 3 Tree structure for Example 3.

	PROGRAM TST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)	MA I MA I	10 20
C	MAIN PROGRAM FOR EXAMPLE 3	MA I MA I	30 40
C C	DIMENSION DIS(100), IAR(100), X(150), XD(4)	MA I MA I	50 60
C	LOGICAL GRADCHK, ONESOL, REVERSE, VERTCHK	MAI MAI	70 80
u	COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU COMMON /10/ GRADCHK, HOLDVAR, ONESOL, REVERSE, VERTCHK	MAI MAI MAI	110
C	DATA DIS/5.,1.,3.,5.,10.,15.,5.,1.,3.,5.,10.,15.,0./	MAI MAI MAI	
C	DATA X(1), X(2), X(3), X(4)/4*1./ ALMIN=100.	MAI	150 160
	GRADCHK=.FALSE. IPT=50	MAI	170 180 190
	N=4 NORCONS=7 PRINTID=2HNO	MAI	200 210
	REVERSE= . TRUE . VERTCHK= . FALSE .	MAI	220 230 240
	CALL DISOPT3 (DIS, IAR, X, XD) STOP END	MAI	250 260-

```
SUBROUTINE FUN (CONS, GCONS, IDCONS, IDVAR, X)
                                                                                     FUN
                                                                                           10
C
                                                                                     FUN
                                                                                           20
\mathbf{C}
       THE VOLTAGE DIVIDER EXAMPLE
                                                                                     FUN
                                                                                           30
\mathbb{C}
                                                                                     FUN
                                                                                           40
Č
       THIS SUBROUTINE DEFINES THE CONSTRAINTS AND THEIR GRADIENT VECTORSFUN
                                                                                           50
\mathbb{C}
       ACCORDING TO THE CONVENTION FOLLOWED IN THIS PROGRAM THE OBJECTIVEFUN
                                                                                           60
\mathbf{C}
       FUNCTION IS CALLED THE FIRST CONSTRAINT
                                                                                           70
C
                                                                                     FUN
                                                                                           69
       DIMENSION CONS(7), DE(4), E(2), CCONS(4,7), IDCONS(1), IDVAR(1), XFUH
                                                                                           90
                                                                                     FUN 100
\mathbf{C}
                                                                                     FUN 110
       COMMON /7/ IFN, IND1, IND2
                                                                                     FUN 120
\mathbf{C}
                                                                                     FUN 130
       TM=1./X(1)
                                                                                     FUH 140
       TN=1./X(2)
                                                                                     FUN 150
       DE(1) = X(1) *0.01
                                                                                     FUN 160
       DE(2) = X(2) *0.01
                                                                                     FUN 170
       E(1) = DE(1) *X(3)
                                                                                     FUN 189
       E(2) = DE(2) *X(4)
                                                                                     FUN 190
       TA=X(3)+E(1)
                                                                                     FUN 200
       TB=X(3)-E(1)
                                                                                     FUN 210
       TC=X(4)+E(2)
                                                                                     FUN 220
       TD=X(4)-E(2)
                                                                                     FUN 230
       TE=TB+TC
                                                                                     FUN 240
       TF=TA+TD
                                                                                     FUN 250
\mathbf{C}
                                                                                     FUN 260
       DO 80 I=1,7
                                                                                    FUN 270
       J=IDCONS(I)
                                                                                     FUN 280
       IF (J.GE.8) GO TO 80
                                                                                     FUN 290
       GO TO (10,20,30,40,50,60,70), J
                                                                                     FUN 300
10
       CONTINUE
                                                                                     FUN 310
\mathbf{c}
                                                                                     FUN 320
\mathbf{C}
       DEFINE THE OBJECTIVE FUNCTION
                                                                                     FUN 330
\mathbf{C}
                                                                                    FUN 349
       CONS(1) = TM + TN
                                                                                     FUN 250
       IF (IND1.EQ.0) RETURN
                                                                                     FUN 360
       GO TO 80
                                                                                    FUN 370
\mathbf{C}
                                                                                    FUN 389
\mathbf{C}
       DEFINE THE OTHER CONSTRAINTS
                                                                                    FUN 390
\mathbb{C}
                                                                                    FUN 400
20
       CONTINUE
                                                                                    FUN 410
       CONS(2)=X(1)
                                                                                    FUN 420
       GO TO 80
                                                                                    FUN 430
       CONTINUE
30
                                                                                    FUN 440
       CONS(3) = X(2)
                                                                                    FUN 450
       GO TO 80
                                                                                    FUN 460
       CONTINUE
40
                                                                                    FUN 470
       CONS(4) = 0.53 - TC/TE
                                                                                    FUN 480
       GO TO 80
                                                                                    FIIN 490
50
       CONTINUE
                                                                                    FUN 500
       CONS(5) = TD/TF-0.46
                                                                                    FUN 510
       GO TO 80
                                                                                    FUH 520
60
       CONTINUE
                                                                                    FUN 530
       CONS(6)=2.15-TC-TA
                                                                                    FUN 549
       CO TO 89
                                                                                    FUN 550
70
       CONTINUE
                                                                                    FUN 560
       CONS(7) = TD + TB - 1.85
                                                                                    FUN 570
80
       CONTINUE
                                                                                    FUN 580
C
                                                                                    FUN 590
       IF (IND2.EQ.0) RETURN
                                                                                    FUN 600
                                                                                    FUN 610
       DEFINE THE GRADIENT VECTORS
\mathbf{c}
                                                                                    FUN 620
\mathbb{C}
                                                                                    FUN 630
       DE(3) = X(3) *0.01
                                                                                    FUN 640
       DE(4) = X(4) *0.01
                                                                                    FUN 650
       TG=TE*TE
                                                                                    FUN 660
       TH=TF*TF
                                                                                    FUN 670
       TI=1.+DE(1)
                                                                                    FUN 689
       TJ=1.-DE(1)
                                                                                    FUN 690
       TK=1.+DE(2)
                                                                                    FUN 700
       TL=1.-DE(2)
                                                                                    FUN 710
       TP=TC/TC
                                                                                    FUN 720
       TQ=-TD/TII
                                                                                    FUN 730
```

	TR= TA/TH	FUN 740
	TS=-TB/TG	FUN 750
_	1310/16	FUN 760
C		FUN 770
	DO 130 I=1,4	FUN 780
	J= IDVAR(I)	FUN 790
	IF (J.GE.5) GO TO 130	
	GO TO (90,100,110,120), J	FUN 800
90	CONTINUE	FUN 810
	GCONS(1,1)=-(TM**2)	FUN 820
	GCONS(1,2)=1.0	FUN 830
	GCONS(1,3)=0.	FUN 840
		FUN 850
	CCONS(1,4) = -TP*DE(3)	FUN 860
	GCONS(1,5)=TQ*DE(3)	FUN 870
	GCONS(1,6) = -DE(3)	FUN 880
	GCONS(1,7)=GCONS(1,6)	FUN 890
	GO TO 130	
100	CONTINUE	FUN 900
	GCONS(2,1)=-(TN**2)	FUN 910
	GCONS(2,2)=0.	FUN 920
	GCONS(2,3)=1.0	FUN 930
		FUN 940
	GCONS(2,4)=TS*DE(4)	FUN 950
	GCONS(2,5) = -TR*DE(4)	FUN 960
	GCONS(2,6) = -DE(4)	FUN 970
	GCONS(2,7)=GCONS(2,6)	FUN 980
	GO TO 130	
110	CONTINUE	FUN 990
	GCONS(3,1)=0.	FUN1000
	GCONS(3,2)=0.	FUN1010
	GCONS(3,3)=0.	FUN1020
	GCONS(3,4) = TP*TJ	FUN 1030
	GCONS(3,5) = TQ*TI	FUN1040
		FUN1050
	GCONS(3,6)=-TI	FUN1060
	GCONS(3,7)=TJ	FUN1070
	GO_TO_130	FUN 1080
120	CONTINUE	FUN1090
	GCONS(4,1)=0.	FUN1100
	GCONS(4,2)=0.	
	GCONS(4,3)=0.	FUN1110
	GCONS(4,4)=TS*TK	FUN1120
	GCONS(4,5)=TR*TL	FUN 1 130
	GCONS(4,6)=-TK	FUN1140
	GCONS(4,7)=TL	FUN 1 150
130	CONTINUE	FUN1160
	CONTINUE	FUN1170
C	YEART PERMIT	FUN1180
	IFN=IFN+1	FUN1190
	RETURN	FUN1200-
	END	LOMITTO

THE SOLUTION WITH 7 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X	.70024624E+01 .99144712E+00	2	.70024625E+01	3	. 10115760E+01
	· > > I I I I I I I I I I I I I I I I I				

 1
 .28561381E+00
 2
 .70024624E+01
 3
 .70024625E+01

 4
 -.88045775E-05
 5
 -.87828078E-05
 6
 .67159319E-02

 7
 .12762184E-01

 CONS

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 77 OUT OF THESE 77 WERE PERFORMED AT THIS NODE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

2 .50000000E+01 X.LE.

1

THE SOLUTION WITH 7 CONSTRAINTS (CONS(1) = OBJECTIVE) IS

.89957880E+01 2 .50000000E+01 3 .10130514E+01 X

.99010598E+00

CONS 1

.31116314E+00 2 .89957880E+01 3 .50000000E+01 .68610575E-08 5 .68398069E-08 6 .62053502E-02 .12520136E-01

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 152 OUT OF THESE 75 WERE PERFORMED AT THIS NODE

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 2 THIS IS A DISCRETE SOLUTION

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.LE. 1 .50000000E+01 2 .50000000E+01

THE SOLUTION WITH 8 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

1 .50000000E+01 Х 2 .50000000E+01 3 .10130514E+01

4 .99010598E+00

CONS

1 .40000000E+00 3 .50000000E+01

2 .50000000E+01 5 .92902703E-02 .10716274E-01 6 .46684737E-01

.52999523E-01 8 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 220 OUT OF THESE 68 WERE PERFORMED AT THIS NODE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

2 .5000000E+01 X.LE.

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 1 .10000000E+02

THE SOLUTION WITH 8 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

. 10000000E+02 2 .39886960E+01 3 .10152383E+01 X .99083734E+00

.35070850E+00 CONS

.35070850E+00 2 .10000000E+02 3 .39886960E+01 .99014130E-11 5 .97699626E-13 6 .28790935E-02 .15030277E-01 8 .10113040E+01 .28790935E-02

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 305 OUT OF THESE 85 WERE PERFORMED AT THIS NODE

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 4 THIS SOLUTION IS NONFEASIBLE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

K.LE. 2 .30000000E+01 2 .50000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 1 .10000000E+02

THE SOLUTION WITH 9 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .12286792E+02 2 .30000000E+01 3 .10119974E+01 4 .98769671E+00

CONS 1 .41472154E+00 2 .12286792E+02 3 .30000000E+01 4 -.40350123E-02 5 -.25594790E-02 6 -.36670062E-02 7 -.42788207E-02 8 .20000000E+01 9 .22867919E+01

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 323 OUT OF THESE 18 WERE PERFORMED AT THIS NODE

THIS IS A DISCRETE SOLUTION

THIS SOLUTION IS NONFEASIBLE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.LE. 2 .5000000E+01

CONS

THE X CREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 2 .50000000E+01 1 .10000000E+02

THE SOLUTION WITH 9 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

1 .10000000E+02 4 .98814629E+00 2 .50000000E+01 3 .10118094E+01

1 .30000000E+00 2 .10000000E+02 3 .50000000E+01 4 -.2575268BE-02 5 -.24645202E-02 6 -.54398358E-03 7 -.63253260E-03 8 0. 9 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 334 OUT OF THESE 11 WERE PERFORMED AT THIS NODE

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 2 .10000000E+02

THE SOLUTION WITH 7 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

1 .39886960E+01 4 .99142085E+00 X 2 .10000000E+02 3 .10072803E+01

1 .35070850E+00 2 .39886960E+01 3 .10000000E+02 4 -.26290081E-12 5 .58317795E-11 6 .11979395E-01 7 .93817361E-02 CONS

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 420 GUT OF THESE 86 WERE PERFORMED AT THIS NODE

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 7 THIS SOLUTION IS NONFEASIBLE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

1 .30000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

2 .1000000E+02

THE SOLUTION WITH 8 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

2 .12429826E+02 3 .10076222E+01 1 .30000000E+01 4 .99210557E+00 X

1 .41378498E+00 2 .30000000E+01 3 .12429826E+02 4 -.29768718E-02 5 -.43351433E-02 6 -.32734137E-02 7 -.38179057E-02 8 .24298258E+01 CONS

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 436 OUT OF THESE 16 WERE PERFORMED AT THIS NODE

THIS IS A DISCRETE SOLUTION

THIS SOLUTION IS NONFEASIBLE

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE

X.GE. 1 .50000000E+01 2 .10000000E+02

THE SOLUTION WITH 8 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .50000000E+01 2 .10000000E+02 3 .10083695E+01 4 .99201105E+00

CONS 1 .30000000E+00 2 .50000000E+01 3 .10000000E+02 4 -.25159962E-02 5 -.25236151E-02 6 -.96316661E-07 7 .76093945E-03 8 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 447 OUT OF THESE 11 WERE PERFORMED AT THIS NODE

CHAPTER 4

UNDERSTANDING DISOPT3

The objective of this Chapter is to familiarize the user with the main concepts used in developing DISOPT3.

There are eight subroutines in this program, in addition to the main program and subroutine FUN which are supplied by the user. Figure 4 shows the calling sequence for these subroutines.

Fig. 4 Calling sequence for all the subroutines. A --- B implies that subroutine B is called from subroutine A.

Having taken an overall view of the program, the next step is to understand what each subroutine is doing. This may be achieved by going through the program listing in Appendix 1. A large number of comments have been included in the program listing to facilitate an easy grasp of the logic. In addition, many of the key ideas are further discussed in this Chapter.

1. Use of pointers to arrays DIS, IAR and X

Each subroutine of this program uses many arrays but the user is not burdened with the task of dimensioning each one in the main program. Apart from avoiding inconvenience, this reduces the risk of making an error. Enough storage is reserved in the main program by suitably dimensioning arrays DIS, IAR and X. All the other arrays are accommodated into this space. Consider the following example.

MAIN PROGRAM

SUBROUTINE XYZ (B)

DIMENSION A(100)

DIMENSION B(1)

CALL XYZ (A(50))

STOP

RETURN

END

END

When CALL XYZ (A(50)) is executed in the main program the control passes to the subroutine and the following equivalence is established between arrays A and B:

 $A(50) \equiv B(1), A(51) \equiv B(2), \text{ etc.}$

The number 50 may be thought of as a pointer for array B. In DISOPT3, the pointers are easily identified; for array RMULT, the pointer is LRMULT, for AL the pointer is LAL, etc. The idea of pointers has been extensively used. LASTDIS and LASTIAR are special pointers because they point to the first available elements in the respective arrays.

2. Storage of the essential information about the discrete variables

For each discrete variable two elements of array IAR are used to store (1) the number of available values for this discrete variable and (2) the pointer to the first value in array DIS. For example, the number of available values for the first discrete variable is IAR(1) and DIS (IAR(2)) is the first such value; for the second discrete variable these figures are IAR(3) and DIS(IAR(4)); and so on. This information is generated to make the data in array DIS readily accessible to subroutine FIND.

3. Implementation of the branch and bound algorithm

The use of Dakin's branch and bound algorithm involves addition and fathoming of nodes. Addition of a node to the tree is necessitated by the fact that X(I), a variable of the problem, is required to be discrete in the optimal solution but is currently not discrete. Adding a node is equivalent to adding another constraint to the original problem. This constraint is either $X(I) \leq XL$ or $X(I) \geq XU$ where XL and XU are respectively the nearest lower and the nearest upper discrete values of X(I).

In this program, whenever a new node is to be added to the tree,

first the constraint $X(I) \leq XL$ is added to the original problem. This is accompanied by the following three steps:

- (1) four consecutive elements of IAR are defined. See Figure 5,
- (2) NODE is incremented by 1, and
- (3) LASTIAR is incremented by 4.

The information, thus generated, is used whenever the new constraint or its gradient vector are evaluated in the subsequent optimizations.

If the node added above is to be fathomed, the 0 in the first element of IAR is changed to 1, indicating that constraint $X(I) \ge XU$ is added, and another optimization is performed. To fathom this kind of node, simply, the following three steps are performed:

- (1) NODE is decremented by 1,
- (2) pointer LASTIAR is decremented by 4, and
- (3) pointer LASTDIS is decremented by (N+2).

Variable NODE, at any time, equals the number of additional constraints in the problem. The record of those constraints which have been discarded is not preserved.

0 indicates that constraint $X(1) \le XL$ is added

Index of the variable which is used for the constraint

Fig. 5 Updating IAR to add a node

4. Optimization with some variables held fixed

Subroutines LEASTPD, QUASID and UOPT are set up in such a way that it is possible to perform an optimization with fewer variables than in the original problem. Two steps are needed for it:

- (1) N, the number of variables in the problem, is suitably reinitialized before performing the optimization, and
- (2) IDVAR(1), ..., IDVAR(N) contain the indices of the variables to be included in the optimization.

In this program, this particular feature is being used to hold only one variable fixed. When HOLDVAR is TRUE, the variable X(I) of the additional constraint is held constant at value XL (or XU) in the subsequent optimization at that node. N and NODE are temporarily decremented by 1 and their values are restored after the optimization. This point is clarified as one goes through the program listing.

5. The feature of ONE or ALL discrete optimal solutions

If only one optimal discrete solution is required, this program, after finding one discrete solution, tries not to search those nodes that are likely to yield, at the best, an equally good solution only. This saves effort because many nodes which otherwise would have been searched are not searched now. It is actually accomplished by decreasing the upper bound, once it has been found, by a small quantity of the order 10⁻⁶ for the purposes of checking feasibility or fathoming nodes.

If all the optimal discrete solutions are required, a precaution is taken against fathoming a node that might yield an equally good solution after one discrete solution has been found. This is achieved by increasing the upper bound by a small quantity (-TOLCONS) for the purposes of checking feasibility or fathoming nodes.

6. Subroutine DISOPT3

This is the main subroutine of this package. It executes the branch and bound algorithm and performs the necessary optimizations in order to find the optimal discrete solutions.

The logic followed in the subroutine is best explained by the flow charts in Figure 6 and Figure 7.

7. Feasibility check

The algorithm used in this program to solve the nonlinear programming problem at every node does not stop without expending a lot of effort if there is no feasible solution to the problem. Hence, to use it efficiently, prior to its application, a feasibility check is made to ensure the existence of a feasible point.

The feasibility check involves a least pth optimization with p=2 as done by Chen [5]. It is based on the argument that if the optimal value of the least pth function is positive for some value of p then it can not be negative for some other value of p. The aim of the feasibility check is to determine the existence of a feasible point with objective function less than its current upper bound.

8. Continuous solution of the nonlinear programming problem

This solution is required at every node. The algorithm employed in subroutine UOPT to obtain this solution is the one proposed by Charalambous [2]. The implementation of this algorithm in subroutine

UOPT can best be understood by the flow chart in Figure 8.

Some features of the implementation which differ from the proposed original algorithm [2] are as follows.

- (1) Before attempting to solve the problem, a feasibility check is made as explained in the previous section.
- (2) If the result of an iteration is a nonfeasible point, the starting point for the next iteration is not this point but the best available feasible point.
- (3) The scheme for choosing active constraints based on the multipliers is used only after two iterations have successfully led to a feasible solution.
- (4) Should the above scheme, at any stage, lead to a nonfeasible point it (the above scheme) is not used again and the alpha parameters corresponding to all the constraints revert to their values just prior to the initiation of the reduction scheme.

Fig. 6 Basic logical structure of subroutine DISOPT3.

Fig. 7 Flow chart for subroutine DISOPT3.

Start Check the existence of a feasible point with objective function less than or equal to the current upper bound. This is achieved by a least pth optimization with p = 2and error functions: f-UPBND, $-g_1$, $-g_2$, etc. No Does a feasible point exist? -> Return ALMAX = ALMINALMIN is user supplied alpha parameter AL(1) = 0 and for $I = 2 \text{ to } N \quad AL(I) = ALMAX.$ Vector AL is used for converting the constrained problem into a minimax problem, e.g., min f s.t. $g_1 \ge 0$, $g_2 \ge 0$, is equivalent to min max $(f, f-AL(2)g_1, f-AL(3)g_2)$ Initialize the starting point to the best feasible point Determine HEXI, the artificial margin ξ of the Charalambous algorithm.
HEXI=min(0,ERMAX+10⁻¹⁰) where ERMAX is the maximum of the error functions at this starting point 1 Call Fletcher's subroutine for the unconstrained optimization No Are all the constraints ALMAX=ALMAX*10 only if satisfied? (Loop 1) loop 2 has not been executed more than once (Loop 2)

Fig. 8 Charalambous algorithm as implemented in subroutine UOPT.

* The objective function is always active. Other constraints with multipliers exceeding TOLMULT are active. AL(I) for a constraint is its multiplier times the number of active functions.

CHAPTER 5

SOME RESULTS WITH DISOPT3

Discrete optimization involves solution of the nonlinear programming problem at many nodes. Hence, it is of crucial importance to correctly code the many details of the algorithm which finds this solution. This kind of verification has been made by repeating here the example problems presented by Charalambous [2]. Examples 4, 5, 6 and 7 at the end of this Chapter present a comparison between the results obtained by Charalambous and those obtained by DISOPT3. A complete listing of the main program, subroutine FUN and the output is also included for each example.

Examples 1, 2 and 3 were also solved by DISOPT, the old program [5].

A comparison between the results is made in Table V.

The results obtained with Examples 1, 2 and 3 using the different options of DISOPT3 are summarized in Table VI.

Before deciding whether certain features, which do not exactly have a theoretical basis, should be chosen for this program or rejected, a test was made with Examples 1, 2 and 3. The results are summarized in Table VII.

TABLE V COMPARISON BETWEEN THE RESULTS OF DISOPT3/DISOPT

Description	Example 1	Example 2	Example 3
Number of function evaluations	396/518 ¹	572/ - ²	447/590
Execution time with full printing	1.9/1.8	3.2/-	3.3/4.0
Execution time with no printing	0.8/1.4	1.6/-	1.9/3.2

Algorithm 3 of DISOPT was used. This example could not be solved with Algorithm 4 of DISOPT.

TABLE VI PERFORMANCE OF DISOPT3 WITH DIFFERENT OPTIONS

Feature	Number of function evaluations				
	Example 1	Example 2	Example 3		
HOLDVAR = TRUE/FALSE	368/368	572/808	447/774		
ONESOL = TRUE/FALSE	370/368	515/572	452/447		
REVERSE = TRUE/FALSE	655/368	384/572	447/494		
VERTCHK = TRUE/FALSE	368/581	572/788	447/447		

TABLE VII RESULTS OF SOME TESTS WITH DISOPT3

Feature	Number of function evaluations			
	Example 1	Example 2	Example 3	
Original program	368	593	447	
With HEXI supplied at each node except node 0	367	599	443	
Starting point not initialized at each node	527	607	544	

This example, for some reason, could not be solved with any algorithm.

Example 4: The Beale problem [12]

Minimize

$$f = 9 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3$$
 subject to

$$x_{1} \ge 0$$
 $x_{2} \ge 0$
 $x_{3} \ge 0$
 $3 - x_{1} - x_{2} - 2 x_{3} \ge 0$

The optimal solution is

The results obtained by DISOPT3 are consistent with the results presented by Charalambous [2]. A comparison is made in Table VIII. A complete listing of the main program, subroutine FUN and the output is also presented.

TABLE VIII COMPARISON BETWEEN THE RESULTS OF CHARALAMBOUS/DISOPT3 ON EXAMPLE 4

Iteration number	1	2	3
Objective	0.114392	0.1111967	0.11111111 0.11111111
function	0.114392	0.1111967	
× ₁	1.338218	1.333462	1.333333
	1.338219	1.333462	1.333333
* ₂	0.7745206	0.7776922	0.777778
	0.7745207	0.7776922	0.777777
x ₃	0.4363018	0.4442303	0.4444446
	0.4363018	0.4442304	0.44444446
Function evaluations	15	13	16
	14	20	15
RMULT(2)	0	0	0
	X	0	0
RMULT(3)	0 X	0	0 0
RMULT(4)	0 X	0	0 0
RMULT(5)	0.2255	0.2223	0.2222
	X	0.2223	0.2222

Total number of function evaluations 44/49

X: Not calculated by DISOPT3

ď	PROGRAM TST(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)	MAT	10
C C	MAIN PROGRAM FOR EXAMPLE 4	MAI	20
C	DIMENSION IAR(60), X(100), XD(3)	MA I MA I	30 40
C		MA I MA I	50 60
	COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX	MAI	70
G	COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU	MA I MA I	80 90
u	DATA X/3*.5/, DIS, N, NORCONS/0.,3,5/	MA I MA I	100
C	DATA ALMIN, IP/1., 10/, TOLCONS, TOLHEXI, TOLMULT/-1.E-2, .001, 1.E-4/	MAI	120
•	PRINTP=3HALL	MA I MA I	
	CALL DISOPT3 (DIS, IAR, X, XD) STOP	MAI	150
	END	MA I MA I	160 170-

```
FUN
                                                                                           10
       SUBROUTINE FUN (CONS, GCONS, IDCONS, IDVAR, X)
                                                                                     FUN
                                                                                           20
\mathbf{C}
                                                                                      FUN
                                                                                           30
       THE BEALE PROBLEM
\mathbb{C}
                                                                                     FUN
                                                                                           40
\mathbf{C}
                                                                                      FUN
                                                                                           50
       DIMENSION CONS(5), GCONS(3,5), IDCONS(1), X(3)
                                                                                      FUN
                                                                                           60
C
                                                                                      FUN
                                                                                           70
       COMMON /7/ IFN, IND1, IND2
                                                                                      FUN
                                                                                           80
C
                                                                                      FUN
                                                                                           90
       DO 60 I=1,5
                                                                                          100
                                                                                      FUN
       J= IDCONS( I)
                                                                                      FUN
                                                                                          110
       GO TO (10,20,30,40,50,60), J
       CONS(1)=9.-8.*X(1)-6.*X(2)-4.*X(3)+2.*(X(1)**2+X(2)**2)+X(3)**2+2.FUN 120
10
                                                                                      FUN 130
      1*X(1)*(X(2)+X(3))
                                                                                      FUN
                                                                                          140
       GCONS(1,1)=-8.+4.*X(1)+2.*(X(2)+X(3))
                                                                                      FUN 150
       GCONS(2, 1) = -6.+4.*X(2) + 2.*X(1)
                                                                                      FUN 160
       GCONS(3, 1) = -4. + 2. *X(3) + 2. *X(1)
                                                                                      FUN 170
       GO TO 60
                                                                                      FUN 180
       CONS(2) = X(1)
20
                                                                                      FUN 190
       GCONS(1,2)=1.
GCONS(2,2)=0.
GCONS(3,2)=0.
                                                                                      FUN 200
                                                                                      FUN 210
                                                                                      FUN 220
       GO TO 60
                                                                                      FUN 230
       CONS(3) = X(2)
30
                                                                                      FUN 240
       GCONS(1,3)=0.
                                                                                      FUN 250
       GCONS(2,3) = 1.
                                                                                      FUN 260
        GCONS(3,3) = 0.
                                                                                      FUN 270
       GO TO 60
                                                                                      FUN 280
       CONS(4) = X(3)
40
                                                                                      FUN 290
        GCONS(1,4)=0.
                                                                                      FUN 300
       GCONS(2,4)=0.
GCONS(3,4)=1.
                                                                                      FUN 310
                                                                                      FUN 320
        CO TO 60
                                                                                      FUN 330
        CONS(5) = 3. - X(1) - X(2) - 2. * X(3)
                                                                                      FUN 340
 50
        GCONS(1,5) = -1.
                                                                                      FUN 350
        GCONS(2,5) = -1.
                                                                                      FUN 360
FUN 370
        GCONS(3,5) = -2.
 60
        CONTINUE
                                                                                      FUN 380
                                                                                       FUN 390
        IFN=IFN+1
                                                                                       FUN 400
        RETURN
                                                                                       FUN 410-
        END
```

INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPT3

INITIAL VALUE OF THE ELEMENTS OF AL ALMIN	=	. 10000000E+01
OPTIMAL OBJECTIVE AT NODE 0 (GUESS) EST	=	0.
VALUE OF PARAMETER P IP	=	10
(-LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE	=	. 10000000E+11
ALLOWED FUNCTION CALLS AT EACH NODE MAXIFN	=	1000
ALLOWED QUASID CALLS AT EACH NODE MAXITN	=	15
ALLOWED NUMBER OF NODES MAXNODE	=	1006
NUMBER OF DISCRETE VARIABLES NDIS	=	Ø
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS	=	5
NUMBER OF UNIFORM STEP VARIABLES NUNI	=	Ø
TOLERANCE FOR THE CONSTRAINTS TOLCONS	=	10000000E-01
TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS	=	.10000000E-02
STOPPING CRITERION FOR UOPT TOLHEXI	=	. 10000000E-02
TOLERANCE FOR THE MULTIPLIERS TOLMULT	=	.10000000E-03
STOPPING CRITERION FOR QUASID TOLX	=	. 10000000E-06
INITIAL VALUE OF THE UPPER BOUND UPBND	2	. 10000000E+11
	1 2 3	.50000000E+00 .50000000E+00 .5000000E+00
	•	

OPTIONS IN EFFECT

GRADIENT CHECK AT THE STARTING POINT

ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION

VERTICES AROUND NODE 0 SOLUTION EXAMINED

DETAILED PRINTING REQUESTED

GRADIENT CHECK AT THE STARTING POINT

ANALYTICAL	NUMERICAL	PERCENTAGE				
GRADIENT	GRADIENT	ERROR				
VECTOR G(I)	VECTOR Y(I)	VECTOR PERCENT(I				
144054831E+01	144054831E+01	1 .28357304E-07				
233244442E+01	233244442E+01	2 .44638948E-07				
322392689E+01	322392689E+01	3 .31051971E-07				

THE GRADIENTS APPEAR TO BE CORRECT

FEASIBILITY CHECK AT NODE 0

ITER.	FUNC. LEAST PTH EVAL. FUNCTION		VARIABLE VECTOR X(I)	GRADIENT VECTOR G(I)
Ø	127735010E+00	1 2 3	.50000000E+00 .50000000E+00 .50000000E+00	114934236E+00 214934236E+00 312800774E+00

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE The risk and the sea and her did not place the sea and her two dids the sea and the sea an VALUE OF HEXI FOR THIS ITERATION HEXI = 0. CONSTRAINT ALPHA MULTIPLIER VECTOR CONS(I) VECTOR AL(I) VECTOR RMULT(I) .22500000E+01 NOT CALCULATED 1 OBJECTIVE .10000000E+01 2 .5000000E+00 2 3 .50000000E+00 . 10000000E+01 3 . 10000000E+01 .50000000E+00 4 4 . 10000000E+01 .10000000E+01 5 5 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD GRADIENT ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION VARIABLE VECTOR G(I) VECTOR X(I)

1 .5000000E+00

1 .13382190E+01

3

3

.50000000E+00

.77452070E+00

3 .23000048E+01

16 .11700904E+00

11

1 -.44054831E+01 2 -.33244442E+01

.50000000E+00 3 -.22392689E+01

.13382190E+01 1 .76122855E-08 .77452070E+00 2 -.10786708E-07 .43630175E+00 3 .17279807E-07

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0 VALUE OF HEXI FOR THIS ITERATION HEXI = .11439206E+00 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(I) VECTOR AL(1) VECTOR CONS(I) 1 .11439206E+00 2 .13382190E+01 3 .77452070E+00 NOT CALCULATED OBJECTIVE .10000000E+01 2 3 . 10000000E+01 .10000000E+01 4 .43630175E+00 5 . 10000000E+01 5 .14656849E-01 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION VARIABLE GRADIENT VECTOR X(I) VECTOR G(1) 18 -.99999564E-10 1 .13382190E+01 1 -.22547930E+00 2 .77452070E+00 2 -. 22547931E+00 3 .43630175E+00 3 -.45095859E+00 37 -.31077454E-02 8 . 13334618E+01 .42725818E-06

.77769216E+00

.44423040E+00

2 .42647787E-06

3 .86862583E-06

2

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE.	OF	HEXI	FOR	THIS	ITERATION	HEXI =	. 11119674E+00
--------	----	------	-----	------	-----------	--------	----------------

	MULTIPLIER		ALPHA		CONSTRAINT
	VECTOR RMULT(I)		VECTOR AL(I)		VECTOR CONS(I)
1	ACTIVE	1	OBJECTIVE	1	. 11119674E+00
2	.11330150E-28	2	INACTIVE	2	. 13334618E+01
3	.41877684E-26	3	INACTIVE	3	.77769216E+00
4	. 19165727E-23	4	INACTIVE	4	.44423040E+00
5	.22230830E+00	5	.44461660E+00	5	.38527610E-03

ITER.	A 02.00	LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
Ø	41 -	99999564E-10	1 2 3	. 13334618E+01 .77769216E+00 .44423040E+00	2	22230785E+00 22230785E+00 44461568E+00
7	55 -	79898885E- 04	1 2 3	. 13333333E+01 .77777777E+00 .44444444E+00	1 2 3	.88590388E-10 .88165929E-10 .17670989E-09

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 0

THE SOLUTION WITH 5 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .13333333E+01 2 .7777777E+00 3 .4444444E+00

CONS 1 .11111111E+00 2 .13333333E+01 3 .7777777E+00 4 .444444E+00 5 .13558342E-07

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 66 OUT OF THESE 59 WERE PERFORMED AT THIS NODE

Example 5: The Rozen-Suzuki problem [12]

Minimize

$$f = x_1^2 + x_2^2 + 2x_3^2 + x_4^2 - 5x_1 - 5x_2 - 21x_3 + 7x_4$$

subject to

$$-x_{1}^{2} - x_{2}^{2} - x_{3}^{2} - x_{4}^{2} - x_{1} + x_{2} - x_{3} + x_{4} + 8 \ge 0$$

$$-x_{1}^{2} - 2x_{2}^{2} - x_{3}^{2} - 2x_{4}^{2} + x_{1} + x_{4} + 10 \ge 0$$

$$-2x_{1}^{2} - x_{2}^{2} - x_{3}^{2} - 2x_{1} + x_{2} + x_{4} + 5 \ge 0$$

The optimal solution is

$$f = -44.0$$
 $x_1 = 0.0$
 $x_2 = 1.0$
 $x_3 = 2.0$
 $x_4 = -1.0$

The results obtained by DISOPT3 are consistent with the results presented by Charalambous [2]. A comparison is made in Table IX. A complete listing of the main program, subroutine FUN and the output is also presented.

TABLE IX COMPARISON BETWEEN THE RESULTS OF CHARALAMBOUS/DISOPT3 ON EXAMPLE 5

Iteration number	1	2	3	4	5
Objective function	-65.84928	-42.174263	-43.924003	-43.999954	-44.00000
	-65.84928	-42.174270	-43.924003	-43.999954	-44.00000
x ₁	0.930565 0.930564	-0.007559 -0.007559	-0.0006666 -0.0006666	0.000002276 0.000002144	
^x 2	1.277804	0.9498981	0.9991067	0.999999	1.000000
	1.277803	0.9498988	0.9991073	1.000000	1.000000
x 3	3.469368 3.469368	1.926183 1.926184	1.996514 1.996514	1.999999 1.999999	2.000000
х [‡]	-1.569321	-0.8704463	-0.9950777	-0.999991	-1.000000
	-1.569320	-0.8704450	-0.9950778	-0.999991	-1.000000
Function evaluations	11	21	19	19	29
	15	21	29	19	25
RMULT(2)	0.39480 X	1.02973 X	1.00630	0.99996 1.00002	1.000620 0.999733
RMULT(3)	0.26327 X	0.08116 X	0	0	0 0
RMULT(4)	0.31152	2.07300	2.00086	1.99994	1.99657
	X	X	2.00086	1.99998	2.00046

Total number of function evaluations 99/109

X: Not calculated by DISOPT3

C C C	PROGRAM TST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT) MAIN PROGRAM FOR EXAMPLE 5 DIMENSION IAR(75), X(115), XD(4) COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP COMMON /2/ LARGE, TOLCONS, TOLD IS, TOLHEXI, TOLMULT, TOLX COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU DATA Y/4*0 / DIS N NOBCONS/0, 4,4/	MAI MAI MAI MAI MAI MAI MAI MAI MAI	10 20 30 40 50 60 70 80 90
C			
	COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP		
	COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLHULT, TOLK		
	COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU		
C			~ ~ ~
	DATA X/4*0./, DIS, N, NORCONS/0., 4, 4/	MAI	120
	DATA ALMIN, IP/1., 10/, TOLCONS, TOLHEXI, TOLMULT/-1.E-2, .001, 1.E-4/	MAT	130
C			
_	PRINTP=3HALL	MAI	140
	CALL DISOPTS (DIS, IAR, X, XD)	MAI	150
	STOP	MAI	160
	END	MAI	170-

	SUBROUTINE FUN (CONS, GCONS, IDCONS, IDVAR, X)	FUN	
C C	THE ROSEN-SUZUKI PROBLEM	FUN	
C	THE RUSEN-SUZUKI PROBLEM	FUN	
u	DIMENSION CONS(A) COONS(AA) IDGONS(A) TVA	FUN	
C	DIMENSION CONS(4), GCONS(4,4), IDCONS(1), X(4)	FUN	
ů.	COMMON 177 IEN IND INDO	FUN	
C	COMMON /7/ IFN, IND1, IND2	FUN	
La	A=X(1)**2+X(3)**2	FUH	
	B=X(2)**2+X(4)**2	FUN	
C	D=A(&) 4+&TA(4) 4+&		100
U	DO 50 I=1.4		110
	J= IDCONS(1)		120
	GO TO (10,20,30,40,50), J		130
10	CONS(1) = A + B + X(3) **2 - 5 .*(X(1) + X(2)) - 21 .*X(3) + 7 .*X(4)		140
10	CCONS(1,1)=2.*X(1)=5.		150
	GCONS(2,1)=2.*X(2)-5.		160
	GCONS(3,1)=4.*X(3)-21.		170
	GCONS(4, 1) = 2. *X(4) +7.		180
	GO TO 50		190
20	CONS(2) = -(A+B) - X(1) + X(2) - X(3) + X(4) + 8.		200
20	CCONS(1,2)=-(2.*X(1)+1.)		210 220
	GCONS(2,2) = -2.*X(2) + 1.		230
	GCONS(3,2)=-(2.*X(3)+1.)		240
	GCONS(4,2)=-2.*X(4)+1.		250
	GO TO 50		260
30	CONS(3) = -A - B*2. + X(1) + X(4) + 10.		270
	GCONS(1,3)=-2.*X(1)+1.		280
	GCONS(2,3) = -4.*X(2)		290
	GCONS(3,3) = -2.*X(3)		300
	GCONS(4,3) = -4.*X(4) + 1.		310
	GO TO 50		320
40	CONS(4) = -A - (X(1) **2 + X(2) **2) - X(1) *2 + X(2) + X(4) +5.		330
	GCONS(1,4) = (2.*X(1)+1.)*(-2.)	FUN	
	GCONS(2,4) = -2.*X(2) + 1.		350
	GCONS(3,4) = -2.*X(3)		360
	GCONS(4,4)=1.		370
50	CONTINUÉ		380
C			390
	IFN= IFN+1		400
	RETURN		410
	END		420-

INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPTS

INITIAL VALUE OF THE ELEMENTS OF AL ALMIN		. 10000000E+01
OPTIMAL OBJECTIVE AT NODE 0 (GUESS) EST	• 0	•
VALUE OF PARAMETER P IP	:	10
(-LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE	•	. 10000000E+11
ALLOWED FUNCTION CALLS AT EACH NODE MAXIFN :	=	1000
ALLOWED QUASID CALLS AT EACH NODE MAXITN	2	15
ALLOWED NUMBER OF NODES MAXNODE	=	1000
NUMBER OF DISCRETE VARIABLES NDIS	=	0
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS	=	4
NUMBER OF UNIFORM STEP VARIABLES NUNI	=	0
TOLERANCE FOR THE CONSTRAINTS TOLCONS	= -	. 10000000E-01
TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS	3	.1000000E-02
STOPPING CRITERION FOR UOPT TOLHEXI	=	. 10000000E-02
TOLERANCE FOR THE MULTIPLIERS TOLMULT	=	. 10000000E-03
STOPPING CRITERION FOR QUASID TOLX	=	. 10000000E-06
INITIAL VALUE OF THE UPPER BOUND UPBND	=	. 10000000E+11
	1 0 2 0 3 0 4 0).).

OPTIONS IN EFFECT

GRADIENT CHECK AT THE STARTING POINT

ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION

VERTICES AROUND NODE 0 SOLUTION EXAMINED

DETAILED PRINTING REQUESTED

GRADIENT CHECK AT THE STARTING POINT

ANALYTICAL	NUMERICAL	PERCENTAGE		
GRADIENT	GRADIENT	ERROR		
VECTOR G(I)	VECTOR Y(I)	VECTOR PERCENT(I)		
150000000E+01	150000000E+01	1 .17053026E-11		
250000000E+01	250000000E+01	2 .17053026E-11		
321000000E+02	321000000E+02	3 .16240977E-11		
4 .7000000E+01	4 .70000000E+01	4 . 12180733E-11		

THE GRADIENTS APPEAR TO BE CORRECT

FEASIBILITY CHECK AT NODE 0

ITER.	FUNC. LEAST PTH EVAL. FUNCTION	VARIABLE VECTOR X(I)	GRADIENT VECTOR G(I)
0	1 ~.39036003E+01	1 0. 2 0. 3 0.	1 .10084301E+01 259204604E+00 3 .11617858E+00
		4 0.	465152948E+00

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)	ALPHA VECTOR AL(I)	CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1 OBJECTIVE	1 0.
	2 .10000000E+01	2 .80000000E+01
	3 .10000000E+01	3 .10000000E+02
	4 .10000000E+01	4 .50000000E+01

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER.	FUNC. LEAST PTH EVAL. FUNCTION	VARIABLE VECTOR X(I)	GRADIENT VECTOR G(I)
0	310000000E-09	1 0. 2 0. 3 0. 4 0.	159000000E+01 250000000E+01 321000000E+02 4 .70000000E+01
10	1747415087E+02	1 .93056449E+00 2 .12778030E+01 3 .34693676E+01 415693200E+01	1 .21316345E-09 280748610E-09 355626242E-09 4 .14464961E-08

THE ABOVE ITERATION HAS RESULTED IN A NONFEASIBLE SOLUTION. THE CONSTRAINTS AT THIS POINT ARE GIVEN AS FOLLOWS. IT MAY BE NOTED THAT THE STARTING POINT FOR THE NEXT ITERATION IS NOT THE ABOVE SOLUTION BUT THE BEST FEASIBLE POINT OBTAINED SO FAR

CONS 1 -.65849278E+02 2 -.13689457E+02 3 -.11732309E+02 4 -.12553838E+02

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1	OBJECTIVE	1	0.
	2	.10000000E+02	2	.80000000E+01
	3	.10000000E+02	3	.10000000E+02
	4	. 10000000E+02	4	.50000000E+01

ITER.	FUNC. LEAST PTH EVAL. FUNCTION	VARIABLE VECTOR X(1)	CRADIENT VECTOR G(I)
0	2010000000E-09	1 0. 2 0. 3 0. 4 0.	150000000E+01 250000000E+01 321000000E+02 4 .7000000E+01
16	4040402268E+02	175588980E-02 2 .94989878E+00 3 .19261840E+01 487044502E+00	110069569E-05 278902214E-06 325455740E-05 4 .59874652E-06

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = -.42174270E+02

MULTIPLIER VECTOR RMULT(I)				CONSTRAINT VECTOR CONS(I		
	NOT CALCULATED	1	OBJECTIVE	1	42174270E+02	
		23	.10000000E+ 02	2	.79060447E+00	
		3	.10000000E+02	3	.20917897E+01	
		4	. 10000000E+02	4	.48196477E+00	

ITER. NO.		LEAST PTH FUNCTION	VARIABLE VECTOR X(1)	GRADIENT VECTOR G(1)
9	42 -	. 1000 4442E-09	175588980E-02 2 .94989878E+00 3 .19261840E+01 437044502E+00	150151178E+01 231002024E+01 313295264E+02 4 .52591100E+01
13	70	. 168 10786E+01	166664066E-03 2 .99910734E+00 3 .19965135E+01 499507780E+00	153847399E-06 246040363E-08 371224483E-06 4 .35558330E-07

ITERATION NUMBER 4 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = -.43924003E+02

	MULTIPLIER		ALPHA		CONSTRAINT		
	VECTOR RMULT(I)	VECTOR AL(I)		VECTOR CONS(I)		
1	ACTIVE	1	OBJECTIVE	1	43924003E+02		
e cont	.10062983E+01	2	.30188950E+01	2	.33721020E-01		
3	.381605 08E-08	3	INACTIVE	3	.10413986E+01		
4	.20008557E+01	4	.60025672E+01	4	.21080498E-01		

ITER.	FUNC. LEAST PTH EVAL. FUNCTION	VARIABLE VECTOR X(I)	GRADIENT VECTOR G(I)
0	7410004442E- 0 9	166664066E-03 2 .99910734E+00 3 .19965135E+01 499507780E+00	150013333E+01 230017853E+01 313013946E+02 4 .50098444E+01
12	9268090337E-01	1 .21436360E-05 2 .10000004E+01 3 .19999991E+01 499999084E+00	133346764E-05 213851056E-05 373984691E-05 4 .13328128E-05

ITERATION NUMBER 5 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE VALUE OF HEXI FOR THIS ITERATION HEXI = -.43999954E+02 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(1) VECTOR AL(I) VECTOR CONS(I) ACTIVE 1 OBJECTIVE 1 -.43999954E+02 .10000200E+01 2 .30000599E+01 2 2 .29557083E-04 2 3 .10000500E+01 3 .38160508E-08 INACTIVE 3 .19999753E+01 .59999259E+01 4 4 .81662286E-05 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION VARIABLE GRADIENT VECTOR X(1) VECTOR G(I) 96 -. 10004442E-09 .21436360E-05 1 -.49999957E+01 .10000004E+01 2 -.29999992E+01 .19999991E+01 3 -. 13000004E+02 4 -.99999084E+00 4 .50000183E+01 .33501431E-09 11 120 -.41115391E-04 · .58560547E-03 1

.10000000E+01

.20000000E+01

-.10090000E+01

.17309175E-03 .45251095E-03

.30608379E-03

3

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 0

4 -. 13756107E-09

THE SOLUTION WITH 4 CONSTRAINTS (CONS(1) = OBJECTIVE) IS

X 1 .33501431E-09 2 .10000000E+01 3 .20000000E+01 4 -.10000000E+01

CONS 1 -.44000000E+02 2 .46179593E-09 3 .99999997E+00

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 133 OUT OF THESE 124 WERE PERFORMED AT THIS NODE

Example 6: The Wong problem 1 [12]

Minimize

$$f = (x_1 - 10)^2 + 5(x_2 - 12)^2 + x_3^4 + 3(x_4 - 11)^2 + 10 x_5^6 + 7 x_6^2 + x_7^4 - 4 x_6 x_7 - 10 x_6 - 8 x_7$$

subject to

$$-2 x_{1}^{2} - 3 x_{2}^{4} - x_{3} - 4 x_{4}^{2} - 5 x_{5} + 127 \ge 0$$

$$-7 x_{1} - 3 x_{2} - 10 x_{3}^{2} - x_{4} + x_{5} + 282 \ge 0$$

$$-23 x_{1} - x_{2}^{2} - 6 x_{6}^{2} + 8 x_{7} + 196 \ge 0$$

$$-4 x_{1}^{2} - x_{2}^{2} + 3 x_{1} x_{2} - 2 x_{3}^{2} - 5 x_{6} + 11 x_{7} \ge 0$$

The optimal solution is

$$f = 680.630$$
 $x_1 = 2.3305$
 $x_2 = 1.9514$
 $x_3 = -0.47754$
 $x_4 = 4.3657$
 $x_5 = -0.62449$
 $x_6 = 1.0381$
 $x_7 = 1.5942$

The results obtained by DISOPT3 are consistent with the results presented by Charalambous [2]. A comparison is made in Table X. A complete listing of the main program, subroutine FUN and the output is also presented.

TABLE X COMPARISON BETWEEN THE RESULTS OF CHARALAMBOUS/DISOPT3 ON EXAMPLE 6

Iteration number	1	2	3	14	5	
Objective function	578.7389	704.9796	681.4550	680.6358	680.6301	
	578.7388	704.9796	681.4550	680.6358	680.6301	
Function evaluations	24	29	30	30	42	
	26	25	58	27	27	
Total number of function evaluations 155/163						

~	PROGRAM TST(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)	MAI	10	
C C	MAIN PROGRAM FOR EXAMPLE 6	MA I MA I	20 30	
G G	DIMENSION IAR(125), X(210), XD(7)	MA I MA I	40 50	
₹ a	COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP	MA I MA I	60 70	
C	COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU	MA I	80 90	
O.	DATA K/1204011./, DIS, N, NORCONS/07,5/ DATA ALMIN, IP/110/, TOLCONS, TOLHEXI, TOLMULT/-1.E-2001, 1.E-4/		3C 2C C)	
C	PRINTP-SHALL	MAI	32 527 67	
	CALL DISOPTS (DIS, IAR, X, XD) STOP	MAI	150	
	END		160 170-	

```
SUBROUTINE FUN (CONS.GCONS.IDCONS.IDVAR.X)
                                                                                  FIIN
                                                                                        10
C
                                                                                  FUN
                                                                                        20
\mathbb{C}
       THE FIRST WONG PROBLEM
                                                                                  FUN
                                                                                        30
C
                                                                                  FUN
                                                                                        40
       DIMENSION CONS(5), GCONS(7,5), IDCONS(1), X(7)
                                                                                  FUN
                                                                                        50
\mathbb{C}
                                                                                  FUN
                                                                                        60
       COMMON /7/ IFN, IND1, IND2
                                                                                  FUN
                                                                                        70
\mathbb{C}
                                                                                  FUN
                                                                                       80
      DO 60 I=1.5
                                                                                  FIIII
                                                                                       90
      J=IDCONS(I)
                                                                                  FUN 100
      GO TO (10,20,30,40,50,60), J FUN 110
CONS(1)=(X(1)-10.)**2+5.*(X(2)-12.)**2+X(3)**4+3.*(X(4)-11.)**2+10FUN 120
10
      1.*X(5)**6+7.*X(6)**2+X(7)**4-4.*X(6)*X(7)-10.*X(6)-8.*X(7)
                                                                                 FUN 180
      GCONS(1, 1) = 2.*(X(1) - 10.)
                                                                                  FUN 140
      GCONS(2,1) = 10. *(X(2) - 12.)
                                                                                  FUN 150
      GCONS(3,1)=4.*X(3)**3
                                                                                  FUN 160
      GCONS(4,1)=6.*(X(4)-11.)
                                                                                  FUN 170
      GCONS(5,1)=60.*X(5)**5
                                                                                  FUN 189
      GCONS(6,1) = 14.*X(6) - 4.*X(7) - 10.
                                                                                  FUN 190
      GCONS(7,1)=4.*X(7)**3-4.*X(6)-8.
                                                                                  FUN 200
      GO TO 60
                                                                                  FUN 210
      CONS(2)=-2.*X(1)**2-3.*X(2)**4-X(3)-4.*X(4)**2-5.*X(5)+127.
                                                                                  FIIN 220
      GCONS(1,2) = -4.*X(1)
                                                                                  FUH 230
      GCONS(2,2) = -12.*X(2)**3
                                                                                  FUN 240
                                                                                  FUN 250
      GCONS(3,2) = -1.
      GCONS(4,2) = -8.*X(4)
                                                                                  FUN 260
      GCONS(5,2) = -5.
                                                                                  FUN 270
                                                                                  FUN 280
      GCONS(6,2) = 0.
      GCONS(7,2) = 0.
                                                                                  FUN 290
      CO TO 60
                                                                                  FUH 200
      CONS(3) = -7.*X(1) - 3.*X(2) - 10.*X(3) **2 - X(4) + X(5) + 282.
30
                                                                                  FUN 310
      GCONS(1,3) = -7.
                                                                                  FUH 220
      GCONS(2,3) = -3.
                                                                                  FUN 230
      GCONS(3,3) = -20.*X(3)
                                                                                  FUN 249
      GCONS(4,3) = -1.
                                                                                  FUN 350
      GCONS(5,3) = 1.
                                                                                  FUH 850
      GCONS(6,8)=0.
                                                                                  FUH 370
      GCONS(7,S)=0.
                                                                                  FUN 286
      GO TO 60
                                                                                  FUH 390
40
      CONS(4) = -23.*X(1) - X(2) **2 - 6.*X(6) **2 + 8.*X(7) + 196.
                                                                                  FUN 400
      CCONS(1,4) = -23.
                                                                                  FUH 410
      GCONS(2,4) = -2.*X(2)
                                                                                  FUN 420
      GCONS(3,4)=0.
                                                                                  FUH 430
      GCONS(4,4) = 0.
                                                                                  FUN 440
      GCONS(5,4) = 0.
                                                                                  FUN 450
      GCONS(6,4) = -12.*X(6)
                                                                                  FUN 460
      GCONS(7,4)=8.
                                                                                  FUN 470
      GO TO 60
                                                                                  FUN <30
50
      CONS(5)=-4.*X(1)**2-X(2)**2+3.*X(1)*X(2)-2.*X(3)**2-5.*X(6)+11.*X(FUN 400
                                                                                  FUN 500
      GCONS(1,5) = -8.*X(1) + 3.*X(2)
                                                                                  FUN 510
      GCONS(2,5) = -2.*X(2) + 3.*X(1)
                                                                                  FUN 520
      GCONS(3,5) = -4.*X(3)
                                                                                  FUN 500
      GCONS(4,5)=0.
                                                                                  FUN 540
      GCONS(5,5)=0.
                                                                                  FUN 550
      GCONS(6,5)=-5. GCONS(7,5)=11.
                                                                                  FUN 560
                                                                                  FUN 570
      CONTINUE
60
                                                                                  FUN 580
67
                                                                                  FUN 590
       IFN=IFN+1
                                                                                  FUN 600
      RETURN
                                                                                  FIIN 610
      END
                                                                                  FUN 620-
```

INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPT3

INITIAL VALUE OF THE ELEMENTS OF AL ALMIN	=	. 10000000E+01
OPTIMAL OBJECTIVE AT NODE 0 (GUESS) EST	=	0.
VALUE OF PARAMETER P IP	=	10
(-LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE	=	. 10000000E+11
ALLOWED FUNCTION CALLS AT EACH NODE MAXIFN	=	1000
ALLOWED QUASID CALLS AT EACH NODE MAXITN	=	15
ALLOWED NUMBER OF NODES MAXNODE	=	1000
NUMBER OF DISCRETE VARIABLES NDIS	=	0
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS	=	
NUMBER OF UNIFORM STEP VARIABLES NUNI	=	0
TOLERANCE FOR THE CONSTRAINTS TOLCONS	=	10000000E-01
TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS	=	. 10000000E-02
STOPPING CRITERION FOR UOPT TOLHEXI	2	. 10000000E-02
TOLERANCE FOR THE MULTIPLIERS TOLMULT	=	. 10000000E-03
STOPPING CRITERION FOR QUASID TOLX	=	. 10000000E-06
INITIAL VALUE OF THE UPPER BOUND UPBND	=	. 10000000E+11
STARTING POINT FOR THIS PROBLEM X	1 2 3	. 10000000E+01 . 20000000E+01
	4 5	.40000000E+01
	6 7	. 10000000E+01 . 10000000E+01

OPTIONS IN EFFECT

CRADIENT CHECK AT THE STARTING POINT
ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION
VERTICES AROUND NODE 0 SOLUTION EXAMINED
DETAILED PRINTING REQUESTED

GRADIENT CHECK AT THE STARTING POINT

ANALYTICAL GRADIENT VECTOR G(1)	NUMERICAL GRADIENT VECTOR Y(I)	PERCENTAGE ERROR VECTOR PERCENT(I)
117452567E+02	117452567E+02	1 .36068278E-07
280668954E+02	280668953E+02	2 .15850950E-05
3 .33003301E+00	3 .32741809E+00	3 .79864706E+00
436839538E+02	436839538E+02	4 .22212107E-06
5 .16441766E+01	5 .16552804E+01	5 .67080719E+00
6 .22485577E+01	6 .22485577E+01	6 .13501760E-05
713366959E+02	713366959E+02	7 .43201089E-06

THE GRADIENTS APPEAR TO BE CORRECT

FEASIBILITY CHECK AT NODE 0

ITER. NO.	FUNC. EVAL.	LEAST PTH FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(1)
Ø	1 -	.3821 7634E+01	4	. 10000000E+01 . 20000000E+01 0. . 40000000E+01 0. . 10000000E+01 . 10000000E+01	1 2 3 4 5 6 7	. 18462889E+01 . 33113609E+01 . 25407465E-01 . 81304187E+00 . 12703432E+00 . 43610871E+01 95941862E+01

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1 2 3 4 5	OBJECTIVE .10000000E+01 .10000000E+01 .10000000E+01	1 2 3 4 5	.71400000E+03 .13000000E+02 .26500000E+03 .17100000E+03

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER.	FUNC. LEAST PTH EVAL. FUNCTION	VARIABLE VECTOR X(I)	GRADIENT VECTOR G(1)
Ø	3 .79288763E+03	1 .10000000E+01 2 .20000000E+01 3 0. 4 .40000000E+01 5 0. 6 .10000000E+01 7 .10000000E+01	117452567E+02 280668954E+02 3 .33003301E+00 436839538E+02 5 .16441766E+01 6 .22485577E+01 713366959E+02
17	28 .71557033E+03	1 .34166291E+01 2 .23014021E+01 344287010E+00 4 .58126321E+01 556138621E+00 6 .10726683E+01 7 .15317032E+01	1 .31430092E-07 231680140E-06 3 .16584093E-07 432506392E-07 5 .41327210E-07 6 .30908934E-07 7 .18541799E-06

THE ABOVE ITERATION HAS RESULTED IN A NONFEASIBLE SOLUTION. THE CONSTRAINTS AT THIS POINT ARE GIVEN AS FOLLOWS. IT MAY BE NOTED THAT THE STARTING POINT FOR THE NEXT ITERATION IS NOT THE ABOVE SOLUTION BUT THE BEST FEASIBLE POINT OBTAINED SO FAR

CONS 1 .57873885E+03 2 -.11240087E+03 3 .24284403E+03 4 .11747100E+03 5 -.17307631E+02

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE $oldsymbol{0}$

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1 2 3 4 5	OBJECTIVE .10000000E+02 .10000000E+02 .10000000E+02	1 2 3 4 5	.71400000E+03 .13000000E+02 .26500000E+03 .17100000E+03

ITER.	FUNC. EVAL.	LEAST PTH FUNCTION	VARIABLE VECTOR X(I)	GRADIENT VECTOR G(1)
0	31	.75272643E+03	1 .10000000E+01 2 .20000000E+01 3 0. 4 .4000000E+01 5 0. 6 .10000000E+01 7 .10000000E+01	182089809E+01 278706625E+01 3 .10185471E+01 413334000E+02 5 .50927356E+01 6 .18500121E+02 749448364E+02
17	55	.722 79067E+0 3	1 .15736285E+01 2 .19207655E+01 321294121E+00 4 .42321180E+01 563089198E+00 6 .76103566E+00 7 .18670823E+01	1 .34121678E-07 2 .48349497E-06 320517089E-08 4 .17061525E-06 548806078E-07 620186444E-07 716437603E-07

ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0 aller Bille eller visio dans dans beer sein fons was wen mels inne silms silver valur silver val VALUE OF HEXI FOR THIS ITERATION HEXI = .70497960E+03 CONSTRAINT ALPHA MULTIPLIER VECTOR CONS(I) VECTOR AL(I) VECTOR RMULT(I) .7049**7**960E+03 OBJECTIVE NOT CALCULATED 1 .12937806E+02 . 10000000E+02 2 2 .25990585E+03 .10000000E+02 3 3 .1000000E+02 .16757881E+03 4 . 12115186E+02 5 .10000000E+02 55 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD VARIABLE GRADIENT ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION VECTOR G(I) VECTOR X(1) 1 .15736285E+01 1 -. 16852743E+02 57 -.98225428E-10 2 -. 10079234E+03 . 19207655E+01 3 -.21294121E+00 3 -.38622391E-01 4 -.40607292E+02 .42321180E+01 -.63089198E+00 4 5 -.59968929E+01 5 .76103566E+00 .18670823E+01 6 -.68138300E+01 б 7 .14990426E+02 . 14386276E-05 .22860816E+01 114 -.23052973E+02 20 2 .33006387E-04 3 .71379587E-06 4 .12323952E-04 5 .95302214E-06 . 19512499E+01 2 3 -.46276332E+00 .43639135E+01 4 5 -.62457299E+00 5 6 -.73532706E-06

.10292990E+01

.16050320E+01

7 .13762745E-05

б

ITERATION NUMBER 4 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = .68145499E+03

	MULTIPLIER		ALP HA		CONSTRAINT
	VECTOR RMULT(I)	1	VECTOR AL(I)		VECTOR CONS(I)
1	ACTIVE	1	OBJECTIVE	1	.68145499E+03
2	. 11405 053E+0 1	2	.34215160E+01	2	.46999076E+00
3	.34291981E-21	3	INACTIVE	3	.25301369E+03
4	. 133 859 16E-18	4	INACTIVE	4	. 14609626E+03
5	.40198827E+00	5	. 12059648E+01	5	.75065347E+00

ITER.	FUNC. LEAST PTH EVAL. FUNCTION	VARIABLE VECTOR X(I)	GRADIENT VECTOR G(I)
Ø	11898225428E-10	1 .22860816E+01 2 .19512499E+01 346276332E+00 4 .43639135E+01 562457299E+00 6 .10292990E+01 7 .16050320E+01	115427837E+02 210048750E+03 339640286E+00 439816519E+02 557025256E+01 620099421E+01 7 .44218724E+01
15	14473925579E+00	1 .23299094E+01 2 .19513899E+01 347732792E+00 4 .43657823E+01 562448431E+00 6 .10380101E+01 7 .15943760E+01	1 .36385162E-06 2 .34167386E-05 3 .64835468E-07 4 .13312559E-05 5 .32113497E-06 627524283E-07 754908419E-07

ITERATION NUMBER 5 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE VALUE OF HEXI FOR THIS ITERATION HEXI = .68063583E+03 ALPHA CONSTRAINT MULTIPLIER VECTOR CONS(I) VECTOR AL(I) VECTOR RMULT(I) 1 .68063583E+03 1 OBJECTIVE ACTIVE .34190871E+01 2 .17490347E-02 INACTIVE 3 .2525678E+03 INACTIVE 4 .14489438E+03 .11396957E+01 2 3 INACTIVE 4 INACTIVE .34291981E-21 3 . 13385916E-18 . 10252320E-01 5 .11072174E+01 .36907245E+00 5 5 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD GRADIENT ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION VARIABLE VECTOR X(I) VECTOR G(I) 1 .23299094E+01 1 -. 15340181E+02 148 -.98225428E-10 .19513899E+01 2 -. 10048610E+03 3 -.47732792E+00 3 -.43502129E+00 .43657**823**E+01 4 -.39805306E+02 4 5 -.62448431E+00 5 -.56984782E+01 6 -. 18453623E+01 7 . 40597969E+01 . 10380101E+01 б . 15943760E+01 1 .23304993E+01 1 -.83917482E-05 15 174 -.51740615E-02 2 -.30012795E-04 .19513724E+01 3 -.47754136E+00 3 .42997929E-06 .43657262E+01 4 - . 12412704E-04 5 - . 17853296E-05 5 -.62448697E+00 . 10381310E+01 6 -.19494934E-05

б

. 15942267E+01

7 .44064735E-05

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 0

THE SOLUTION WITH 5 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X	1	. 23304993E+01	2	. 19513724E+01	3	47754136E+00
	4	.43657262E+01	5	62448697E+00	6	. 10381310E+01
	and the same of th	480400787.04				

.15942267E+01

.68063006E+03 2 .18413175E-06 .14487818E+03 5 .11677357E-05 CONS 3 .25256172E+03

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 193 OUT OF THESE 178 WERE PERFORMED AT THIS NODE

Example 7: The Wong problem 2 [12]

Minimize

$$f = x_1^2 + x_2^2 + x_1 x_2 - 14 x_1 - 16 x_2 + (x_3 - 10)^2$$

$$+ 4(x_4 - 5)^2 + (x_5 - 3)^2 + 2(x_6 - 1)^2 + 5 x_7^2$$

$$+ 7(x_8 - 11)^2 + 2(x_9 - 10)^2 + (x_{10} - 7)^2 + 45$$

subject to

$$-3(x_{1} - 2)^{2} - 4(x_{2} - 3)^{2} - 2x_{3}^{2} + 7x_{4} + 120 \ge 0$$

$$-5x_{1}^{2} - 8x_{2} - (x_{3} - 6)^{2} + 2x_{4} + 40 \ge 0$$

$$-0.5(x_{4} - 8)^{2} - 2(x_{2} - 4)^{2} - 3x_{5}^{2} + x_{6} + 30 \ge 0$$

$$-x_{1}^{2} - 2(x_{2} - 2)^{2} + 2x_{1} x_{2} - 14x_{5} + 6x_{6} \ge 0$$

$$-4x_{1} - 5x_{2} + 3x_{7} - 9x_{8} + 105 \ge 0$$

$$-10x_{1} + 6x_{2} + 17x_{7} - 2x_{8} \ge 0$$

$$3x_{1} - 6x_{2} - 12(x_{9} - 8)^{2} + 7x_{10} \ge 0$$

$$8x_{1} - 2x_{2} - 5x_{9} + 2x_{10} + 12 \ge 0$$

The optimal solution is

$$f = 24.306209$$
 $x_1 = 2.171996$
 $x_2 = 2.363683$
 $x_3 = 8.773926$
 $x_4 = 5.095985$
 $x_5 = 0.990655$
 $x_6 = 1.430574$
 $x_7 = 1.321644$
 $x_8 = 9.828726$
 $x_9 = 8.280092$
 $x_{10} = 8.375927$

The results obtained by DISOPT3 are consistent with the results presented by Charalambous [2]. A comparison is made in Table X1. A complete listing of the main program, subroutine FUN and the output is also presented.

TABLE XI COMPARISON BETWEEN THE RESULTS OF CHARALAMBOUS/DISOPT3 ON EXAMPLE 7

Iteration number	1	2	3	Ħ	5			
Objective function	-18.22450	26.15797	24.42958	24.30638	24.306209			
	-18.22498	26.15797	24.42958	24.30638	24.306209			
Function evaluations	48	57	49	54	65			
	50	55	72	52	50			
Total number of function evaluations 273/279								

C	PROCRAM TST(INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)	MAI	10 20
G G	MAIN PROGRAM FOR EXAMPLE 7	MAT	30
GG	DIMENSION LAR(180), X(360), XD(10)	MAT	40 50
C	COMMON /1/ IP. HAKNODE, N. NORCONS, PRINTID, PRINTP	LIV I	60 70
	COMMON / ALARGE, TOLCONS, TOLDIS, TOLNEXI, TOLNULT, TOLX COMMON / G/ ALAIN, DAIN, ERMAX, EST, HEXI, UPBND, XL, XU	PLA I	30 90
C	DATA DIS, N, NORCONS/O., 10,9/	TIAT	100 110
	DATA X/2., 3., 5., 5., 1., 2., 7., 3., 6., 10./ DATA ALMIN, IP/1., 10/, TOLCONS, TOLMEXI, TOLMULT/-1.E-2, .001, 1.E-4/	MAI	120 130
\mathbf{G}	PRINTP=OHALL	PAL	140 150
	CALL DISORTS (DIS, IAR, X, KD) STOP	MAI	160 170
	END		185-

```
SUBROUTINE FUN (CONS. GCONS. IDCONS, IDVAR, X)
                                                                               FUN
                                                                                    10
                                                                               FUN
                                                                                    20
\mathbf{C}
C
      THE SECOND WONG PROBLEM
                                                                               FUN
                                                                                    30
C
                                                                               FUN
                                                                                    40
      DIMENSION CONS(9), GCONS(10,9), IDCONS(1), X(10)
                                                                               FUN
                                                                                    50
                                                                               FUN
\mathbf{C}
                                                                                    60
                                                                                    70
      COMMON /7/ IFN, IND1, IND2
                                                                               TIIN
                                                                               FUN
                                                                                    80
C
                                                                               FUN
                                                                                    90
      DO 100 I=1,9
                                                                               FUN 100
      J=IDCONS(I)
      GO TO (10,20,30,40,50,60,70,80,90,100), J
                                                                               FUN 110
      CONS(1)=X(1)**2+X(2)**2+X(1)*X(2)-14.*X(1)-16.*X(2)+(X(3)-10.)**2+FUN 120
10
     14.*(X(4)-5.)**2+(X(5)-3.)**2+2.*(X(6)-1.)**2+5.*X(7)**2+7.*(X(8)-1FUN
                                                                                   130
     21.)**2+2.*(X(9)-10.)**2+(X(10)-7.)**2+45.
                                                                               FUN 140
      GCONS(1,1)=2.*X(1)+X(2)-14.
                                                                               FUN 150
      GCONS(2,1)=2.*X(2)+X(1)-16.
                                                                               FUN 160
                                                                               FUN 170
      GCONS(3,1)=2.*(X(3)-10.)
      GCONS(4,1)=8.*(X(4)-5.)
                                                                               FUN 189
                                                                               FUN 190
FUN 200
      GCONS(5,1)=2.*(X(5)-3.)
      GCONS(6,1)=4.*(X(6)-1.)
GCONS(7,1)=10.*X(7)
                                                                               FUN 210
                                                                               FUN 220
      GCONS(8, 1) = 14.*(X(8) - 11.)
                                                                               FUN 230
      GCONS(9,1)=4.*(X(9)-10.)
                                                                               FUN 240
      GCONS(10,1)=2.*(X(10)-7.)
      GO TO 100
                                                                               FUN 250
      CONS(2)=-3.*(X(1)-2.)**2-4.*(X(2)-3.)**2-2.*X(3)**2+7.*X(4)+120.
                                                                               FUN 260
20
                                                                               FUN 270
       GCONS(1,2) = -6.*(X(1)-2.)
      GCONS(2,2) = -8.*(X(2)-3.)
                                                                               FUN 280
                                                                               FUN 290
      GCONS(3,2) = -4.*X(3)
      GCONS(4,2)=7.
                                                                               FUN 300
      GCONS(5,2) = 0.
                                                                               FUN 310
                                                                               FUN 320
       GCONS(6,2)=0.
      GCONS(7,2)=0.
GCONS(8,2)=0.
                                                                               FUN 330
                                                                               FUN 340
       GCONS(9,2) = 0.
                                                                               FUN 350
                                                                               FUN 360
      GCONS(10,2)=0.
                                                                               FUN 370
      GO TO 100
      CONS(3) = -5.*X(1)**2-8.*X(2)-(X(3)-6.)**2+2.*X(4)+40.
                                                                               FUN 380
30
                                                                               FUN 390
       GCONS(1,3) = -10.*X(1)
       GCONS(2,3) = -8.
                                                                               FUN 400
       GCONS(3,3) = -2.*(X(3)-6.)
                                                                               FUN 410
                                                                               FUN 420
       GCONS(4,3)=2.
                                                                               FUN 430
       GCONS(5,3)=0.
                                                                               FUN 440
      GCONS(6,3)=0.
       GCONS(7,3)=0.
                                                                               FUN 450
      GCONS(8,3)=0.
                                                                               FUN 460
                                                                               FUN 470
       GCONS(9,3)=0.
       GCONS(10,3)=0.
                                                                               FUN 480
                                                                               FUN 490
       GO TO 100
40
       CONS(4)=-.5*(X(1)-8.)**2-2.*(X(2)-4.)**2-3.*X(5)**2+X(6)+30.
                                                                               FUN 500
      GCONS(1,4)=8.-X(1)
                                                                               FUN 510
       GCONS(2,4) = -4.*(X(2)-4.)
                                                                               FUN 520
       GCONS(3,4)=0.
                                                                               FUN 530
                                                                               FUN 540
       GCONS(4,4) = 0.
       GCONS(5,4) = -6.*X(5)
                                                                               FUN 550
                                                                               FUN 560
       GCONS(6,4)=1.
       GCONS(7,4) = 0.
                                                                               FUN 570
                                                                               FUN 580
       GCONS(8,4)=0.
       GCONS(9,4)=0.
                                                                               FUN 590
       GCONS(10.4) = 0.
                                                                               FUN 600
                                                                               FUN 610
       GO TO 100
50
       CONS(5)=-X(1)**2-2.*(X(2)-2.)**2+2.*X(1)*X(2)-14.*X(5)+6.*X(6)
                                                                               FUN 620
       GCONS(1,5) = -2.*X(1) + 2.*X(2)
                                                                               FUN 630
       GCONS(2,5) = -4.*(X(2)-2.)+2.*X(1)
                                                                               FUN 640
       GCONS(3,5)=0.
                                                                               FUN 650
                                                                               FUN 660
       GCONS(4,5) = 0.
       GCONS(5,5) = -14.
                                                                               FUN 670
       GCONS(6,5)=6.
                                                                               FUN 680
                                                                               FUN 690
       GCONS(7,5)=0.
       GCONS(8,5)=0.
                                                                               FUN 700
      GCONS(9,5)=0.
                                                                               FUN 710
                                                                               FUN 720
       GCONS(10,5)=0.
       GO TO 100
                                                                               FUN 730
```

```
60
       CONS(6) = -4.*X(1) - 5.*X(2) + 3.*X(7) - 9.*X(8) + 105.
                                                                                    FUN 740
       GCONS(1,6) = -4.
                                                                                    FUN 750
       GCONS(2,6) = -5.
                                                                                    FUN 760
       GCONS(3,6)=0.
                                                                                    FUH 770
       GCONS(4,6)=0.
                                                                                    FUN 789
       GCONS(5,6) = 0.
                                                                                    FUN 790
       GCONS(6,6) = 0.
                                                                                    FUH 800
       GCONS(7,6)=3.
                                                                                   FUN 810
       GCONS(8,6) = -9.
                                                                                   FUH 820
       GCONS(9,6)=0.
                                                                                   FUN 830
       GCONS(10,6)=0.
                                                                                   FUN 840
       GO TO 100
                                                                                   FUN 850
70
       CONS(7)=-10.*X(1)+8.*X(2)+17.*X(7)-2.*X(8)
                                                                                   FUN 860
       GCONS(1,7) = -10.
                                                                                   FUN 870
       GCONS(2,7)=8.
                                                                                   FUN 880
       GCONS(3,7) = 0.
                                                                                   FUN 890
       GCONS(4,7)=0.
GCONS(5,7)=0.
                                                                                   FUI 200
                                                                                   FUII 910
       GCONS(6,7)=0.
GCONS(7,7)=17.
                                                                                   FUN 920
                                                                                   FUN 930
       GCONS(8,7) = -2.
                                                                                   FUN 940
       GCONS(9,7) = 0.
                                                                                   FUN 959
       CCONS(10,7)=0.
                                                                                   FUN 960
       GO TO 100
                                                                                   FUN 970
30
       CONS(8)=3.*X(1)-6.*X(2)-12.*(X(9)-8.)**2+7.*X(10)
                                                                                   FUN 980
       GCONS(1,8)=3.
                                                                                   FUH 990
       GCONS(2,0) = -6.
                                                                                   FUN 1000
       GCONS(3,8)=0.
                                                                                   FUN1010
       GCONS(4,8) = 0.
                                                                                   FUN1020
       GCONS(5,8)=0.
                                                                                   FUN1030
       CCONS(6,8)=0.
                                                                                   FUN1040
       GCONS(7,8)=0.
                                                                                   FUN1050
       GCONS(3,8)=0.
                                                                                   FUN1060
       GCONS(9,8) = -24.*(X(9)-8.)
                                                                                   FUN1070
       GCONS(10,8)=7.
                                                                                   FUN1080
       GO TO 100
                                                                                   FUN1000
90
       CONS(9)=8.*X(1)-2.*X(2)-5.*X(9)+2.*X(10)+12.
                                                                                   FUN1100
       GCONS(1,9)=8.
                                                                                   FUN1110
       GCONS(2,9)=-2.
GCONS(3,9)=0.
                                                                                   FUN1120
                                                                                   FUN1130
       GCONS(4,9) = 0.
                                                                                   FUN1140
       GCONS(5,9)=0.
                                                                                   FUN1150
       GCONS(6,9)=0.
GCONS(7,9)=0.
                                                                                   FUN1160
                                                                                   FUN1170
       GCONS(8,9)=0.
GCONS(9,9)=-5.
                                                                                   FUN1189
                                                                                   FUN1190
       GCONS(10,9)=2.
                                                                                   FUN 1200
100
       CONTINUE
                                                                                   FUN1210
63
                                                                                   FUN1220
       IFN=IFN+1
                                                                                   FUN1230
      RETURN
                                                                                   FUN1240
      END
                                                                                   FUN1250-
```

INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPT3

INITIAL VALUE OF THE ELEMENTS OF AL ALMIN	=	. 10000000E+01
OPTIMAL OBJECTIVE AT NODE 0 (GUESS) EST	=	0.
VALUE OF PARAMETER P IP	=	10
(-LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE	=	.10000000E+11
ALLOWED FUNCTION CALLS AT EACH NODE MAXIFN	=	1000
ALLOWED QUASID CALLS AT EACH NODE MAXITN	=	15
ALLOWED NUMBER OF NODES MAXNODE	=	1000
NUMBER OF DISCRETE VARIABLES NDIS	=	0
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS	=	9
NUMBER OF UNIFORM STEP VARIABLES NUNI	=	Ø
TOLERANCE FOR THE CONSTRAINTS TOLCONS	=	10000000E-01
TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS	=	. 10000000E-02
STOPPING CRITERION FOR UOPT TOLHEXI	=	. 10000000E-02
TOLERANCE FOR THE MULTIPLIERS TOLMULT	=	. 10000000E-03
STOPPING CRITERION FOR QUASID TOLX	=	. 10000000E-06
INITIAL VALUE OF THE UPPER BOUND UPBND	=	. 10000000E+11
STARTING POINT FOR THIS PROBLEM X	1234567890	.20000000E+01 .30000000E+01 .50000000E+01 .50000000E+01 .10000000E+01 .70000000E+01 .3000000E+01 .6000000E+01

OPTIONS IN EFFECT

GRADIENT CHECK AT THE STARTING POINT

ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION

VERTICES AROUND NODE 0 SOLUTION EXAMINED

DETAILED PRINTING REQUESTED

GRADIENT CHECK AT THE STARTING POINT

	ANALYTICAL GRADIENT VECTOR G(I)	NUMERICAL GRADIENT VECTOR Y(I)	V	PERCENTAGE ERROR ECTOR PERCENT(1)
1	75256281E+01	175256281E+01	1	.28875029E-06
2	77036885E+01	277036885E+01	2	.96973452E-07
3	11678879E+02	311678879E+02	3	.50200769E-07
4	71024624E+00	471924624E+00	4	.48847533E-06
5	13250269E+01	5 13250269E+01	5	.50134075E-06
6	.36530360E+01	6 .36530360E+01	6	.43300044E-06
7	.85246476E+02	7 .85246476E+02	7	. 18825451E-08
8	- 13714403E+03	8 13714403E+03	8	.62205117E-09
. 9	27046790E+02	927045 790E+0 2	9	. 16254313E-05
10	. 58615790E+01	10 .58615790E+01	10	. 15268917E-08

THE GRADIENTS APPEAR TO BE CORRECT

FEASIBILITY CHECK AT NODE 0

ITER.	FUNC. LEAST PTH EVAL. FUNCTION		VARIABLE VECTOR X(I)		GRADIENT VECTOR G(I)
0	127510862E+01	1 2 3 4 5 6 7 8 9	.20000000E+01 .30000000E+01 .50000000E+01 .50000000E+01 .10000000E+01 .20000000E+01 .3000000E+01	4 · 5 · 6 · 7 · 8	.23508603E+01 .13674920E+01 33278472E+00 33327035E+00 .47260799E+01 19805800E+01 36330206E-03 .45288908E-03
		10	.10000000E+02	_	16984969E+00

ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER VECTOR RMULT(I)		ALPHA VECTOR AL(I)		CONSTRAINT VECTOR CONS(I)
NOT CALCULATED	1	OBJECTIVE	1	.75300000E+03
	2	.10000000E+01	2	.10500000E+03
	3	.10000000E+01	3	.50000000E+01
	4	.10000000E+01	40	.90000000E+01
	5	.10900000E+01	5	.40000000E+01
	6	.10000000E+01	6	.76 00 0000E+02
	3	.10000000E+01	7	.11706000E+03
	8	. 10000000E+01	8	. 10000000E+02
	9	.10000000E+01	9	.12000000E+02

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER.	FUNC.	LEAST PTH		VARIABLE		GRADIENT
NO.	EVAL.	FUNCTION		VECTOR X(I)		VECTOR G(1)
0	3	.90443858E+ 03	1	.20000000E+01	1	75256281E+01
			2	.3000000E+01	2	77036885E+01
			3	.50000000E+01	3	11678879E+02
			4	.50000000E+01	4	71024624E+00
			5	. 10000000E+01	5	13250269E+01
			б	.20000000E+01	б	.36530360E+01
			7	.70000000E+01	7	.85246476E+02
			8	.30000000E+01	8	13714403E+03
			9	.60000000E+01	9	27046790E+02
			10	. 10000000E+02	10	.58615790E+01
31	52	. 83087861E+ 00	1	.22568303E+01	1	.81008085E-06
		100,70,00,100	$\hat{2}$.41306565E+01	2	.38716761E-07
			3	.91750958E+01	3	27418885E-05
			4	.50515773E+01	4	.67836075E-06
			5	.21595763E+01	5	21778055E-05
			6	.11890908E+01	6	. 10224182E- 0 5
			7	.21969076E+00	7	12012407E-05
			8	.10529234E+02	8	.20552927E-05
			9	. 10000000E+02	9	.17542098E-07
			10	.7000000E+01	10	11513731E-07

THE ABOVE ITERATION HAS RESULTED IN A NONFEASIBLE SOLUTION. THE CONSTRAINTS AT THIS POINT ARE GIVEN AS FOLLOWS. IT MAY BE NOTED THAT THE STARTING POINT FOR THE NEXT ITERATION IS NOT THE ABOVE SOLUTION BUT THE BEST FEASIBLE POINT OBTAINED SO FAR

 COMES
 1 -.18224975E+02
 2 -.18777411E+02
 3 -.18889747E+02

 4 .60150933E+00
 5 -.18887267E+02
 6 -.19034638E+02

 7 -.64467760E+01
 8 -.17313448E+02
 9 -.14306670E+02

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALUE OF HEXI FOR THIS ITERATION HEXI = 0.

MULTIPLIER		ALPHA		CONSTRAINT
VECTOR RMULT(I)		VECTOR AL(I)		VECTOR CONS(I)
NOT CALCULATED	1	OBJECTIVE	1	.75300000E+03
	2	. 10000000E+02	2	. 10500000E+03
	3	.10000000E+02	3	.50000000E+01
	4	. 10000000E+02	4	.90000000E+01
	5	. 10000000E+02	5	.40000000E+01
	6	.10000000E+02	6	.76000000E+02
	7	.1000000E+02	7	.11700000E+03
	8	.10000000E+02	8	.10000000E+02
	9	. 10000000E+02	9	.12000000E+02

		200 HOU AND THE WIN WHI 200 HOU DOD THE CHE THE WAY				
ITER.	FUNC.	LEAST PTH		VARIABLE		GRADIENT
NO.	EVAL.	FUNCTION		VECTOR X(I)		VECTOR G(1)
0	55	.83403970E+03	. 1	.20000000E+01	1	. 12220232E+02
U	00	.001007.00.00		.3000000E+01	$\hat{\mathbf{z}}$	
			ຊ	.50000000E+01		16074643E+02
			4	.50000000E+01	_	42948443E+01
			2 3 4 5	. 10000000E+01	5	.37032160E+02
			6	.20000000E+01	_	11186646E+02
			7	.7000000E+01	7	
			8	.3000000E+01	8	
				.6000000E+01		67731597E+02
			9			23412785E+01
			10	. 10000000E+02	10	23412703ETV1
34	109	.27460677E+02	1	.21560750E+01		41073479E-08
OT.	107	.214000112102		.23437964E+01		.67819377E-08
			2 3 4 5	.87376438E+01	3	
			4	.51001570E+01	4	.86245086E-09
			- T	.93844466E+00		14931227E-08
			6	. 14417619E+01	6	60392648E-09
			7	. 13575276E+01	7	23646503E-08
			8	.98225645E+01	á	.23678161E-07
			9			26784530E-08
			-	.82103568E+01	9	
			10	.84317146E+01	10	. 23228993E-08

150 ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0 VALUE OF HEXT FOR THIS ITERATION HEXI = .26157974E+02 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(I) VECTOR AL(I) VECTOR CONS(I) NOT CALCULATED OBJECTIVE 1 1 .26157974E+02 2 .12127709E+01 3 .71195157E+00 .10000000E+02 .10000000E+02 .10000000E+02 4 4 .62379765E+01 5 .73409619E+00 6 .32622001E+00 5 .10000000E+02 .10000000E+02 6 7 .10000000E+02 7 .62246040E+00 8 .50896449E+02 9 .37265278E+00 8 .10000000E+02 .10000000E+02 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD ITER. FUNC. LEAST PTH VARIABLE GRADIENT NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I) 111 -.99930730E-10 .21560750E+01 1 -.73440535E+01 2 .23437964E+01 2 -.91563322E+01 3 .87376438E+01 3 -.25247125E+01 4 .51001570E+01 4 .80125634E+00 5 .93844466E+00 5 -.41231107E+01

.14417619E+01 .13575276E+01

.98225645E+01

.82103568E+01

.84317146E+01

.21708621E+01

.23626031E+01

.87705716E+01

.50963275E+01

.98686990E+00

. 14313851E+01

.13240404E+01

.82753891E+01

.98283790E+01

10 .83796887E+01 10 -.14781230E-05

6

8

0

10

1

2

3

4

5

6

7

8

Q

22

182 -. 16256787E+01

6 .17670474E+01 7 .13575276E+02

8 -. 16484097E+02

9 -.71585729E+01

10 .28634291E+01

1 -.50730796E-05 2 .77705643E-06 3 .17577970E-05

4 -.34707885E-06

5 .14586852E-05

6 -.28553553E-06

7 .43704627E-07

8 -.13665007E-05

9 .38012546E-05

ITERATION NUMBER 4 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0

VALITE.	OF	HEXT	FOR	THIS	ITERATION	HEXI =	.24429584E+02

	MULTIPLIER		ALP HA		CONSTRAINT
	VECTOR RMULT(I))	VECTOR AL(I)		VECTOR CONS(1)
1	ACTIVE	1	OBJECTIVE	1	. 24429584E+02
2	.20639 586E-0 1	2	. 14447710E+00	2	.11576112E+00
3	.31307169E+00	3	.21915018E+01	3	.52552777E-01
4	.36460515E-16	4	INACTIVE	4	.61580870E+01
5	.28759013E+00	5	.20131309E+01	5	.54299038E-01
6	. 17167685E+01	6	.12017380E+02	6	.20246684E-01
7	.47588815E+00	7	.33312170E+01	7	.44133774E-01
8	.46211204E-26	8	INACTIVE	8	.50084718E+02
9	. 13796896E+ 0 1	9	.96578269E+01	9	.24121940E-01

ITER.	FUNC. LEAST PTH EVAL. FUNCTION		VARIABLE VECTOR X(I)	CRADIENT VECTOR G(I)
0	18699930730E-10	1 2 3 4 5 6 7 8 9	.21708621E+01 .23626031E+01 .87705716E+01 .50963275E+01 .98686990E+00 .14313851E+01 .13240404E+01 .98283790E+01 .82753891E+01	172956727E+01 291039317E+01 324588569E+01 4 .77062008E+00 540262602E+01 6 .17255405E+01 7 .13240404E+02 816402695E+02 968984435E+01 10 .27593774E+01
26	23710155877E+00	1 2 3 4 5 6 7 8 9	.21720012E+01 .23636878E+01 .87738835E+01 .50959869E+01 .99064958E+00 .14305751E+01 .13216477E+01 .98287205E+01 .82800929E+01	1 .36540935E-05 2 .24744698E-05 3 .23532304E-06 412116846E-06 535062561E-06 6 .16126493E-06 7 .18913223E-05 8 .22694965E-05 918209734E-05 10 .77182968E-06

ITERATION NUMBER 5 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH) FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 0 VALUE OF HEXI FOR THIS ITERATION HEXI = .24306379E+02 MULTIPLIER ALPHA CONSTRAINT VECTOR RMULT(I) VECTOR AL(I) VECTOR CONS(I) 1 OBJECTIVE ACTIVE .24306379E+02 2 .15199347E-02 3 .94930773E-04 .20549399E-01 2 .14384579E+00 3 .31202486E+00 3 .21841740E+01 INACTIVE .36460515E-16 4 .61485955E+01 5 .95152708E-04 4 5 .28705003E+00 5 .20093502E+01 . 12015791E+02 6 .17165416E+01 6 6 .14308628E-04 7 .47452060E+00 7 .33216442E+01 7 .60863890E-04 .50023932E+02 .46211204E-26 3 8 INACTIVE 83 0 .13759252E+01 9 .96314765E+01 9 .20824199E-04 UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD come down now below more used name page and apple down most men, down make these page come made hand to ITER. FUNC. LEAST PTH NO. EVAL. FUNCTION VARIABLE CRADIENT VECTOR X(I) VECTOR G(I) 241 -.99930730E-10 1 .21720012E+01 1 -.72923097E+01 9. .23636878E+01 2 -. 91006231E+01 3 .87738835E+01 3 -.24522330E+01 4 .50959869E+01 4 .76789536E+00 5 .99064958E+00 5 -. 40187008E+01 6 . 14305751E+01 6 .17223004E+01 7 . 13216477E+01 7 . 13216477E+02 8 -. 16397913E+02 8 .98287205E+01 9 .82800929E+01 9 -.68796283E+01 .83759257E+01 10 .27518514E+01 10 24 290 -. 14015349E-03 1 .21719964E+01 1 .48677419E-03 2 .70040610E-03 3 .30838701E-04 .23636830E+01 3 .87739257E+01 4 .50959845E+01 4 -.34034597E-05 5 .99065474E+00 5 -. 17216402E-03 6 .14305739E+01 6 .73625402E-04 .13216442E+01 7 -. 20417606E-03

8

9

.98287258E+01

.82800916E+01

10 .83759266E+01 10 .35032717E-04

8 .11421046E-02

9 -.88128702E-04

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 0

THE SOLUTION WITH 9 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X	1 4 7 10	.21719964E+01 .50959845E+01 .13216442E+01 .83759266E+01	2 5 8	.23636830E+01 .99065474E+00 .98287258E+01	3 6 9	.87739257E+01 .14305739E+01 .82800916E+01
CONS	1	.24306209E+02	2	.23905159E-07	3	.83400664E-09
	4	.61485034E+01	5	.13207000E+08	6	.39108272E-10
	7	.67814199E-09	8	.50023961E+02	9	.21123014E-09

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 315 OUT OF THESE 294 WERE PERFORMED AT THIS NODE

Appendix 1

Listing of subroutines BOUND, DISOPT3,

FIND, GRDCHK3, LEASTPD, OBJ,

QUASID AND UOPT

```
SUBROUTINE BOUND (CONS.DIS.GCONS.IAR.IDCONS.IDDIS.IDVAR.VL, VU, X, XDBOU. 10
                                                                                            BOU
                                                                                                  20
C
                                                                                            BOU
                                                                                                   30
C
        THIS SUBROUTINE DETERMINES THE UPPER BOUND BY FINDING THE BEST FEABOU
                                                                                                   40
       SIBLE DISCRETE POINT IN THE VICINITY OF THE CIVEN POINT X. TO DO BOU SO IT (1) FINDS THE NEAREST LOWER AND NEAREST UPPER DISCRETE VALUEBOU
\mathbf{C}
                                                                                                  50
C
                                                                                                   60
\mathbf{C}
        FOR EACH NONDISCRETE ELEMENT OF X AND THESE ARE STORED IN ARRAYS
                                                                                            ROTT
                                                                                                  70
\overline{\mathbf{C}}
        VL AND VU (2) FOR K NON-DISCRETE ELEMENTS 2**K DISCRETE COMBINA-
                                                                                            BOU
                                                                                                  80
        TIONS ARE POSSIBLE. EACH COMBINATION REPRESENTS A DISCRETE POINT.
                                                                                            BOU
                                                                                                  90
        THE OBJECTIVE FUNCTION IS EVALUATED AT EACH POINT AND, IF LESS
\mathbf{C}
                                                                                            BOU
                                                                                                 100
        THAN THE CURRENT UPPER BOUND, THE FEASIBILITY OF THIS POINT IS ALSO CHECKED (3) THE FEASIBLE DISCRETE POINT YIELDING THE LOWEST
C
                                                                                            BOU
                                                                                                 110
C
                                                                                            ROIT
                                                                                                 120
       OBJECTIVE FUNCTION VALUE IS STORED IN ARRAY XD AND THE OBJECTIVE FUNCTION VALUE IS THE DESIRED UPPER BOUND (4) IF AN UPPER BOUND
\mathbf{C}
                                                                                            BOU
                                                                                                 130
C
                                                                                            BOU 140
C
        IS FOUND UPDATED, A LOGICAL VARIABLE, IS TRUE
                                                                                            BOU 150
C
                                                                                            BOU
                                                                                                 160
\mathbf{C}
        INPUT
                  DISCRET, IAR, IDCONS, II, NNCON, NORCONS, REVERSE, TOLCONS, UPBND, BOU 170
C
                                                                                            BOU 180
                                                                                            BOU 190
C
       OUTPUT UPBND. UPDATED. XD
                                                                                            BOU 200
C
                                                                                            BOU 210
      DIMENSION CONS(1), DIS(1), GCONS(1), IAR(1), IDCONS(1), IDDIS(1), IIDVAR(1), VL(1), VU(1), X(1), XD(1), Y(1)
                                                                                            BOU 220
                                                                                            BOU 230
C
                                                                                            BOU 240
        REAL LARGE
                                                                                            BOU 250
       LOGICAL DISCRET, REVERSE, UPDATED
                                                                                            BOU 260
\mathbf{C}
                                                                                            BOU 270
       COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP
COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX
                                                                                            BOU 280
                                                                                            BOU 290
       COMMON /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                            BOU 300
       COMMON /5/ IFIND, II, IPT, JPT, MAXIFN, MAXITN, MODE, NA, NCONS, NNCON, NX
                                                                                            BOU 310
       COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU
COMMON /7/ IFN, IND1, IND2
                                                                                            BOU 320
                                                                                            BOU 330
       COMMON /9/ IEXIT, SKIPOBJ, UOBJ, UPDATED, WRONG
                                                                                            BOU 349
       COMMON /10/ GRADCHK, HOLDVAR, ONESOL, REVERSE, VERTCHK
                                                                                            BOU 350
C
                                                                                            BOU 360
        INITIALIZE. IF THE SOLUTION IS ALREADY DISCRETE RETURN
                                                                                            BOU 370
                                                                                            BOU 389
        IA=II
                                                                                            BOU 390
       XLD= XL
                                                                                            BOU 400
       XUD=XU
                                                                                            BOU 410
        IC=0
                                                                                            BOU 420
       UPDATED= . FALSE .
                                                                                            BOU 430
        IF (DISCRET) GO TO 170
                                                                                            BOU 440
\mathbf{C}
                                                                                            BOU 450
       DO 10 I=1, NNCON
                                                                                            BOU 460
       Y(1)=X(1)
                                                                                            BOU 470
10
       CONTINUE
                                                                                            BOU 480
C
                                                                                            BOU 490
       IF (.NOT.REVERSE) GO TO 20
                                                                                            BOU 500
       IC= 1
                                                                                            BOU 510
       I I = 0
                                                                                            BOU 520
       K=0
                                                                                            BOU 530
       REVERSE= . FALSE.
                                                                                            BOU 540
       GO TO 50
                                                                                            BOU 550
C
                                                                                            BOU 560
\mathbf{C}
       TAKE ADVANTAGE OF THE FACT THAT FIND HAS ALREADY BEEN CALLED ONCE BOU 570
\mathbf{C}
                                                                                            BOU 580
20
       CONTINUE
                                                                                            BOU 590
       IF (XL.LE.-LARGE) GO TO 30
                                                                                            BOU 600
       IF (XU.GE.+LARGE) GO TO 40
                                                                                            BOU 610
       IDDIS(1)=II
                                                                                            BOU 620
       K= 1
                                                                                            BOU 630
       X(II)=XL
                                                                                            BOU 640
       VL(II)=XL
                                                                                            BOU 650
       VU(II)=XU
                                                                                            BOU 660
       GO TO 50
                                                                                            BOU 670
30
       K=0
                                                                                            BOU 680
       X(II)=XU
                                                                                            BOU 690
       CO TO 50
                                                                                            BOU 700
40
       K=0
                                                                                            BOU 710
       X(II) = XL
                                                                                            BOU 720
C
                                                                                            BOU 730
```

```
C
       CENERATE ARRAYS VL AND VII
                                                                                BOU 740
\mathbb{C}
                                                                                BOU 750
50
       IF (II.EQ.NNCON) GO TO 80
                                                                                BOU 760
       IFIND= II+1
                                                                                BOU 770
       CALL FIND (DIS, IAR, X)
                                                                                BOU 780
       IF (DISCRET) GO TO 80
                                                                                BOU 790
       IF (XL.LE.-LARGE) GO TO 60
                                                                                BOU BOO
       IF (XU.GE.+LARGE) GO TO 70
                                                                                BOU 810
       K= K+1
                                                                                BOU 820
       IDDIS(K)=II
                                                                                BOU 830
       MCID=NL
                                                                                BOU 840
       VLCID : XI.
                                                                                BOU 850
       VUCLI)=XU
                                                                                BOU 250
       GO TO 50
                                                                                BOU 870
       XCLD=XU
60
                                                                                BOU 880
       GO TO 50
                                                                                BOU 890
       X(II)=XL
70
                                                                                BOU 990
       CO TO 50
                                                                                BOU 910
                                                                                BOU 920
       USE A NUMBERING SCHEME TO IDENTIFY A DISCRETE POINT. EVALUATE THE BOU 939
(1
C
       OBJECTIVE FUNCTION AT THIS POINT. CHECK FEASIBILITY IF NECESSARY
                                                                                BOU 940
                                                                                BOU 950
80
       K2=2**K
                                                                                BOU 960
\mathbb{C}
                                                                                BOU 970
      DO 150 I=1,K2
                                                                                BOU 989
       11=1
                                                                                BOU 990
       IF (K.EQ.0) CO TO 110
                                                                                BOUICOO
\mathbb{C}
                                                                                BOU1010
       DO 100 J=1,K
                                                                                BOU1020
       M=(K+1)-.T
                                                                                BOU1030
       MP=2**(M-1)
                                                                                BOU1040
       IB=(I-II)/MP
                                                                                B0U1050
       II=II+IB*MP
                                                                                BOU1060
       IF (IB.EQ.0) GO TO 90
                                                                                B0U1070
       X(IDDIS(M))=VU(IDDIS(M))
                                                                                BOU1030
       CO TO 100
                                                                                BOU1090
90
       X(IDDIS(M))=VL(IDDIS(M))
                                                                                BOU1100
100
       CONTINUE
                                                                                BOU1110
C
                                                                                BOU1120
       IND1=0
                                                                                BOU1130
110
       CALL FUN (CONS, GCONS, IDCONS, IDVAR, X)
                                                                                BOULT40
                                                                                BOU1 150
       IF (CONS(1).GE.UPBND) GO TO 150
                                                                                BOU1160
       IF (NORCONS.EQ.1) GO TO 130
                                                                                BOU1170
                                                                                BOU1180
       CALL FUN (CONS, GCONS, IDCONS, IDVAR, X)
                                                                                BOII1190
       IND2=1
                                                                                B0U1200
\mathbb{C}
                                                                                BOU1210
      DO 120 M=2.NORCONS
                                                                                BOU1220
       IF ((CONS(M)-TOLCONS).LT.0.) GO TO 150
                                                                                B0U1230
120
      CONTINUE
                                                                                B0U1240
\mathbf{C}
                                                                                B0U1250
130
      UPBND=CONS(1)
                                                                                BOU1260
      UPDATED=. TRUE.
                                                                                B0U1270
                                                                                BOU1289
      DO 140 M=1,N
                                                                                BOU1290
      XD(M) = X(M)
                                                                                B0U1300
140
      CONTINUE
                                                                                BOU1310
47
                                                                                BOU1320
150
      CONTINUE
                                                                                BOU1339
C
                                                                                BOU1840
      DO 160 I=1, NNCON
                                                                                BOU1350
      X(T) = Y(T)
                                                                                BOU1360
160
      CONTINUE
                                                                                BOU1370
\mathbf{C}
                                                                                B0U1380
      DISCRET= . FALSE .
                                                                                BOU1390
170
      CONTINUE
                                                                                BOU1400
       AI=II
                                                                                BOU1410
      KLEKUD
                                                                                BOU1420
      XU=XUD
                                                                                BOU1430
      IF (IC.EQ.1) REVERSE=. TRUE.
                                                                                BOU1440
      DETURN
                                                                                BOU1450
      END
                                                                                BOU1460-
```

SUBROUT	INE DISOPTS (DIS, IAR, X, XD)	DIS	10 20
	BROUTINE FINDS THE DISCRETE SOLUTIONS BY EMPLOYING THE	DIS	30
BRANCH A	AND BOUND ALGORITHM. REFER TO REPORT SOC-XXX FOR DETAILS	DIS	40 50
INPUT	DIS, N, NORCONS, X	DIS	60
OUTPUT	XI)	DIS	70 80
		DIS	90
DESC		DIS DIS	
		DIS	
*****	************ HOLLERITH VARIABLES ***********	DIS	
PRINTP	OFFERS THESE OPTIONS FOR PRINTING THE RESULTS	DIS	
	NONE NO PRINTING AT ALL. OTHER PARAMETERS INEFFECTIVE ONLYDIS ONLY DISCRETE SOLUTIONS WILL BE PRINTED		
	NODEOPT OPTIMAL SOLUTION AT EACH NODE WILL BE PRINTED	DIS	180
	ALL IN ADDITION TO THE OPTIMAL SOLUTION AT EACH NODE	DIS	190
	THE DETAILS OF EACH ITERATION IN SUBROUTINE UOPT WILL ALSO BE PRINTED	DIS	200
		DIS	220
PRINTID	YES IF THE INPUT DATA IS TO BE PRINTED. OTHERWISE NO	DIS	
*****	**************		
TAD	AN ADDAY OF CHIEVED ALAWA ON NODCOMO DI EMENTO TICED ACLUODE	DIS	
IAR	AN ARRAY OF 6*IEXTRA+4*N+2*NORCONS ELEMENTS USED AS WORK-ING SPACE	DIS	
		DIS	290
IDCONS	AN ARRAY IDENTIFYING THE ACTIVE CONSTRAINTS. ACTIVE CONSTRAINTS ARE THOSE CONSTRAINTS WHICH ARE ACTUALLY USED IN		
	THE OPTIMIZATION. OTHERS ARE IGNORED	DIS	
IDDIS	USED BY SUBROUTINE BOUND TO STORE THE INDICES OF THOSE	DIS	
10013	DISCRETE VARIABLES WHICH ARE NOT DISCRETE IN THE SOLUTION		
TWEELD	AN ADDAR IDENTIFICATION OFFICER FLAD LADI NO ENTROPE ADD ATTOLOGOUR	DIS	
IDVAR	AN ARRAY IDENTIFYING THOSE VARIABLES WHICH ARE ALLOWED TO VARY IN THE OPTIMIZATION	DIS	
		DIS	390
IEXIT	RETURNED BY SUBROUTINE QUASID. IEXIT=1 INDICATES NORMAL EXECUTION. 2 IMPLIES THAT THE PROGRAM IS UNABLE TO FIND A		
	DOWNHILL DIRECTION AND. THEREFORE, NO OPTIMIZATION IS POSS	SDIS	420
	IBLE. REASONS COULD BE - EPS IS TOO SMALL, CRADIENTS ARE INCORRECT, DIMENSIONS ARE WRONG, OR ANY OTHER PROGRAMMING		
	ERROR. 3 IMPLIES AN INTERRUPTION BECAUSE MAXIFN HAS BEEN		
	EXCEEDED	DIS	
IEXTRA	IT IS USED TO ESTIMATE THE REQUIREMENT OF WORKING SPACE	DIS	480
	FOR THE PROGRAM. ITS DEFAULT VALUE IS 2*N, WHICH IS SUFFI-	-DIS	490
	CIENT FOR MOST OF THE PROBLEMS. IN THE RARE CASE WHEN IEXTRA IS NOT LARGE ENOUGH THE PROGRAM STOPS WITH A MESS-	DIS	
	AGE. IEXTRA MAY BE INITIALIZED IN THE MAIN PROGRAM	DIS	520
IFIND	INDEX OF THE FIRST VARIABLE EXAMINED BY SUBROUTINE FIND	DIS	
AL IND	FOR A DISCRETE VALUE	DIS	550
IFN	COUNTS THE FUNCTION EVALUATIONS	DIS	
IFM	COUNTS THE FUNCTION EVALUATIONS	DIS	
II	RETURNED BY SUBROUTINE FIND ALONG WITH XL AND XU. IT IS	DIS	
	THE INDEX OF THAT SOLUTION VARIABLE WHOSE NEAREST LOWER DISCRETE VALUE IS XL AND THE NEAREST UPPER DISCRETE VALUE	DIS	
	IS XU	DIS	620
IND1	EQUALS 0 WHEN THE OBJECTIVE FUNCTION VALUE ALONE IS RE-	DIS	
	QUIRED. OTHERWISE, ALL THE CONSTRAINTS MUST BE EVALUATED	DIS	650
	BY SUBROUTINE FUN	DIS	
IND2	THE GRADIENTS NEED NOT BE EVALUATED BY SUBROUTINE FUN	DIS	
	WHEN IND2=0	DIS	
INT	THAT PART OF ARRAY IAR WHICH HAS FOUR ELEMENTS FOR EACH	DIS	
	NODE IS REFERRED TO AS INT BY SOME SUBROUTINES	DIS	720
		nis	730

a

```
\mathbf{C}
       IP
                THE PARAMETER P OF THE LEAST PTH OPTIMIZATION
                                                                                  DIS 740
\mathbf{C}
                                                                                  DIS 750
\mathbb{C}
       IPT
                THE RESULTS OF THE OPTIMIZATION ARE PRINTED AFTER EVERY
                                                                                  DIS 760
\mathbf{C}
                IPT ITERATIONS IF IT IS POSITIVE
                                                                                  DIS 770
C
                                                                                  DIS 780
                IDENTIFIES ALL THE CONSTRAINTS IN A SEQUENTIAL ORDER. ONCEDIS 790 INITIALIZED IT IS NEVER CHANGED. USED INSTEAD OF IDCONS DIS 800
C
       JDCONS
\mathbb{C}
0
                WHENEVER NECESSARY
                                                                                  DIS 810
\mathbb{C}
                                                                                  DIS 820
       JPT
                INITIALIZED BY SUBROUTINE DISOPTS. IT CONTROLS PRINTING
C
                                                                                  DIS 830
C
                                                                                  DIS 840
       LASTDIS A POINTER TO THE FIRST UNOCCUPIED ELEMENT OF ARRAY DIS
\mathbf{C}
                                                                                  DIS 850
\mathbb{C}
                                                                                  DIS 860
       LASTIAR A POINTER TO THE FIRST UNOCCUPIED ELEMENT OF ARRAY IAR
                                                                                  DIS 870
C
                                                                                  DIS 880
       LCONS, LER, LCCONS, LCRADU, LH, LRMULT, LW, LX, LY
\mathbb{C}
                                                                                  DIS 890
                LCONS POINTS TO THAT ELEMENT OF ARRAY X WHICH STORES THE
C
                                                                                  DIS 900
                FIRST ELEMENT OF ARRAY CONS. LER POINTS TO THAT ELEMENT OFDIS 910
C
                ARRAY X WHICH STORES THE FIRST ELEMENT OF ARRAY ER. OTHERSDIS 929
C
                MAY BE INTERPRETED SIMILARLY
                                                                                  DIS 930
C
                                                                                  DIS 940
      LIDCONS, LIDDIS, LIDVAR, LINT, LJDCONS
LIDCONS POINTS TO THAT ELEMENT OF ARRAY IAR WHICH STORES
\mathbb{C}
                                                                                  DIS 950
C
                                                                                  DIS 960
                THE FIRST ELEMENT OF ARRAY IDCONS. LIDDIS POINTS TO THAT ELEMENT OF ARRAY IAR WHICH STORES THE FIRST ELEMENT OF
\mathbf{c}
                                                                                  DIS 970
C
                                                                                  DIS 980
                                                                                  DIS 990
C
                ARRAY IDDIS. OTHERS MAY BE INTERPRETED SIMILARLY
C
                                                                                  DISTAGO
C
       MAXIFN
                THE MAXIMUM NUMBER OF FUNCTION EVALUATIONS PERMITTED AT
                                                                                  DIS1010
C
                EACH NODE
                                                                                  DIS1020
                                                                                  DIS1030
                THE MAXIMUM NUMBER OF ITERATIONS PERMITTED WITHIN SUB-
\mathbb{C}
       MAXITN
                                                                                  DIS1040
C
                ROUTINE UOPT AT EACH NODE. EACH ITERATION WITHIN UOPT IN- DIS1050
C
                VOLVES A CALL TO QUASID WHICH PERFORMS THE UNCONSTRAINED
                                                                                  DIS1060
63
                OPTIMIZATION
                                                                                  DIS1070
C
                                                                                  DISTARA
       MAXNODE THE MAXIMUM PERMISSIBLE NUMBER OF NODES THAT MAY BE SEAR- DIS1090
C
0
                CHED FOR A DISCRETE SOLUTION
                                                                                  DIS1100
                                                                                  DIS1110
       MODE
C
                EQUALS 1 IF THE HESSIAN IN SUBROUTINE QUASID, INITIALLY,
                                                                                  DIS1120
                IS REQUIRED TO BE AN IDENTITY MATRIX. OTHERWISE, THE HESS-DIS1130
(
                IAN GENERATED BY THE LAST CALL TO QUASID, WHICH IS ALREADYDIS1140
C
C
                IN LDL(TRANSPOSE) FORM, IS USED
                                                                                  DIS1150
\mathbf{C}
                                                                                  DIS1160
                THE NUMBER OF VARIABLES IN THE PROBLEM. ALWAYS GREATER
C
       N
                                                                                  DIS1170
C
                THAN 1
                                                                                  DIS1189
\mathbb{C}
                                                                                  DIS1190
                THE NUMBER OF ACTIVE CONSTRAINTS
       NΑ
                                                                                  DIS1200
\mathbf{C}
                                                                                  DIS1210
\mathbf{C}
       NCONS
                THE TOTAL NUMBER OF CONSTRAINTS IN THE PROBLEM AT ANY TIMED 181220
                                                                                  DIS1230
\{ \}
       NNCON
                THE NUMBER OF NON-CONTINUOUS VARIABLES IN THE PROBLEM
                                                                                  DIS1240
                                                                                  DIS1250
                THE NUMBER OF ADDITIONAL CONSTRAINTS IN THE PROBLEM AT ANYDIS1260 TIME. EACH OF THESE CONSTRAINTS CORRESPONDS TO A NODE IN DIS1270
       NODE
                THE BRANCH AND BOUND ALGORITHM. THOSE NODES WHICH HAVE
                                                                                  DIS1280
                BEEN FATHOMED ARE NOT INCLUDED IN THIS NUMBER
                                                                                  DIS1290
                                                                                  DIS1300
       NODES
                AS OPPOSED TO NODE, NODES EQUALS THE CUMULATIVE NUMBER OF DISIBLE
                NODES THAT HAVE BEEN ADDED SO FAR
                                                                                  DIS1320
                                                                                  DIS1330
       NORCONS THE NUMBER OF CONSTRAINTS IN THE ORIGINAL PROBLEM. THE OB-D151340
                JECTIVE FUNCTION IS CALLED THE FIRST CONSTRAINT AND MUST
                                                                                 DIS1350
                DE COUNTED WITH THEM
                                                                                  DIS1360
                                                                                  DIS1370
      DIS1390
      DISCRET RETURNED BY SUBROUTINE FIND. IT IS TRUE IF THE OPTIMIZA-
                                                                                  DIS1400
                TION AT ANY NODE RESULTS IN A DISCRETE SOLUTION
                                                                                  DIS1410
                                                                                  DIS1420
      FEASBLE TRUE IF THE OPTIMIZATION AT ANY NODE RESULTS IN A FEASIBLED 181430
0
               SOLUTION
                                                                                  DIS1440
\mathbf{C}
                                                                                  DIS1450
      FEASCHK TRUE IF SUBROUTINE UOPT IS PERFORMING A FEASIBILITY CHECK DIS1460
```

C

C

C

C C

C

 \mathbb{C}

0 6:

()

(C

01

C		TO ENSURE THE EXISTENCE OF A FEASIBLE SOLUTION	DIS1470
C			DIS1480
C	GRADCHK	IF IT IS TRUE SUBROUTINE GRDCHK3 IS CALLED BY DISOPTS TO	DIS1490
C		VERIFY THE GRADIENTS AS DEFINED BY THE USER IN SUBROUTINE	DIS1500
C		FUN	DIS1510
C			DIS1520
C	HOLDVAR	IF IT IS TRUE THEN ONE SOLUTION VARIABLE IS ALWAYS HELD	DIS1530
C		CONSTANT IN THE OPTIMIZATION AT ALL THE NODES EXCEPTING 0	
C			DIS1550
C	MULTS	TRUE IF THE MULTIPLIERS FOR THE ERROR FUNCTIONS ARE TO BE	
C		CALCULATED BY SUBROUTINE LEASTPD. ARRAY GRADU IS NOT CAL-	
C		CALCULATED IN THIS CASE	DIS1580
G .			DIS1590
C	ONESOL	IF IT IS TRUE ONLY ONE OPTIMAL DISCRETE SOLUTION IS FOUND	
C	10. art w 4001 to 400 to		DIS1610
C	REVERSE	IF IT IS TRUE THEN THE ORDER IN WHICH THE VARIABLES ARE	DIS1620
C		EXAMINED BY SUBROUTINE FIND FOR A DISCRETE VALUE IS	DIS1630
C		REVERSE	DIS1640
C			DIS1650
C	SKIPOBJ	IF IT IS TRUE ONLY THE CONSTRAINTS ARE EVALUATED BY SUB-	DIS1660
C		ROUTINE OBJ AND NOTHING ELSE	DIS1670
C			DIS1680
C	UONLY	WHEN IT IS TRUE ONLY UOBJ IS CALCULATED BY SUBROUTINE	DIS1690
C		LEASTPD AND NOTHING ELSE	DIS1700
C			DIS1710
	UPDATED	RETURNED BY SUBROUTINE BOUND. TRUE IMPLIES THAT THE UPPER	DIS1720
C		BOUND HAS INDEED BEEN UPDATED	DIS1730
C			DIS1740
C	VERTCHK	IF IT IS TRUE THEN THE DISCRETE POINTS SURROUNDING THE	DIS1750
C		SOLUTION AT NODE @ ARE EXAMINED TO YIELD AN UPPER BOUND	DIS1760
C			DIS1770
C	WRONG		DIS1780
C		IENTS AS DEFINED BY THE USER IN SUBROUTINE FUN ARE WRONG	DIS1790
C			DIS1800
C	******	**************************************	DIS1810
C			DIS1820
C	AL	AN ARRAY OF NORCONS+NODE ELEMENTS USED BY SUBROUTINE OBJ	DIS1830
C		TO CONVERT THE CONSTRAINED PROBLEM INTO A MINIMAX PROBLEM	DIS1840
C			DIS1850
C	ALMIN	EACH ELEMENT OF VECTOR AL INITIALLY EQUALS ALMIN	DIS1860
C			DIS1870
C	CONS	AN ARRAY OF NORCONS+NODE ELEMENTS STORING THE CONSTRAINTS	DIS1880
C		EVALUATED BY SUBROUTINE OBJ. THE FIRST CONSTRAINT STORES	DIS1890
C .		THE OBJECTIVE FUNCTION	DIS1900
C			DIS1910
C	DIS	AN ARRAY OF M+IEXTRA*(N+2) ELEMENTS. M IS THE NUMBER OF	DIS1920
C		ELEMENTS USED FOR STORING THE AVAILABLE VALUES FOR THE DIS	DIS1930
C		CRETE VARIABLES. REST OF THE ARRAY IS USED AS WORKING SPA-	DIS1940
C		CE. THE FIRST M ELEMENTS OF DIS ARE INITIALIZED IN THE	DIS1950
C		MAIN PROGRAM ACCORDING TO THE CONVENTION DESCRIBED IN	DIS1960
C		CHAPTER 2 OF REPORT SOC-XXX	DIS1970
C			DIS1980
C	ER	AN ARRAY OF NORCONS+NODE ELEMENTS STORING THE ERROR FUNC-	DIS1990
C		TIONS. EVALUATED BY SUBROUTINE OBJ	DIS2000
C			DIS2010
C	ERMAX	THE MAXIMUM OF THE ERROR FUNCTIONS. EVALUATED BY SUB-	DIS2020
C		ROUTINE LEASTPD	DIS2030
C			DIS2040
C	EST	AN ESTIMATE OF THE OPTIMAL OBJECTIVE FUNCTION VALUE FOR A	DIS2050
C		CONTINUOUS SOLUTION. USED BY SUBROUTINE QUASID	DIS2060
C			DIS2070
C	G OR GRA	ADU .	DIS2080
C		AN ARRAY OF N ELEMENTS STORING THE GRADIENT VECTOR OF THE	
C		UNCONSTRAINED LEAST PTH OBJECTIVE FUNCTION, UOBJ	DIS2100
C		•	DIS2110
C			DIS2120
C		TORS OF ALL THE ORIGINAL CONSTRAINTS IN THE PROBLEM	DIS2130
C			DIS2140
C		THE HESSIAN OF THE UNCONSTRAINED LEAST PTH OBJECTIVE FUNC-	DIS2150
C			DIS2160
C			DIS2170
C	HEXI	THE ARTIFICIAL MARGIN IN THE MINIMAX ALGORITHM PROPOSED BY	DIS2180
C		CHARALAMBOUS AND USED IN THIS PROGRAM	DIS2190

```
DIS2200
\mathbf{C}
                 A NUMBER LARGE ENOUGH TO LIE BEYOND THE RANGE OF VALUES
                                                                                      DIS2210
\mathbb{C}
       LARCE
                                                                                      DIS2220
C
                 THAT THE SOLUTION VARIABLES CAN EVER ASSUME
                                                                                      DIS2230
\mathbb{C}
                 AN ARRAY OF NORCONS+NODE ELEMENTS STORING THE MULTIPLIERS DIS2240
\mathbb{C}
       RMULT
                 FOR THE ERROR FUNCTIONS. USED IN SUBROUTINE UOPT TO SELECTD182250
\mathbb{C}
                 ACTIVE FUNCTIONS. EVALUATED BY SUBROUTINE LEASTPD
                                                                                       DIS2260
C
                                                                                       DIS2270
C
       TOLCONS A SMALL NEGATIVE NUMBER. IF A CONSTRAINT IS SMALLER THAN ODIS2280 BUT LARGER THAN TOLCONS IT IS CONSIDERED AS SATISFIED DIS2290
\mathbf{C}
C
                                                                                       DIS2300
63
                 A SMALL POSITIVE NUMBER. IF A NUMBER LIES WITHIN TOLDIS
                                                                                       DIS2310
\mathbb{C}
       TOLDIS
                 NEIGHBOURHOOD OF A DISCRETE VALUE IT IS ASSUMED TO BE DIS-DISM320
\mathbf{C}
                                                                                       DIS2330
\mathbb{C}
                                                                                       DIS2340
\mathbb{C}
       TOLHEXI A SMALL POSITIVE NUMBER. USED IN SUBROUTINE UOPT AS A
                                                                                       DIS2350
\mathbf{C}
                                                                                       DIS2360
                 STOPPING CRITERION
\mathbf{C}
                                                                                       DIS2370
\mathbf{C}
       TOLMULT A SMALL POSITIVE NUMBER. USED IN SUBROUTINE UOPT TO SELECTDIS2380
67
                 ACTIVE FUNCTIONS. IF THE MULTIPLIER OF A FUNCTION EXCEEDS DIS2390
\mathbb{C}
                                                                                       DIS2400
                 TOLMULT IT IS CONSIDERED ACTIVE
\mathbf{C}
                                                                                       DIS2410
\mathbb{C}
                 A SMALL POSITIVE NUMBER. USED IN SUBROUTINE QUASID TO TESTDIS2420
C
       TOLX
                                                                                       DIS2430
                 THE CONVERGENCE OF THE SOLUTION
(
                                                                                       DIS2440
\mathbb{C}
                                                                                       DIS2450
                 THE UNCONSTRAINED LEAST PTH OBJECTIVE FUNCTION
\mathbf{C}
       UOBJ
                                                                                       DIS2460
\mathbb{C}
                 THE UPPER BOUND ON THE OBJECTIVE FUNCTION. THE INITIAL
                                                                                       DIS2470
       UPBND
\mathbf{C}
                 VALUE IS AN ARBITRARILY LARGE NUMBER. IT IS UPDATED AS
                                                                                       DIS2480
\mathbb{C}
                 SOON AS A DISCRETE SOLUTION IS FOUND
                                                                                       DIS2490
\mathbf{C}
                                                                                       DIS2500
\mathbb{C}
                 A WORKING ARRAY OF 4*N ELEMENTS USED BY SUBROUTINE QUASID DIS2510
\mathbb{C}
       W
                                                                                       DIS2520
\mathbf{C}
                                                                                       DIS2530
                 A WORKING ARRAY OF (N**2+15*N+2*N*NORCONS+10*NORCONS+10*
\mathbb{C}
       X
                 IEXTRA)/2 ELEMENTS. THE FIRST N ELEMENTS STORE THE START-
                                                                                       DIS2540
\mathbb{C}
                 ING POINT AND MUST BE INITIALIZED IN THE MAIN PROGRAM
                                                                                       DIS2550
\mathbb{C}
                                                                                       DIS2560
\mathbb{C}
                 AN ARRAY OF N ELEMENTS STORING THE BEST DISCRETE SOLUTION DIS2570
\mathbf{C}
       XD
                                                                                       DIS2580
\mathbb{C}
       XL AND XU
                                                                                       DIS2590
G
                                                                                       DIS2600
                 SEE II
\mathbb{C}
                                                                                       DIS2610
\mathbf{C}
       \mathbb{C}
                                                                                       DIS2630
\mathbf{C}
       DIMENSION DIS(1), IAR(1), X(1), XD(1)
                                                                                       DIS2640
                                                                                       DIS2650
\mathbb{C}
                                                                                       DIS2660
       LOGICAL DISCRET, FEASBLE, FEASCHK, GRADCHK, HOLDVAR, MULTS, ONESOL, RESTODIS2670
1RE, REVERSE, SKIPOBJ, UONLY, UPDATED, VERTCHK, WRONG DIS2680
                                                                                       DIS2690
\mathbf{C}
        COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP
                                                                                       DIS2700
        COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX
                                                                                       DIS2710
                                                                                       DIS2720
        COMMON /3/ IEXTRA, LASTDIS, LASTIAR, NODE, NODES
                                                                                       DIS2730
        COMMON /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                      DIS2740
        COMMON /5/ IFIND, II, IPT, JPT, MAXIFN, MAXITN, MODE, NA, NCONS, NNCON, NX
        COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU
                                                                                       DIS2750
                                                                                       DIS2760
        COMMON /7/ IFN, IND1, IND2
        COMMON /8/ LAL, LCONS, LER, LGCONS, LGRADU, LH, LINT, LREULT, LW, LX, LY
                                                                                       DIS2770
                                                                                       DIS2780
        COMMON /9/ IEXIT, SKIPOBJ, UOBJ, UPDATED, WRONG
                                                                                       DIS2790
        COMMON /10/ GRADCHK, HOLDVAR, ONESOL, REVERSE, VERTCHK
                                                                                       DIS2800
        COMMON /11/ LIDCONS, LIDDIS, LIDVAR, LJDCONS
                                                                                       DIS2810
\mathbb{C}
                                                                                       DIS2820
        DATA PRINTID, PRINTP/3HYES, 7HNODEOPT/
                                                                                       DIS2830
        DATA ALMIN, EST, UPBND/10., 0., 1.E10/, IEXTRA, MAXNODE/1, 1000/
        DATA IP, IPT, LARGE, MAXIFN, MAXITN/10, 500, 1.0E+10, 1000, 15/
                                                                                       DIS2840
        DATA TOLCONS, TOLDIS, TOLMEXI, TOLMULT, TOLX/-.001,2*.001,.1E-7,.1E-6/DIS2850
        DATA GRADCHK, HOLDVAR, ONESOL, REVERSE, VERTCHK/.T.,.T.,.F.,.F.,.T./
                                                                                       DIS2860
                                                                                       DIS2870
\mathbf{C}
                                                                                       DIS2880
        IF (DIS(1).LT.0.) GO TO 250
                                                                                       DIS2890
\mathbb{C}
                                                                                       DIS2900
        INITIALIZE ARRAY IAR WITH THE NECESSARY INFORMATION FOR EACH
£ .
                                                                                       DIS2910
        DISCRETE VARIABLE
(1
                                                                                       DIS2920
C
```

```
I=0
                                                                              DIS2930
      IZ=0
                                                                              DIS2940
      J = -1
                                                                              DIS2950
      NDIS=0
                                                                              DIS2960
      NUN I = 0
                                                                              DIS2970
10
      CONTINUE
                                                                              DIS2980
      I = I + IZ + 1
                                                                              DIS2990
      J=J+2
                                                                              DIS3000
      IZ=IFIX(DIS(I))
                                                                              DIS3010
      IF (IZ.EQ.0) GO TO 20
                                                                              DIS3020
      IAR(J) = IZ
                                                                              DIS3030
      IAR(J+1) = I+1
                                                                              DIS3040
      IF (IZ.EQ.1) NUNI=NUNI+1
                                                                              DIS3050
      IF (IZ.GT.1) NDIS=NDIS+1
                                                                              DIS3060
      GO TO 10
                                                                              DIS3070
20
      CONTINUE
                                                                              DIS3080
      LASTDIS=I+1
                                                                              DIS3090
      LASTIAR=J
                                                                              DIS3100
      NNCON=NDIS+NUNI
                                                                              DIS3110
C
                                                                              DIS3120
      CALCULATE THE POINTERS FOR THE DIFFERENT VARIABLES
\mathbf{C}
                                                                              DIS3130
C
                                                                              DIS3140
      IF (IEXTRA.EQ. 1) IEXTRA=2*N
                                                                              DIS3150
      ND= IEXTRA+NORCONS
                                                                              DIS3160
      LX= 1
                                                                              DIS3170
      LGCONS=LX+N
                                                                              DIS3180
      LCRADU=LCCONS+N*NORCONS
                                                                              DIS3190
      LH=LGRADU+N
                                                                              DIS3200
      LW=LH+N*(N+1)/2
                                                                              DIS3210
      LY=LW+4*N
                                                                              DIS3220
      LAL=LY+N
                                                                              DIS3230
      LCONS=LAL+ND
                                                                              DIS3240
      LER=LCONS+ND
                                                                              DIS3250
      LRMULT=LER+2*ND
                                                                              DIS3260
      LIDVAR=LASTIAR
                                                                              DIS3270
      LASTIAR=LASTIAR+N
                                                                              DIS3280
      LINT=LASTIAR
                                                                              DIS3290
      LIDCONS=LINT+4*IEXTRA
                                                                              DIS3300
      LJDCONS=LIDCONS+ND
                                                                              DIS3310
      LIDDIS=LJDCONS+ND
                                                                              DIS3320
                                                                              DIS3330
\bar{c} \\ c
      INITIALIZE ARRAYS AND VARIABLES
                                                                              DIS3340
                                                                              DIS3350
      IFN=0
                                                                              DIS3360
      IND1=1
                                                                              DIS3370
      IND2=1
                                                                              DIS3380
      MODE= 1
                                                                              DIS3390
      MULTS=.FALSE.
                                                                              DIS3400
      NODE=0
                                                                              DIS3410
      NODES=-1
                                                                              DIS3420
      N =XN
                                                                              DIS3430
      RESTORE=.FALSE.
                                                                             DIS3440
      SKIPOBJ=.FALSE.
                                                                              DIS3450
      UONLY=.FALSE.
                                                                              DIS3460
      WRONG= . FALSE.
                                                                              DIS3470
      UPBNDT=UPBND
                                                                              DIS3480
      IF (ONESOL) UPBNDT=UPBND*(1.-SIGN(1.E-6, UPBND))+TOLCONS
                                                                              DIS3490
      DO 30 I=1,ND
                                                                              DIS3500
      IAR((LJDCONS-1)+I)=I
                                                                             DIS3510
30
      CONTINUE
                                                                              DIS3520
      DO 40 I=1,N
                                                                              DIS3530
      IAR((LIDVAR-1)+I)=I
                                                                              DIS3540
40
      CONTINUE
                                                                              DIS3550
                                                                             DIS3560
G
Ċ
      INITIALIZE IPT AND JPT USING PARAMETER PRINTP
                                                                              DIS3570
                                                                              DIS3580
                                                                              DIS3590
      IF (PRINTP.EQ. 3HALL) GO TO 50
                                                                              DIS3600
      IPT=0
                                                                              DIS3610
      IF (PRINTP.EQ. 7HNODEOPT) GO TO 50
                                                                              DIS3620
      JPT=0
                                                                              DIS3630
      IF (PRINTP.EQ.7HONLYDIS) GO TO 50
                                                                              DIS3640
      JPT=-1
                                                                              DIS3650
```

```
PRINTID=2000
                                                                               DIS3660
\mathbf{C}
                                                                               DIS3670
C .
       PRINT THE INPUT DATA
                                                                               DIS3680
C
                                                                               DIS3690
50
       CONTINUE
                                                                               DIS3700
       IF (PRINTID.EQ. 2HNO) GO TO 100
                                                                               DIS3710
       PRINT 260, ALMIN, EST, IP, LARGE, MAXIFN, MAXITN, MAXNODE, NDIS, NORCONS, NDIS3720
      1UNI, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX, UPBND, (1, K(1), I=1, N)
                                                                               DIS3730
                                                                               DIS3740
       T= 1
                                                                               DIS3750
60
       IF (I.GT.NNCON) GO TO 90
                                                                               DIS3760
       IF (IAR(J).EQ.1) GO TO 70
                                                                               DIS3770
       IBEG=IAR(J+1)-1
                                                                               DISC780
       TEND= IAR(J)
                                                                               DIS3790
       PRINT 270, I, (IZ, DIS(IBEG+IZ), IZ=1, IEND)
                                                                               DIS3800
       GO TO SO
                                                                               DIS3310
0.2
       PRINT 280, I, DISCIAR(J+1))
                                                                               D183820
110
       1=1+1
                                                                               DIS3830
       J=J+2
                                                                               DIS3840
      CO TO 60
                                                                               DIS3850
00
      CONTINUE
                                                                               DIS3860
      PRINT 290
                                                                               DIS3870
       IF (GRADCHK) PRINT 300
                                                                               DIS2889
       IF (HOLDVAR) PRINT 310
                                                                               DIS3890
       IF (ONESOL) PRINT 320
                                                                               DIS3900
       IF (REVERSE) PRINT 330
                                                                               DIS3910
       IF (VERTCHK) PRINT 340
                                                                               DIS3920
       IF ((IPT.GT.0).AND.(JPT.GT.0)) PRINT 350
                                                                               DIS3930
       IF ((IPT.EQ.0).AND.(JPT.GT.0)) PRINT 360
                                                                               DIS3940
       IF ((IPT.EQ.0).AND.(JPT.EQ.0)) PRINT 370
                                                                               DIS3950
C
                                                                              DIS3960
C
      PERFORU THE GRADIENT CHECK
                                                                               DIS3970
C
                                                                               DIS3989
100
      CONTINUE
                                                                               DIS3990
      IF (GRADCHE) CALL GRDCHES (ECLAL), ECLONS), ECLER), ECLGRADU), IAR(LJD184000
      1DCONED , LARCLIDVAR) , X(LW) , X, X(LY))
                                                                               DIS4010
      IF (WRONG) GO TO 250
                                                                               DIS4020
C
                                                                               DIS4030
C
      SOLVE THE NONLINEAR PROGRAMMING PROBLEM AT THIS NODE
                                                                               DIS4040
C
                                                                               DIS4050
110
      CONTINUE
                                                                               DIS4060
      NODES = NODES + 1
                                                                               DIS4070
      IF (NODES.GT.MAXNODE) GO TO 250
                                                                              DIS4089
      IFND=IFN
                                                                              DIS4090
      1FN=0
                                                                              DIS4100
      Z=UPBND
                                                                              DIS4110
      UPBND=UPBNDT
                                                                              DIS4120
      CALL UOPT (X(LAL), X(LCONS), DIS, X(LER), X(LCRADU), X(LH), IAR(LIDCONS) DIS4130
     1. IAR(LIDVAR), IAR(LINT), IAR(LJDCONS), X(LRMULT), X(LW), X, X(LY))
                                                                              DIS4140
      UPBND=Z
                                                                              DIS4150
      IFN=IFN+IFND
                                                                              DIS4160
      IF (RESTORE) N=N+1
                                                                              DIS4170
      IF (RESTORE) NODE=NODE+1
                                                                              DIS4180
\mathbf{C}
                                                                              DTS4190
\mathbf{c}
      DETERMINE IF THE SOLUTION IS DISCRETE OR NOT
                                                                              DIS4200
                                                                              DIS4210
                                                                              DIS4220
      CALL FIND (DIS, IAR, X)
                                                                              DIS4230
      NA=NCONS
                                                                              DIS4240
      INDE
                                                                              DIS4250
      SKIPOBJ=.TRUE.
                                                                              DIS4260
      CALL OBJ (1., X(LCONS), DIS, 1., 1., IAR(LJDCONS), IAR(LIDVAR), IAR(LINT) DIS4270
     1.1.X
                                                                              DIS4289
      SKIPOBJ=.FALSE.
                                                                              DIS4290
      IND2=1
                                                                              DIS4300
0
                                                                              DIS4310
      PERFORM THE NECESSARY PRINTING AT THE NODE
C
                                                                              DIS4320
C
                                                                              DIS4330
      JF (JPT.LT.0) CO TO 150
                                                                              DIS4340
      IF ((JPT.EQ.0).AND..NOT.DISCRET) GO TO 150
                                                                              DIS4350
      PRINT 390, NODES
                                                                              DIS4360
      IF (DISCRET) PRINT 400
                                                                              DIS4370
      IF (.NOT.FEASBLE) PRINT 460
                                                                              DIS4380
```

```
IF (NODE.EQ.0) GO TO 140
                                                                              DIS4390
      IBEG=LRMULT-1
                                                                              DIS4400
      IEND=LW-1
                                                                              DIS4410
      J=LASTIAR
                                                                              DIS4420
      NDIS=LASTIAR
                                                                              DIS4430
      NUNI=LASTIAR+NODE
                                                                              DIS4440
      DO 130 I=1, NODE
                                                                              DIS4450
      J=J-4
                                                                              DIS4460
      IF (IAR(J).EQ.0) GO TO 120
                                                                              DIS4470
      IEND= IEND+1
                                                                              DIS4480
      X(IEND) = DIS(IAR(J+2)+1)
                                                                              DIS4490
      IAR(NUNI) = IAR(J+1)
                                                                              DIS4500
      NUNI=NUNI+1
                                                                              DIS4510
      GO TO 130
                                                                              DIS4520
120
      IBEG= IBEG+1
                                                                              DIS4530
      X(IBEG) = DIS(IAR(J+2))
                                                                              DIS4540
      IAR(NDIS) = IAR(J+1)
                                                                              DIS4550
      NDIS=NDIS+1
                                                                              DIS4560
130
      CONTINUE
                                                                              DIS4570
      NDIS=LASTIAR-LRMULT
                                                                              DIS4580
      IF (IBEG.GE.LRMULT) PRINT 410, (IAR(NDIS+I), X(I), I=LRMULT, IBEG)
                                                                              DIS4590
      NUNI=LASTIAR+NODE-LW
                                                                              DIS4600
      IF (IEND. GE.LW) PRINT 420, (IAR(NUNI+I), X(I), I=LW, IEND)
                                                                              DIS4610
140
      CONTINUE
                                                                              DIS4620
      PRINT 430, NCONS, (I, X(I), I=1, N)
                                                                              DIS4630
      PRINT 440, (I,X((LCONS-1)+1), I=1,NCONS)
                                                                              DIS4640
      PRINT 450, IFN, IFN-IFND
                                                                              DIS4650
150
      CONTINUE
                                                                              DIS4660
                                                                              DIS4670
C
      IF NO DISCRETE SOLUTION IS REQUIRED RETURN
C
                                                                              DIS4680
C
                                                                              DIS4690
      IF (DIS(1).EQ.0.) GO TO 250
                                                                              DIS4700
\mathbf{C}
                                                                              DIS4710
\mathbf{C}
      GENERATE AN UPPER BOUND BY CHECKING THE SURROUNDING VERTICES
                                                                              DIS4720
C
                                                                              DIS4730
      F=X(LCONS)
                                                                              DIS4740
      IF (NODE.NE.0) GO TO 160
                                                                              DIS4750
      IF (.NOT. VERTCHK) GO TO 169
                                                                              DIS4760
      CALL BOUND (X(LCONS), DIS, X(LGCONS), IAR, IAR(LJDCONS), IAR(LIDDIS), IAD184770
     1R(LIDVAR), X(LW), X(LW+N), X, XD, X(LY))
                                                                              DIS4780
      IF (.NOT. UPDATED) GO TO 160
                                                                              DIS4790
      UPBNDT= UPBND
                                                                              DIS4800
      IF (ONESOL) UPBNDT=UPBND*(1.-SIGN(1.E-6, UPBND))+TOLCONS
                                                                              DIS4810
      IF (JPT.LT.0) GO TO 160
                                                                              DIS4820
      IND2=0
                                                                              DIS4830
      SKIPOBJ=.TRUE.
                                                                              DIS4840
      CALL OBJ (1., X(LCONS), DIS, 1., 1., IAR(LJDCONS), IAR(LIDVAR), IAR(LINT) DIS4850
     1, 1., XD)
                                                                              DIS4860
      SKIPOBJ=.FALSE.
                                                                              DIS4870
      IND2=1
                                                                              DIS4880
      PRINT 380, (I, XD(I), I=1,N)
                                                                              DIS4890
      PRINT 440, (1, X((LCONS-1)+1), I=1, NCONS)
                                                                              DIS4900
160
      CONTINUE
                                                                              DIS4910
C
                                                                              DIS4920
      IF THE SOLUTION IS NOT FEASIBLE FATHOM THE NODE
C
                                                                              DIS4930
                                                                              DIS4940
C
      IF (.NOT.FEASBLE) GO TO 180
                                                                              DIS4950
C
                                                                              DIS4960
      IF THE SOLUTION IS DISCRETE UPDATE THE UPPER BOUND AND FATHOM THE DIS4970
C
      NODE ELSE, ADD ANOTHER NODE TO THE TREE
\mathbf{C}
                                                                              DIS4980
                                                                              DIS4990
      IF (.NOT.DISCRET) GO TO 210
                                                                              DIS5000
      IF (X(LCONS).GE.UPBND) GO TO 180
                                                                              DIS5010
      UPBND=X(LCONS)
                                                                              DIS5020
      UPBNDT=UPBND
                                                                              D185030
      IF (ONESOL) UPBNDT=UPBND*(1.-SIGN(1.E-6, UPBND))+TOLCONS
                                                                              DIS5040
C
                                                                              DIS5050
      DO 170 I=1,N
                                                                              DIS5060
      XD(I) = X(I)
                                                                              DIS5070
170
      CONTINUE
                                                                              DIS5080
\mathbf{c}
                                                                              DIS5090
C
      FATHOM THE NODE
                                                                              DIS5100
\mathbf{C}
                                                                              DIS5110
```

```
180
       CONTINUE
                                                                                    DIS5120
       IF (NODE.LE.0) GO TO 250
                                                                                    DIS5130
       IF (IAR(LASTIAR-4).EQ.0) GO TO 190
                                                                                    DIS5140
       LASTIAR=LASTIAR-4
                                                                                    DIS5150
       LASTDIS=LASTDIS-2-N
                                                                                    DIS5160
       NODE=NODE-1
                                                                                    DIS5170
       GO TO 180
                                                                                    DIS5180
190
       IAR(LASTIAR-4)=1
                                                                                    DIS5190
       II=IAR(LASTIAR-3)
                                                                                    DIS5200
       IF (DIS(IAR(LASTIAR-2)+1).GE.+LARGE) GO TO 180
                                                                                    DIS5210
C
                                                                                    DIS5220
       DO 200 I=1,N
                                                                                    DIS5230
       X(I) = DIS(IAR(LASTIAR-1)+I-1)
                                                                                    DIS5240
200
       CONTINUE
                                                                                    DIS5250
\mathbf{C}
                                                                                    D185260
       X(II)=DIS(IAR(LASTIAR-2)+1)
                                                                                    DIS5270
       IF (HOLDVAR) CO TO 230
                                                                                    DIS5280
       CO TO 110
                                                                                    DIS5290
61
                                                                                    DIS5300
C
       ADD ANOTHER NODE TO THE TREE
                                                                                    DIS5310
0
                                                                                    DIS5320
210
                                                                                    DIS5330
       IF ((F+TOLCONS).GT.UPBNDT) GO TO 180
                                                                                    DIS5340
       NODE=NODE+1
                                                                                    DIS5350
       IF (NODE.GT. IEXTRA) GO TO 250
                                                                                    DIS5360
       IAR(LASTIAR)=0
                                                                                    DIS5370
       IAR(LASTIAR+1)=II
                                                                                    DIS5380
       IAR(LASTIAR+2)=LASTDIS
                                                                                    DISSEGO
       DISCLASTDIS) = XL
                                                                                    DIS5400
       LASTDIS=LASTDIS+1
                                                                                    DIS5410
       DIS(LASTDIS) = XU
                                                                                    DIS5420
       LASTDIS=LASTDIS+1
                                                                                    DIS5430
       IAR(LASTIAR+3)=LASTDIS
                                                                                    DIS5440
\mathbb{C}
                                                                                    DIS5450
       DO 220 I=1.N
                                                                                    DIS5460
       DISCLASTRIS) = X(I)
                                                                                    DIS5470
       LASTDIS=LASTDIS+1
                                                                                    DIS5480
220
       CONTINUE
                                                                                    DIS5490
\mathbf{C}
                                                                                    DIS5500
       LASTIAR=LASTIAR+4
                                                                                    DIS5510
       IF (XL.LE.-LARGE) GO TO 180
                                                                                    DIS5520
       X(II) = XL
                                                                                    DIS5530
       IF (HOLDVAR) GO TO 230
                                                                                    DIS5540
       GO TO 110
                                                                                    DIS5550
\mathbf{C}
                                                                                    DIS5560
\mathbb{C}
       HOLD A VARIABLE CONSTANT BY INITIALIZING IDVAR AND N
                                                                                    DIS5570
                                                                                    DIS5589
030
       CONTINUE
                                                                                    DIS5599
       IF (N.LE.2) GO TO 110
                                                                                    DIS5600
       J=1
                                                                                    DIS5610
£3
                                                                                    DIS5620
       DO 240 I=1,N
                                                                                    DIS5630
       IF (I.EQ. II) GO TO 240
                                                                                    DIS5640
       IAR((LIDVAR-1)+J)=I
                                                                                    DIS5650
       J=J+1
                                                                                    DIS5660
240
       CONTINUE
                                                                                    DIS5670
                                                                                    DIS5680
       IAR(LIDVAR-1+J)=N+1
                                                                                    DIS5690
       N = N - 1
                                                                                    DIS5700
       NODE=NODE-1
                                                                                    DIS5710
       RESTORE= . TRUE .
                                                                                    DIS5720
       CO TO 110
                                                                                    DIS5780
                                                                                    DIS5740
250
       CONTINUE
                                                                                    DIS5750
       IF ((NODE.GT.IEXTRA).AND.(JPT.GE.0)) PRINT 470
                                                                                    D185760
0.3
       FORMAT (54H1 INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISO, DIS5790
260
      103HPT3/1K,56(1H-)///33H INITIAL VALUE OF THE ELEMENTS OF, 15H AL .DIS5800
     2.. ALMIN = E15.8/28H OPTIMAL OBJECTIVE AT NODE 0.20H (GUESS) ...DIS5810
3. EST = E15.8/22H VALUE OF PARAMETER P .21(1H.), 5H IP = 16/35H (DIS5820
4-LARGE, LARGE) BRACKETS ALL VARIAB, 13HLES . LARGE = E15.8/30H ALLODIS5830
     5WED FUNCTION CALLS AT EAC, 18HH NODE .. MAXIFN =, 16/28H ALLOWED QUDIS5840
```

```
6ASID CALLS AT EAC, 20HH NODE .... MAXITN =, 16/25H ALLOWED NUMBER ODIS5850 7F NODES , 13(1H.), 10H MAXNODE =, 16/29H NUMBER OF DISCRETE VARIABLEDIS5860 8S, 1X, 11(1H.), 7H NDIS =, 16/29H NUMBER OF CONSTRAINTS IN THE, 19H PRDIS5870
      90BLEM NORCONS =, 16//27H NUMBER OF UNIFORM STEP VAR, 21HIABLES .... DIS5880
     $... NUNI =, 16//25H TOLERANCE FOR THE CONSTR, 23HAINTS ..... TOLCODIS5890
$NS =, E15.8//20H TOLERANCE FOR THE D, 28HISCRETE VARIABLES . TOLDIS DIS5900
$=, E15.8//15H STOPPING CRITE, 14HRION FOR UOPT ,9(1H.), 10H TOLHEXI =DIS5910
$, E15.8//9H TOLERANC, 39HE FOR THE MULTIPLIERS ..... TOLMULT =, E15.8/DIS5920
$.8/5H STOP, 26HPING CRITERION FOR QUASID ,10(1H.), 7H TOLX =, E15.8/DIS5930
      $/48H INITIAL VALUE OF THE UPPER BOUND ..... UPBND =,E15.8//33H STDIS5940
$ARTING POINT FOR THIS PROBLEM ,11(1H.),2H X,12,E15.8/44X,99(14,E15DIS5950
      $.8/44X))
                                                                                         DIS5960
                                                                                         DIS5970
270
       FORMAT (/3H X(,13,35H) IS DISCRETE WITH AVAILABLE VALUES,17,E15.8/DIS5980
      141X,99(17,E15.8/41X))
                                                                                         DIS5990
                                                                                         DIS6000
280
       FORMAT (3H X(,13,32H) IS UNIFORM STEP WITH STEP SIZE,9X,1H=,E15.8/DIS6010
      1)
                                                                                         DIS6020
C
                                                                                         DIS6030
290
       FORMAT (/18H OPTIONS IN EFFECT)
                                                                                         DIS6040
                                                                                         DIS6050
C
300
       FORMAT (/37H GRADIENT CHECK AT THE STARTING POINT)
                                                                                         DIS6060
                                                                                         DIS6070
310
       FORMAT (/47H ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION)
                                                                                         DIS6080
                                                                                         DIS6090
320
       FORMAT (/37H ONLY ONE DISCRETE SOLUTION REQUESTED)
                                                                                         DIS6100
                                                                                         DIS6110
C
330
       FORMAT (/38H BRANCHING STARTS ON THE LAST VARIABLE)
                                                                                         DIS6120
                                                                                         DIS6130
       FORMAT (/41H VERTICES AROUND NODE 0 SOLUTION EXAMINED)
340
                                                                                         DIS6140
                                                                                         DIS6150
350
       FORMAT (/28H DETAILED PRINTING REQUESTED)
                                                                                         DIS6160
                                                                                         DIS6170
360
       FORMAT (/38H OPTIMAL SOLUTION AT EACH NODE PRINTED)
                                                                                         DIS6180
                                                                                         DIS6190
370
       FORMAT (/27H DISCRETE SOLUTIONS PRINTED)
                                                                                         DIS6200
                                                                                         DIS6210
       FORMAT (///51H THE UPPER BOUND HAS BEEN UPDATED AT THIS NODE. THE, DIS6220
380
      109H DISCRETE//40H SOLUTION AND THE CONSTRAINTS (CONS(1)=U,21HPPER DIS6230
      2BOUND) FOLLOWING//28H A CHECK AT THE VERTICES SUR, 32HROUNDING THE DIS6240
      3NODE 0 SOLUTION ARE//4X,2HX ,99(14,E15.8,14,E15.8,14,E15.8/6X))
                                                                                         DIS6250
                                                                                         DIS6260
390
       FORMAT (48H10PTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE, 14/1X, DIS6270
      151(1H-))
                                                                                         DIS6280
\mathbf{C}
                                                                                         DIS6290
400
       FORMAT (28H THIS IS A DISCRETE SOLUTION/1X,27(1H-))
                                                                                          DIS6300
                                                                                         DIS6310
       FORMAT (/53H THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT T, DIS6320
410
      112HHIS NODE ARE//6H X.LE., 99(14, E15.8, 14, E15.8, 14, E15.8/6X)
                                                                                         DIS6330
C
                                                                                         DIS6340
       FORMAT (/53H THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS A, DIS6350
420
      115HT THIS NODE ARE//6H X.GE., 99(14, E15.8, 14, E15.8, 14, E15.8/6X))
                                                                                         DIS6360
C
                                                                                         DIS6370
430
       FORMAT (/19H THE SOLUTION WITH , 13,27H CONSTRAINTS (CONS(1)=0BJEC, DIS6380
      108HTIVE) IS///4X,2HX ,99(14,E15.8,14,E15.8,14,E15.8/6X))
                                                                                         DIS6390
C
                                                                                         DIS6400
440
       FORMAT (/, 1X, 5HCONS ,99(I4, E15.8, I4, E15.8, I4, E15.8/6X))
                                                                                         DIS6410
C
                                                                                         DIS6420
450
       FORMAT (>53H THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED S,DIS6430
      18HO FAR IS, 15//18H OUT OF THESE, 15, 18H WERE PERFORMED AT, 10H THIS DIS6440
      2NODE)
                                                                                         DIS6450
\mathbf{C}
                                                                                         DIS6460
       FORMAT (29H THIS SOLUTION IS NONFEASIBLE/1X, 28(1H-))
460
                                                                                         DIS6470
                                                                                         DIS6480
470
       FORMAT (//52H THE PROGRAM HAS STALLED BECAUSE OF INSUFFICIENT SPA, DIS6490
      115HCE PROVIDED FOR/1X,66(1H=)/24H THE ADDITIONAL CONSTRAI,44HNTS. DIS6500
      2PLEASE INCREASE THE VALUE OF IEXTRA. IT/1X,67(1H=)/53H MAY BE NOTEDIS6510
      3D THAT THE DEFAULT VALUE OF IEXTRA IS 2*N/1X,52(1H=))
                                                                                         DIS6520
C
                                                                                         DIS6530
       END
                                                                                         DIS6540-
```

```
SUBROUTINE FIND (DIS, IAR, X)
                                                                                      FIN
                                                                                            10
\mathbf{C}
                                                                                      FIN
                                                                                            20
\mathbb{C}
       THIS SUBROUTINE DETERMINES WHETHER OR NOT A SOLUTION IS DISCRETE.
                                                                                      FIN
                                                                                            30
       IF NOT DISCRETE, IT FINDS THE NEAREST LOWER AND THE NEAREST UPPER FIN DISCRETE VALUES FOR THE FIRST NONDISCRETE VARIABLE ENCOUNTERED IN FIN
\mathbb{C}
                                                                                            40
\mathbb{C}
                                                                                            50
\mathbb{C}
       THE SOLUTION
                                                                                      FIN
                                                                                            60
\mathbf{C}
                                                                                      FIN
                                                                                            70
C
                DIS, IAR, IFIND, LARGE, NNCON, REVERSE, TOLDIS, X
                                                                                      FIN
                                                                                            80
\mathbb{C}
                                                                                      FIN
                                                                                            00
\mathbf{C}
       OUTPUT DISCRET, II, XL, XU
                                                                                      FIN
                                                                                           100
\mathbb{C}
                                                                                      FIN
                                                                                           110
       DIMENSION DIS(1), IAR(1), X(1)
                                                                                      FIN
                                                                                          120
60
                                                                                      FIN
                                                                                           130
       REAL LARGE
                                                                                      FIN 140
       LOGICAL DISCRET.REVERSE
                                                                                      FIN 150
\mathbb{C}
                                                                                      FIN
                                                                                           160
       COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX
                                                                                      FIN
                                                                                           170
       COMMON /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                      FIN 180
       COMMION /5/ IFIND, II, IPT, JPT, MAXIFN, MAXITN, MODE, NA, NCONS, NNCON, NX FIN 190
       COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU
                                                                                      FIN 200
       COMMON /10/ GRADCHK, HOLDVAR, ONESOL, REVERSE, VERTCHK
                                                                                      FIN 210
\mathbb{C}
                                                                                      FIN 220
                                                                                      FIN 230
       IF (NNCON.EQ.O) GO TO 90
                                                                                      FIN 240
       DISCRET=.TRUE.
                                                                                      FIN 250
0
                                                                                      FIN 260
       DO SO IB=IFIND, NNCON
                                                                                      FIN 270
       IA= IB
                                                                                      FIN 280
       IF (REVERSE) IA=(NNCON+1)-IB
                                                                                      FIN 290
       I=2:: [A-1
                                                                                      FIN 300
       IF (IAR(I).EQ.1) GO TO 40
                                                                                      FIN 310
       K= IAR( I+1)-1
                                                                                      FIN 320
       KD=IAR(I)
                                                                                      FIN 330
C
                                                                                      FIII 340
       DO 10 J=1,KD
                                                                                      FIN 350
       IF (X(JA).LT.DIS(J+K)) GO TO 20
                                                                                      FIN 360
10
       CONTINUE
                                                                                      FIN 370
€:
                                                                                      FIN 380
\mathbf{C}
       X(IA) LIES BEYOND THE LAST SPECIFIED DISCRETE VALUE
                                                                                      FIN 390
\mathbf{C}
                                                                                      FIN 400
       ML=DIS(KO+K)
                                                                                      FIN 410
       XU=+LARGE
                                                                                      FIN 420
                                                                                      FIN 430
€ 1
                                                                                      FIN 440
       X(IA) LIES BETWEEN TWO SPECIFIED DISCRETE VALUES
C
                                                                                     FIN 450
C
                                                                                     FIN 460
20
       CONTINUE
                                                                                      FIN 470
       IF (J.EQ. 1) GO TO 30
                                                                                      FIN 480
       MEDIS(J+K-1)
                                                                                      FIN 490
                                                                                      FIN 500
       XU=DIS(J+K)
       GO TO 60
                                                                                      FIN 510
\mathbf{C}
                                                                                      FIN 520
£1
       X(IA) LIES BEFORE THE FIRST SPECIFIED DISCRETE VALUE
                                                                                      FIN 530
\mathbb{C}
                                                                                      FIN 540
00
       CONTINUE
                                                                                      FIN 550
       MI = - LANCE
                                                                                      FIN 560
       RU=DIS(K+1)
                                                                                      FIN 570
       GO TO 60
                                                                                     FIN 530
ď.
                                                                                      FIN 590
€1
       XCIA) IS A UNIFORMLY DISCRETE VARIABLE
                                                                                      FIN 600
                                                                                     FIN 610
40
       Z=DIS(IAR(I+1))
                                                                                      FIN 620
       IF (X(IA).LT.0) GO TO 50
                                                                                     FIN 630
       NUEVERLOAT(IFIX(X(IA)/Z))
                                                                                     FIN 640
       XU=XU+X
                                                                                     FIN 650
       CO TO 60
                                                                                     FIN 660
50
       XU=N#FLOAT(IFIX(X(IA)/Z))
                                                                                     FIN 670
       XL = XU - Z
                                                                                      FIN 680
                                                                                     FIN 690
£ 3.
       CHECK IF KCIAD IS DISCRETE OR NOT
                                                                                     FIN 700
0:
                                                                                      FIN 710
60
       CONTINUE
                                                                                     FIN 720
       IF ((X(IA)-XL).LE.TOLDIS) GO TO 70
                                                                                      FIN 730
```

	IF ((XU-X(IA)).GT.TOLDIS) GO TO 90 X(IA)=XU	FIN 740 FIN 750
	GO TO 80	FIN 760
70	X(IA) = XL	FIN 770
80	CONTINUE	FIN 780
\mathbf{C}		FIN 790
	GO TO 100	FIN 800
90	CONTINUE	FIN 810
	DISCRET=.FALSE.	FIN 820
100	CONTINUE	
100		FIN 830
	I I = IA	FIN 840
	RETURN	FIN 850
	END	FIN 860-
		E LIT COOL

```
SUBROUTINE GRDCHK3 (AL, CONS, ER, G, IDCONS, IDVAR, PERCENT, X, Y)
                                                                                     GRD
                                                                                           10
C
                                                                                     GRD
                                                                                           20
       THIS SUBROUTINE IS CALLED ONLY ONCE BY DISOPTS AT THE BEGINNING
                                                                                     GRD
                                                                                           30
\mathbb{C}
       TO VERIFY THAT THE GRADIENT VECTOR AS FORMULATED BY THE USER IS
\mathbf{C}
                                                                                     GRD
                                                                                           40
G
G
       CORRECT. THE GRADIENT VECTOR IS CALCULATED AT THE STARTING POINT
                                                                                     GRD
                                                                                           50
       ONCE BY THE USERS DEFINITION AND AGAIN BY NUMERICALLY PERTURBING POINT X. IF THE DIFFERENCE BETWEEN THE TWO VALUES EXCEEDS 10 P.C.
                                                                                     GRD
                                                                                           60
\mathbf{C}
                                                                                     GRD
                                                                                           70
G
C
       THE PROGRAM IS TERMINATED WITH A MESSAGE
                                                                                     GRD
                                                                                           80
                                                                                     GRD
                                                                                           90
C
C
       INPUT
                IDCONS, IDVAR, X
                                                                                     GRD 100
                                                                                     GRD 110
\mathbf{C}
       OUTPUT G, PERCENT, WRONG, Y
                                                                                     GRD 120
\mathbb{C}
                                                                                     GRD 130
       DIMENSION AL(1), CONS(1), ER(1), G(1), IDCONS(1), IDVAR(1), PERCENGED 140
      1T(1), X(1), Y(1)
                                                                                     GRD 150
                                                                                     GRD 160
C
       LOGICAL FEASCHK, UONLY, WRONG
                                                                                     GRD 170
C
                                                                                     GRD 180
       COMMON /1/ IP. MAXNODE, N, NORCONS, PRINTID, PRINTP
                                                                                     CRD 190
       COMMON /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                     GRD 200
       COMMON /5/ IFIND, II, IPT, JPT, MAXIFN, MAXITN, MODE, NA, NCONS, NNCON, NX GRD 210
                                                                                     GRD 220
       COMMON /6/ ALMIN, DMIN, ERHAX, EST, HEXI, UPBND, XL, XU
       COMMON /7/ IFN, IND1, IND2
                                                                                     GRD 230
       COMMON /9/ IEXIT, SKIPOBJ, UOBJ, UPDATED, WRONG
                                                                                     GRD 240
       COMMON /10/ GRADCHK, HOLDVAR, ONESOL, REVERSE, VERTCHK
                                                                                     GRD 250
C
                                                                                     GRD 260
                                                                                     CBD 270
       DO 10 I=1, NORCONS
       \Lambda L(I) = \Lambda LMIN
                                                                                     GRD 280
       CONTINUE
                                                                                     GRD 290
10
\mathbb{C}
                                                                                     GRD 300
       AL(1)=0.
                                                                                     GRD 310
                                                                                     CBD 320
       FEASCHK=.FALSE.
       HEXI=0.
                                                                                     GRD 330
       NA= NORCONS
                                                                                     GRD 340
                                                                                     GRD 350
       NCONS = NORCONS
       CALL OBJ (AL, CONS, 1., ER, G, IDCONS, IDVAR, 1., 1., X)
                                                                                     GRD 360
                                                                                     GRD 270
       UONLY=.TRUE.
       IND2=0
                                                                                     GRD 380
       WRONG=.FALSE.
                                                                                     GRD 390
                                                                                      GRD 400
C
       TO CALCULATE G(I), AN ELEMENT OF THE GRADIENT VECTOR, X(I) IS GRD 410 PERTURBED ONCE BY +DX AND ONCE BY -DX, AND THE FUNCTION EVALUATED GRD 420
C
\mathbf{C}
\mathbb{C}
       AT THESE POINTS. A SIMPLE DIVISION YIELDS THE VALUE OF G(1).
                                                                                      GRD 430
                                                                                      GRD 440
                                                                                     GRD 450
       DO 20 I=1,N
       Z=X(I)
                                                                                     GRD 460
       DELX=1.E-4*Z
                                                                                     GRD 470
                                                                                     GRD 480
       IF (ABS(Z).LT.1.E-10) DELX=1.E-10
       X(T) = Z + DELX
                                                                                      GRD 490
       CALL OBJ (AL, CONS, 1., ER, 1., IDCONS, IDVAR, 1., 1., X)
                                                                                     GRD 500
       U2=U0BJ
                                                                                     GRD 510
       X(I) = Z - DELX
                                                                                     GRD 520
                                                                                     GRD 530
       CALL OBJ (AL, CONS, 1., ER, 1., IDCONS, IDVAR, 1., 1., X)
       U1=UODJ
                                                                                     GRD 540
       X(I) = Z
                                                                                     GRD 550
       Z=.5*(U2-U1)/DELX
                                                                                      GRD 560
       ZZ=G(I)
                                                                                      GRD 570
       IF (ABS(Z).LT.1.E-20) Z=1.E-20
                                                                                     GRD. 580
       IF (ABS(ZZ).LT.1.E-20) ZZ=1.E-20
                                                                                     CRD 590
       PERCENT(I) = ABS((Z-ZZ)/Z) *100.
                                                                                      GRD 600
                                                                                      GRD 610
       Y(1) = Z
       IF (PERCENT(I).GT.10.) WRONG=.TRUE.
                                                                                      GRD 620
                                                                                      GRD 630
20
       CONTINUE
\mathbf{C}
                                                                                      GRD 640
       UONLY=.FALSE.
                                                                                      GRD 650
                                                                                      CRD 660
       IND2=1
       IF (JPT.LT.0) GO TO 30
                                                                                      GRD 670
       PRINT 40, (I,G(I),I,Y(I),I,PERCENT(I),I=1,N)
                                                                                      GRD 680
       IF (WRONG) PRINT 50
                                                                                      GRD 690
       IF (.NOT. WRONG) PRINT 60
                                                                                      GRD 700
                                                                                      GRD 710
30
       RETURN
                                                                                      GRD 720
40
       FORMAT (37H1GRADIENT CHECK AT THE STARTING POINT/1X,36(1H-)//12X,1GRD 730
```

	10HANALYTICAL, 9X, 9HNUMERICAL, 10X, 10HPERCENTAGE/13X, 8HGRADIENT, 11X, 8GF 2HGRADIENT, 13X, 5HERROR/12X, 11HVECTOR G(I), 8X, 11HVECTOR Y(I), 6X, 17HVGF	D 740 D 750
		D 760
C	CF.	D 770
50	FORMAT (///51H YOUR PROGRAM HAS BEEN TERMINATED BECAUSE THE GRADI, GR	D 780
	118HENTS ARE INCORRECT//24H PLEASE CHECK THEM AGAIN) GR	D 790
C		D 800
60	FORMAT (///35H THE GRADIENTS APPEAR TO BE CORRECT) GR	D 810
C		D 820
	END	D 830-

```
SUBROUTINE OBJ (AL, CONS, DIS, ER, GRADU, IDCONS, IDVAR, INT, RMULT, X)
                                                                                   OBJ
                                                                                         10
 0
                                                                                   OBJ
                                                                                         20
 \mathbf{C}
        THIS SUBROUTINE GENERATES THE ADDITIONAL CONSTRAINTS REQUIRED FOR OBJ
       DISCRETE OPTIMIZATION, CONVERTS THE CONSTRAINED PROBLEM INTO A OBJ
MINIMAX PROBLEM USING THE BANDLER-CHARALAMBOUS TECHNIQUE, AND THENORJ
                                                                                        20
 \mathbb{G}
                                                                                        40
 \mathbf{C}
                                                                                        50
 \mathbf{C}
       EVALUATES THE ERROR FUNCTIONS FOR THIS MINIMAX PROBLEM
                                                                                   OPI
                                                                                        60
                                                                                   OBJ
                                                                                        70
 G
        INPUT AL, DIS, FEASCHK, HEXI, IDCONS, INT, IP, MULTS, N, NA, NODE, NORCONS,
                                                                                  OB.
                                                                                        80
               UPBND. X
                                                                                   OBJ
                                                                                        00
                                                                                   OBJ 100
       OUTPUT COMS, ER, FEASBLE, GCONS, GRADU, RMULT, UOBJ
 63
                                                                                   OBJ 110
                                                                                   OBJ
       DIMENSION AL(1), CONS(1), DIS(1), ER(1), GRADU(1), IDCONS(1), IDVAOBJ 130
       IR(1), INT(1), RIGHT(1), X(1)
                                                                                   OBJ 140
                                                                                   OBJ 150
       LOGICAL FEASCHK, SKIPOBJ
                                                                                   OBJ 160
                                                                                   OBJ 170
       COMMON /1/ IP. MAXNODE, N, NORCONS, PRINTID, PRINTP
                                                                                   OBJ 129
       COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLMEXI, TOLMULT, TOLX
                                                                                   OBJ 190
       COMMON /3/ LEXTRA, LASTDIS, LASTIAR, NODE, NODES
                                                                                   OBJ 200
       COMIDN /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                   OBJ 210
       COMMON /5/ IFIND, II. IPT, JPT, MAXIFN, MAXITH, MODE, NA, NCONS, NNCON, NX
                                                                                  OBJ 220
       COUNDU /6/ ALHIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU
                                                                                  OBJ 230
       COMMON YOM LAL, LCONS, LER, LCCONS, LCRADU, LH, LINT, LRMULT, LW, LY, LY
                                                                                  OBJ 240
       COMMON /9/ IEXIT, SKIPOBJ, UOBJ, UPDATED, WRONG
                                                                                  OBJ 250
(
                                                                                  OBJ 260
       EVALUATE THE ORIGINAL CONSTRAINTS AND THEIR GRADIENT VECTORS
                                                                                  OBJ 270
                                                                                  OBJ 230
       CALL FUN (CONS, XCLCCONS), IDCONS, IDVAR, X)
                                                                                  OBJ 220
       IF (NODE.EQ.O) CO TO 20
                                                                                  OBJ 200
                                                                                  OBJ 210
       EVALUATE THE ADDITIONAL CONSTRAINTS FOR THE NODES IN THE TREE
                                                                                  OBJ 320
                                                                                  OBJ 230
       DO 10 1=1.NA
                                                                                  OBJ 240
       J= IDCONS(I)
                                                                                  OBJ 250
       JF (J.LE.NORCONS) GO TO 10
                                                                                  ODJ 260
       JL=J-NORCONS
                                                                                  OBJ 270
       JIA=(JI-1)*4+1
                                                                                  OBJ 389
       IF (INT(JIA).EQ.0) CONS(J)=DIS(INT(JL4+2))-X(INT(JL4+1))
                                                                                  OBJ 390
       IF (INT(JL4).NE.0) CONS(J)=X(INT(JL4+1))-DIS(INT(JL4+2)+1)
                                                                                  OBJ 400
:0
       CONTINUE
                                                                                  OBJ 010
                                                                                  OBJ 420
20
       CONTINUE
                                                                                  OBJ 400
       IF (SKIPOBJ) CO TO 70
                                                                                  OBJ 440
       IF (FEASCHK) GO TO 40
                                                                                  CBJ 450
6:
                                                                                  OBJ 460
\mathbf{C}
       EVALUATE ERROR FUNCTIONS FOR AN OPTIMIZATION. AL(1)=0
                                                                                  OBJ 470
                                                                                  ODJ 480
       Z=CONS(1)-HEXI
                                                                                  OBJ 490
(1)
                                                                                  CBJ 500
       DO 30 J=1.NA
                                                                                  OBJ 510
       J=IDCONS(I)
                                                                                  OBJ 520
       ER(J) = Z - AL(J) *CONS(J)
                                                                                  OBJ GCO
30
       CONTINUE
                                                                                  OBJ 540
                                                                                  OBJ 550
       GO TO 60
                                                                                  OBJ 560
                                                                                  OBJ 570
      EVALUATE ERROR FUNCTIONS FOR A FEASIBILITY CHECK. ALL THE CONSTRA-OBJ 509
\epsilon
       INTO ARE ACTIVE DURING A FEASIBILITY CHECK
                                                                                  OBJ 500
                                                                                  OBJ 600
-50
      DO 50 F=1.NCONS
                                                                                  OBJ 610
      ERCD =- CONSCD
                                                                                 OBJ 620
50
      CONTINUE
                                                                                 OBJ 620
\mathbb{C}
                                                                                 OBJ 640
      ER(1) = CONS(1) - UPBND
                                                                                 CBJ 650
                                                                                 ODJ 660
      EVALUATE THE LEAST PTH OBJECTIVE FUNCTION AND ITS GRADIENT VECTOR OBJ 670
                                                                                 OBJ 660
      CALL LEASTED (AL, ER, ER(NCONS+1), X(LGCONS), GRADU, IDCONS, IDVAR, INT, ROBJ 600
60
     TITELTE
                                                                                 OBJ 700
03
      COUTTNUE
                                                                                 OBJ 710
      RETURN
                                                                                 OBJ 720
      MND
                                                                                 OBJ 720-
```

1

(:

	SUM2=0. Z=GCONS(I) IF (FEASCHK) GCONS(I)=-GCONS(I) ID=-NX+I DO 80 J=1,NA K=IDCONS(J) IF (POSITIV.AND.(ER(K).LE.0.)) GO TO 80 IF (K.GT.NORCONS) GO TO 50 IF (FEASCHK) SUM2=SUM2-ES(K)*GCONS(K*NX+(ID)) IF (.NOT.FEASCHK) SUM2=SUM2+ES(K)*(Z-AL(K)*GCONS(K*NX+(ID))) GO TO 80	T.F.A. 740
	DUIZ-U. Z-CONS(I)	LEA 750
	L=GCONZ(1) CCONZ(1)=_CCONZ(1)	LEA 760
	ID - WYLI	LEA 770
C	IDMATI	LEA 780
u	DO 90 I=1 NA	LEA 790
	DO OF 3-1, NA V-INCONS(I)	LEA 800
	TE (POSITIV AND (ER(K), LE. 0.)) CO TO 80	LEA 810
	IF (K CT NORCONS) CO TO 50	LEA 820
	IF (FEASCHK) SIM2=SIM2-ES(K)*GCONS(K*NX+(ID))	LEA 830
	IF (.NOT.FEASCHK) SUM2=SUM2+ES(K)*(Z-AL(K)*GCONS(K*NX+(ID)))	LEA 840
	GO TO 80	LEA 850
50	KL4=(K-NORCONS)*2*2-3	LEA 860
•	IF (FEASCHK) SUM2=SUM2+ES(K)*GCONS(K*NX+(ID))) GO TO 80 KL4=(K-NORCONS)*2*2-3 IF (INT(KL4+1).NE.I) GO TO 60 ZZ=+1. IF (INT(KL4).EQ.0) ZZ=-1. GO TO 70 ZZ=0. IF (FEASCHK) SUM2=SUM2+ES(K)*ZZ IF (.NOT.FEASCHK) SUM2=SUM2+ES(K)*ZZ CONTINUE CRADU(IA)=SUM1*SUM2	LEA 870
	ZZ=+1.	LEA 880
	IF (INT(KL4), EQ.0) ZZ=-1.	LEA 890
	GO TO 70	LEA 900
60	ZZ=0.	LEA 910
70	IF (FEASCHK) SUM2=SUM2-ES(K)*ZZ	LEA 920
	IF (.NOT.FEASCHK) SUM2=SUM2+ES(K)*(Z-AL(K)*ZZ)	LEA 930
80	CONTINUE	LEA 940
C		LEA 950
	GRADU(IA)=SUM1*SUM2	
90	CONTINUE	LEA 970
C		LEA 980
	IF (FEASCHK.AND.((ERMAX+TOLCONS).LT.0.)) FEASBLE=:TRUE.	LEA 990
	GO TO 130	LEA1000
100	CONTINUE	LEA1010
C		LEA1020
C	CALCULATE THE MULTIPLIERS FOR THE ACTIVE FUNCTIONS. NA MUST BE	LEA1030
C	.GE. 2	LEA1040
\mathbf{C}		LEA1050
	SUM1=ES(1)	LEA1060
C		LEA1070
	DO 110 I=2, NA	LEA1080
	J= IDCONS(I)	LEA1090 LEA1100
	IF (POSITIV. AND. (ER(J).LE.O.)) GO TO 110	LEATIO
	SUM1=SUM1+ES(J)	LEATITO
110	CONTINUE	LEAT130
C	70 100 Y-0 W	LEA1140
	DO 120 I=2, NA	LEA1150
	J=IDCONS(I)	LEA1160
	RMULT(J)=0. IF (POSITIV.AND.(ER(J).LE.0.)) GO TO 120	LEA1170
	RMULT(J)=AL(J)*ES(J)/SUM1	LEA1180
120	CONTINUE	LEA1190
126 C	CONTINUE	LEA1200
u	MULTS=.FALSE.	LEA1210
130	CONTINUE	LEA1220
200	RETURN	LEA1230
	END	LEA1240-

```
SUBROUTINE LEASTPD (AL, ER, ES, GCONS, GRADU, IDCONS, IDVAR, INT, RMULT)
                                                                                        LEA
                                                                                              10
                                                                                              2300
\mathbf{C}
                                                                                        LEA
       THIS SUBROUTINE EVALUATES THE CHARALAMBOUS LEAST PTH UNCONSTRAINEDLEA FUNCTION AND ITS GRADIENT VECTOR. IF MULTS, A LOGICAL VARIABLE, ISLEA TRUE, THE GRADIENT VECTOR IS NOT EVALUATED AND, INSTEAD, THE MULTILEA
                                                                                              30
C
                                                                                              40
C
                                                                                              50
C
       PLIERS FOR THE ERROR FUNCTIONS ARE EVALUATED
                                                                                        LEA
                                                                                              60
                                                                                              70
0
                                                                                        LΕΛ
       INPUT AL, ER, FEASCHK, GCONS, IDCONS, INT, IP, MULTS, N, NA, NORCONS
                                                                                        LEA
                                                                                              80
\mathbf{C}
C
                                                                                        LEA
                                                                                              00
                                                                                        LEA 100
       OUTPUT ERMAX, FEASBLE, GRADU, RMULT, UOBJ
1
                                                                                        LEA 110
\mathbf{C}
       DIMENSION AL(1), ER(1), ES(1), GCONS(1), GRADU(1), IDCONS(1), IDVALEA 120
      1R(1), INT(1), RMULT(1)
                                                                                        LEA 130
\mathbf{C}
                                                                                        LEA 140
       LOGICAL FEASBLE, FEASCHK, MULTS, POSITIV, UONLY
                                                                                        LEA 150
                                                                                        LEA 160
\mathbb{C}
       COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP
                                                                                        LEA 170
       COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX
                                                                                        LEA 180
       COMMON /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                        LEA 190
       COMMON /5/ IF IND, II, IPT, JPT, MAXIFN, MAXITN, MODE, NA, NCONS, NNCON, NX
                                                                                        LEA 200
       COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU
                                                                                        LEA 210
       COMMON /9/ IEXIT, SKIPOBJ, UOBJ, UPDATED, WRONG
                                                                                        LEA 220
                                                                                        LEA 230
\mathbf{C}
       EVALUATE THE MAXIMUM OF THE ERROR FUNCTIONS AND IF IT IS 0 SUB-
                                                                                        LEA 240
\mathbb{C}
       TRACT 1.E-10 FROM EVERY ERROR FUNCTION
                                                                                        LEA 250
\mathbf{C}
                                                                                        LEA 260
\mathbb{C}
       ERMAX=ER(IDCONS(1))
                                                                                        LEA 270
                                                                                        LEA 280
\mathbf{C}
                                                                                        LEA 290
       DO 10 I=1, NA
       ERMAX= AMAX1 (ERMAX, ER(IDCONS(I)))
                                                                                        LEA 300
10
       CONTINUE
                                                                                        LEA 310
                                                                                        LEA 320
C
       IF (ERMAX.NE.0.) GO TO 30
                                                                                        LEA 330
                                                                                        LEA 340
0
                                                                                        LEA 350
       ERMAX=-1.E-10
                                                                                        TEV 300
\mathbb{C}
                                                                                        LEA 370
       DO 20 I=1.NA
       J= IDCONS(I)
                                                                                        LEA 380
       ER(J) = ER(J) - 1.E - 10
                                                                                        LEA 390
20
       CONTINUE
                                                                                        LEA 400
                                                                                        LEA 410
\mathbf{C}
       EVALUATE FEASBLE, POSITIV AND IPL
                                                                                        LEA 420
(;
                                                                                        LEA 430
()
30
       POSITIV=.FALSE.
                                                                                        LEA 440
       IF (ERMAX.GT.O.) POSITIV=.TRUE.
                                                                                        LEA 450
       IPL=-IP
                                                                                        LEA 460
       IF (POSITIV) IPL=IP
                                                                                        LEA 470
\mathbf{C}
                                                                                        LEA 480
       EVALUATE THE LEAST PTH OBJECTIVE FUNCTION
\mathbb{C}
                                                                                        LEA 490
                                                                                        LEA 500
\mathbf{C}
                                                                                        LEA 510
       SUM1=0.
\mathbf{C}
                                                                                        LEA 520
       DO 40 I=1, NA
                                                                                        LEA 530
                                                                                        LEA 540
       J=IDCONS(I)
       Z = ER(J)
                                                                                        LEA 550
       IF (POSITIV.AND.(Z.LE.Ø.)) GO TO 40
                                                                                        LEA 560
       Z=Z/ERMAX
                                                                                        LEA 570
       ZZ=Z** IPL
                                                                                        LEA 580
                                                                                        LEA 590
       SUM1=SUM1+ZZ
       ES(J) = ZZ/Z
                                                                                        LEA 600
40
       CONTINUE
                                                                                        LEA 610
                                                                                        LEA 620
0
       Z=SUM1**(1./FLOAT(IPL))
                                                                                        LEA 630
       UOBJ=Z*ERMAX
                                                                                        LEA 640
                                                                                        LEA 650
       SUM1=Z/SUM1
       IF (UCNLY) GO TO 130
                                                                                        LEA 660
       IF (MULTS) GO TO 100
                                                                                        LEA 670
0
                                                                                        LEA 689
       EVALUATE THE GRADIENT VECTOR. THE OBJECTIVE FUNCTION IS ALWAYS
0
                                                                                        LEA 690
       THE FIRST ACTIVE FUNCTION
                                                                                         LEA 700
C
                                                                                         LEA 710
( )
       DO 90 IA=1, N
                                                                                        LEA 720
        I= IDVAR(IA)
                                                                                         LEA 730
```

```
SUBROUTINE QUASID (AL, CONS, DIS, ER, G, H, IDCONS, IDVAR, INT, W, X)
                                                                                                                 QUA
                                                                                                                        10
                                                                                                                 QUA
                                                                                                                        20
         THIS SUBROUTINE IS BASED ON THE 1972 VERSION OF FLETCHERS
                                                                                                                 AUQ
\mathbf{c}
         METHOD OF UNCONSTRAINED OPTIMIZATION. WITHOUT DISTURBING THE BASICQUA
\mathbf{C}
                                                                                                                        40
         LOGIC OF THE FLETCHERS ORIGINAL SUBROUTINE, SOME CHANGES HAVE BEENQUA MADE IN THIS PROGRAM. THESE CHANGES ARE (1) THE PART WHICH DECOM- QUA
\mathbf{C}
                                                                                                                        50
                                                                                                                        60
C
         POSES H INTO LDL(TRANSPOSE) HAS BEEN REMOVED (2) THE PART WHICH QUA FINDS DMIN HAS BEEN REMOVED (3) THIS SUBROUTINE REQUIRES IDVAR AS QUA AN INPUT. IN ADDITION, IT ASSUMES THAT THE GRADIENT VECTOR HAS BEEN SUITABLY CALCULATED. FOR EXAMPLE, LET THE ORIGINAL PROBLEM QUA
C
                                                                                                                        70
                                                                                                                        80
\mathbf{C}
                                                                                                                        90
\mathbf{C}
                                                                                                                 QUA 100
C
         BEEN SUITABLY CALGULATED. FOR EXAMPLE, LET THE ORIGINAL PROBLEM QUA 100 HAVE THREE VARIABLES X(1), X(2) AND X(3). FOR SOME OPTIMIZATION ITQUA 110 IS DECIDED TO HOLD X(2) CONSTANT. NOW, IN ORDER TO USE QUASID, WE QUA 120 MUST HAVE N=2, IDVAR(1)=1, IDVAR(2)=3, G(1)=DEL UOBJ/DEL X(1) AND QUA 130 G(2)=DEL UOBJ/DEL X(3). IN OTHER WORDS, VECTOR G, AN ARRAY OF N QUA 140 ELEMENTS, STORES THE PARTIAL DERIVATIVES OF UOBJ WITH RESPECT TO QUA 150 THE ACTIVE VARIABLES IN THE SAME ORDER IN WHICH THE INDICES OF QUA 160 THE ACTIVE VARIABLES ARE STORED IN ARRAY IDVAR
\mathbf{c}
C
\mathbf{C}
C
\mathbf{C}
C
\mathbf{C}
         THE ACTIVE VARIABLES ARE STORED IN ARRAY IDVAR
                                                                                                                 QUA 170
\mathbf{C}
                                                                                                                 QUA 180
                      AL, DIS, EST, FEASCHK, FEASBLE, IDCONS, IDVAR, IFN, INT, IPT,
                                                                                                                 QUA 190
\mathbf{C}
         INPUT
\mathbf{C}
                      MAXIFN, MODE, TOLX, X
                                                                                                                 QUA 200
                                                                                                                 QUA 210
\mathbf{C}
                                                                                                                 QUA 220
         OUTPUT
                     IEXIT, X
\mathbf{C}
                                                                                                                 QUA 230
C
         DIMENSION AL(1), CONS(1), DIS(1), ER(1), G(1), H(1), IDCONS(1), IDQUA 240
        1VAR(1), INT(1), W(1), X(1)
                                                                                                                 QUA 250
                                                                                                                 QUA 260
\mathbf{C}
                                                                                                                 QUA 270
         LOGICAL FEASBLE, FEASCHK
\mathbf{C}
                                                                                                                 QUA 280
                                                                                                                 QUA 290
         COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP
         COMMON /2/ LARGE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX
                                                                                                                 QUA 300
         COMMON /3/ IEXTRA, LASTDIS, LASTIAR, NODE, NODES
                                                                                                                 QUA 310
         COMMON /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                                                 QUA 320
         COMMON /5/ IFIND, II, IPT, JPT, MAXIFN, MAXITN, MODE, NA, NCONS, NNCON, NX
                                                                                                                 QUA 330
                                                                                                                 QUA 340
         COMMON /6/ ALMIN, DMIN, ERMAX, EST, HEXI, UPBND, XL, XU
         COMMON /7/ IFN, IND1, IND2
                                                                                                                 QUA 350
                                                                                                                 QUA 360
         COMMON /9/ IEXIT, SKIPOBJ, UOBJ, UPDATED, WRONG
                                                                                                                 QUA 370
                                                                                                                 QUA 380
\mathbf{c}
         INITIALIZATION
                                                                                                                 QUA 390
C
                                                                                                                 QUA 400
         IF (FEASCHK. AND. (IPT. GT. 0)) PRINT 410, NODES
                                                                                                                 QUA 410
         IF (IPT.GT.0) PRINT 400
                                                                                                                 QUA 420
         NP = N + 1
         N1=N-1
                                                                                                                 QUA 430
                                                                                                                 QUA 440
         NN=N*NP/2
                                                                                                                 QUA 450
         IS=N
                                                                                                                 QUA 460
          IU=N
         IV=N+N
                                                                                                                 QUA 470
                                                                                                                 QUA 480
         IB= IV+N
                                                                                                                 QUA 490
          IEXIT=0
                                                                                                                 QUA 500
         IF (MODE.NE.1) GO TO 30
                                                                                                                 QUA 510
         THE INITIAL ESTIMATE OF H, AN IDENTITY MATRIX, IS GENERATED HERE
                                                                                                                 QUA 520
C
                                                                                                                 QUA 530
C
          IJ=NN+1
                                                                                                                 QUA 540
C
                                                                                                                 QUA 550
                                                                                                                 QUA 560
         DO 20 I=1,N
                                                                                                                 QUA 570
         DO 10 J=1, I
          I.J = I.J - 1
                                                                                                                 QUA 580
                                                                                                                 QUA 590
         H(IJ)=0
                                                                                                                 QUA 600
10
         CONTINUE
                                                                                                                 QUA 610
         \mathbf{H}(IJ)=1.
                                                                                                                 QUA 620
20
         CONTINUE
                                                                                                                 QUA 630
         DMIN=1.
                                                                                                                 QUA 640
\mathbf{C}
          INITIAL PRINTING AND INITIALIZATION
                                                                                                                 QUA 650
\mathbf{C}
C
                                                                                                                 QUA 660
                                                                                                                 QUA 670
30
         Z=EST
                                                                                                                 QUA 680
                                                                                                                 QUA 690
         CALL OBJ (AL, CONS, DIS, ER, C, IDCONS, IDVAR, INT, 1., X)
                                                                                                                 QUA 700
          IF (FEASCHK. AND. FEASBLE) GO TO 320
                                                                                                                 QUA 710
         DF=U-EST
                                                                                                                 QUA 720
         IF (DF.LE.0.0) DF=1.0
                                                                                                                 QUA 730
```

```
IF (IPT.EQ.O.OR.MOD(ITN, IPT).NE.O) CO TO 50
                                                                               QUA 740
40
      PRINT 370, ITM, IFM, U, (IDVAR(I), X(IDVAR(I)), IDVAR(I), G(I), I=1, N)
                                                                               QUA 750
                                                                               QUA 760
( )
       AN ITERATION OF QUASID BEGINS. IT INVOLVES SELECTION OF ALPHA,
                                                                               QUA 770
\mathbb{C}
      THE LINE SEARCH PARAMETER, AND UPDATING OF H FOR THE NEXT ITERA-
                                                                               QUA 789
0
                                                                               QUA 790
C
      TION OF QUASID
                                                                               QUA SOO
                                                                               QUA 810
      ITN=ITN+1
50
                                                                               OCC AUD
0
      THE DIRECTION OF SEARCH, WHICH IS THE PRODUCT OF THE INVERSE OF
C
      THE HESSIAN H WITH THE GRADIENT VECTOR G, IS FOUND HERE. THE ELE- QUA 840
      MENTS OF THIS VECTOR ARE W(N+1), W(N+2), ..... , W(2N)
                                                                               CUA 850
0
                                                                               QUA 860
                                                                               QUA 870
      W(A) = -G(A)
                                                                               QUA COO
0
                                                                               008 AU9
      PO TO I=2.N
                                                                               CUA 200
       1.301
                                                                               OTO ATO
       11=1-1
                                                                               QUA 920
      Z=-C(I)
                                                                               OUA 920
       PO 60 J=1. II
                                                                               QUA 940
         7-11(11) #W(J)
                                                                                QUA 950
       LJ=LJ+N-J
                                                                               QUA 960
60
      CONTINUE
                                                                                OUV 520
       V(Osy,
                                                                                039 AU9
      CONTINUE
70
                                                                               GHA 996
                                                                                QUA1660
       U(\mathbb{T}(\mathbb{T}) = V(\mathbb{N}) \times U(\mathbb{N})
                                                                                OTOLARO
       II = III
                                                                                QUA1020
                                                                                QUA1030
       DO 90 I=1,N1
       1.J=1.J-1
                                                                                QUA 1040
                                                                                QUA1050
       Z=0.
                                                                                QUA1060
       no so J=1.1
                                                                                QUA1070
       Z=Z+H(IJ)*W(IS+NP-J)
                                                                                QUAICSO
       1.1=1.1-1
                                                                                QUA1090
       CONTINUE
88
                                                                                CUATICO
       W(IG+N-I)=W(N-I)/H(IJ)-Z
                                                                                QUALITO
00
       CONTINUE
                                                                                OUA 1120
       THE SCALAR PRODUCT OF G WITH THE DIRECTION OF SEARCH IS NOW FOUND. QUALISO
€ ;
       12 MUST BE NECATIVE OR ELSE THE FUNCTION CAN NOT BE MINIMIZED ANY QUALITO
       FURTHER. GS IS TESTED TO ENSURE THIS
                                                                                QUA1150
                                                                                QUA1160
K.
                                                                                OULLING
                                                                                QUATTED
€1
                                                                                QUALISO
       PO 100 I=1.N
      CLECS+W(IS+I)*G(I)
                                                                                QUA1200
                                                                                QUA1210
100
       CONTINUE
                                                                                QUA1220
                                                                                QUA1230
       TEXTT#2
                                                                                QUA1249
       IF (GS.GE.O.) GO TO 320
                                                                                QUA1250
( 1
       ALPHA. THE LINE SEARCH PARAMETER, WILL NOW BE CALCULATED USING
                                                                                QUA1260
       ETTHER THE QUADRATIC FIT, THE CUBIC INTERPOLATION, OR THE LINEAR
                                                                                QUA1270
       EXTRAPOLATION. AN INEXACT LINE SEARCH IS MADE HERE
                                                                                QUA1289
\mathbf{C}
                                                                                QUA1290
é:
                                                                                QUA1300
                                                                                QUA1310
       ALPHA=-2. *DF/GS
                                                                                QUA1320
       IF (ALPHA.GT.I.) ALPHA= 1.
                                                                                QUATOCO
       DW = U
                                                                                QUA1349
       TOTEO.
                                                                                QUA 1250
 110
       1 NOC1 THE C
                                                                                QUA1360
       IF (IFW.CE.MAXIFN) GO TO 320
                                                                                QUA1370
       ICOTI=O
                                                                                CUCTAUO
       IEXIT=1
                                                                                QUA1396
67
                                                                                QUA1400
       DO 120 I=1.N
                                                                                QUA1410
       WE ALDWARW (IS+I)
                                                                                QUA1420
       TAPERDVARCE)
                                                                                QUA1420
       F (AUDOX).GE.TOLX) ICON=1
                                                                                QUA1440
                                                                                QUA1450
       CONTINUE
 720
                                                                                QUA1460
63
```

```
CALL OBJ (AL, CONS, DIS, ER, W, IDCONS, IDVAR, INT, 1., X)
                                                                                       QUA1470
       IF (FEASCHK. AND. FEASBLE) GO TO 300
                                                                                       QUA1480
       FY=IIOR.I
                                                                                       QUA1490
C
                                                                                        QUA1500
       ELEMENTS W(1), W(2), ...., W(N) NOW CONTAIN THE GRADIENT VECTOR.

GYS, IN THE FOLLOWING SECTION, IS THE SCALAR PRODUCT OF THE GRAD-
IENT AT THE NEXT POINT WITH THE PRESENT DIRECTION OF SEARCH

QUA1530
C
\mathbf{C}
\mathbf{C}
C
                                                                                       QUA1540
       GYS=0.
                                                                                        QUA1550
C
                                                                                       QUA1560
       DO 130 I=1,N
                                                                                        QUA1570
       GYS=GYS+W(I)*W(IS+I)
                                                                                       QUA1580
130
       CONTINUE
                                                                                       QUA1590
                                                                                       QUA1600
       IF (FY.GE.U) GO TO 140
                                                                                       QUA1610
       IF (ABS(CYS/GS0).LE..9) GO TO 160
                                                                                       QUA1620
       IF (GYS.GT.0.) GO TO 140
                                                                                       QUA1630
C
                                                                                       QUA1640
       LINEAR EXTRAPOLATION FOR ALPHA IS PERFORMED HERE
\mathbf{C}
                                                                                       QUA1650
C
                                                                                       QUA1660
       TOT=TOT+ALPHA
                                                                                       QUA1670
                                                                                       QUA1680
       Z=10.
       IF (GS.LT.GYS) Z=GYS/(GS-GYS)
                                                                                       QUA1690
       IF (Z.GT.10.) Z=10.
                                                                                       QUA1700
       ALPHA= ALPHA*Z
                                                                                       QUA1710
       II=FY
                                                                                       QUA1720
       GS=GYS
                                                                                       QUA1730
       GO TO 110
                                                                                       QUA1740
C
                                                                                       QUA1750
       CUBIC INTERPOLATION TO FIND ALPHA IS PERFORMED HERE
\mathbf{C}
                                                                                       QUA1760
                                                                                       QUA1770
\mathbf{C}
140
       DO 150 I=1, N
                                                                                       QUA1780
       I1=IDVAR(I)
                                                                                       QUA1790
       X(I1) = X(I1) - ALPHA * W(IS+I)
                                                                                       QUA1890
150
       CONTINUE
                                                                                       QUA1810
                                                                                       QUA1820
       IF (ICON.EQ.0) GO TO 320
                                                                                       QUA1830
       Z=3.*(U-FY)/ALPHA+GYS+GS
                                                                                       QUA1840
       ZZ=SQRT(Z*Z-GS*GYS)
                                                                                       QUA1850
       GZ=GYS+ZZ
                                                                                       QUA1860
       Z=1.-(GZ-Z)/(ZZ+GZ-GS)
                                                                                        QUA1870
       ALPHA= ALPHA*Z
                                                                                        QUA1880
       GO TO 110
                                                                                       QUA1890
                                                                                        QUA1900
\mathbf{C}
                                                                                       QUA1910
       THE LINE SEARCH HAS BEEN COMPLETED AND A NEW POINT HAS BEEN OB-
\mathbf{C}
C
       TAINED. H MUST BE UPDATED NOW
                                                                                       QUA1920
\mathbf{C}
                                                                                       QUA1930
160
       ALPHA=TOT+ALPHA
                                                                                       QUA1940
       U=FY
                                                                                        QUA1950
       IF (ICON.EQ.0) GO TO 300
                                                                                       QUA1960
       DF=DF-U
                                                                                        QUA1970
       DGS=GYS-GSØ
                                                                                        QUA1980
       LINK= 1
                                                                                       QUA1990
\mathbf{C}
                                                                                        QUA2000
       IF THE FOLLOWING TEST IS TRUE, THE DFP FORMULA WILL BE USED FOR
\mathbf{C}
                                                                                       QUA2010
\mathbf{C}
       UPDATING H, OTHERWISE, THE COMPLEMENTARY DFP FORMULA WILL BE USED QUA2020
\mathbf{C}
                                                                                        QUA2030
       IF (DGS+ALPHA*GS0.GT.0.) GO TO 180
                                                                                        QUA2040
\mathbf{C}
                                                                                       QUA2050
       DO 170 I=1,N
                                                                                       QUA2060
       W(IU+I) = W(I) - G(I)
                                                                                        QUA2070
       CONTINUE
170
                                                                                       QUA2080
                                                                                       QUA2090
       SIG=1./(ALPHA*DGS)
                                                                                       QUA2100
       GO TO 250
                                                                                       QUA2110
180
       ZZ=ALPHA/(DGS-ALPHA*GS0)
                                                                                        QUA2120
       Z=DGS*ZZ-1.
                                                                                       QUA2130
\mathbf{C}
                                                                                       QUA2140
       DO 190 I=1.N
                                                                                        QUA2150
       W(IU+I) = Z*G(I)+W(I)
                                                                                       QUA2160
190
       CONTINUE
                                                                                        QUA2170
\mathbf{C}
                                                                                       QUA2180
       SIG=1./(ZZ*DGS*DGS)
                                                                                       QUA2190
```

```
QUA2200
      60 TO 250
                                                                                 QUA2210
200
      LINK=2
                                                                                 OCCCAUD
                                                                                 QUA2230
      DO 210 I=1.N
                                                                                 QUA2240
QUA2250
      W(TU+I)=G(T)
210
      CONTINUE
                                                                                 QUA2260
                                                                                 QUARRYØ
      IF (DGS+ALPHA*GSO.CT.O.) GO TO 220
                                                                                 QUA2289
      SIG=1./GS0
                                                                                 QUA2290
      GO TO 250
                                                                                 QUARROO
220
      SIG=-ZZ
      GO TO 250
                                                                                 QUA2310
                                                                                 QUARREO
\mathbf{C}
                                                                                 OUAC330
220
      DO 040 1=1,N
      CONSTO
                                                                                 QUA2340
                                                                                 QUA2050
040
      CONTINUE
                                                                                 QUA2360
QUA2360
C
      CO TO 40
                                                                                 CUACCCO
250
      W(IV+1) = W(IU+1)
                                                                                 OUAD390
                                                                                 QUA2460
      DO 270 I=2,N
                                                                                 QUA2410
      IJ=I
       11=1-1
                                                                                 QUA2420
                                                                                 QUA2400
      Z=W(IU+I)
                                                                                 QUA2440
      DO 260 J=1, I1
                                                                                 QUA2450
      Z=Z-H(J,J)*W(JV+J)
                                                                                 QUA2460
       IJ=1J+N-J
                                                                                 QUA2470
260
      CONTINUE
                                                                                  QUA2430
       W(IV+I)=Z
                                                                                  QUA2490
270
      CONTINUE
                                                                                  QUA2500
\mathbf{C}
                                                                                  QUA2510
       IJ=1
                                                                                  QUA2520
C
                                                                                  QUA2530
       DO 280 I=1,N
                                                                                 QUA2549
       IVI=IV+I
       IBI=IB+I
                                                                                  QUA2559
                                                                                  QUA2560
       Z=H(IJ)+SIG*W(IVI)*W(IVI)
                                                                                  QUA2570
       IF (Z.LE.O.) Z=DMIN
                                                                                  QUA2580
       IF (Z.LT.DHIN) DMIN=Z
                                                                                  QUA2590
       \Pi(IJ) = Z
       W(IBI)=W(IVI):SIG/Z
                                                                                  QUA2660
                                                                                  QUA2610
       SIG=SIG-W(IBI) &W(IBI) &Z
                                                                                  QUA2620
       I.J= I.J: MP- I
       CONTINUE
                                                                                  QUA2630
230
                                                                                  QUA2640
0
                                                                                  QUA2650
       1.1=1
                                                                                  QUA2660
\mathbf{C}
                                                                                  QUA2570
       DO 290 I=1,N1
       13=13+1
                                                                                  QUA2689
                                                                                  QUA2690
       11=1+1
                                                                                  QUA2700
       DO 200 J=I1,N
                                                                                  QUA2710
       V(IU+J) = V(IU+J) - H(IJ) * W(IV+I)
                                                                                  QUA2720
       (L+UI)W#(I + (I, I)) #\((I, I)) ##(I, I))#
290
                                                                                  QUA2730
       1.1=1.541
                                                                                  QUA2740
0
                                                                                  QUASTEO
       HF (LINK-2) 200,230,230
                                                                                  QUA2760
\mathbb{C}
       THE UPDATING OF H IS NOW COMPLETE AND THE NEXT ITERATION BEGINS
                                                                                  QUA2770
0
                                                                                  COSSAUD
61
                                                                                  QUA2790
300
       DO 310 1=1,N
                                                                                  QUA2800
       G(D) = H(D)
310
       CONTINUE
                                                                                  QUA2810
                                                                                  QUA2820
020
       IF (JPT.EQ.0) GO TO 330
                                                                                  QUA2830
       PRINT 370, HTN, IFN, U, (IDVAR(I), X(IDVAR(I)), IDVAR(I), G(I), I=1,N)
                                                                                  QUA2840
                                                                                  QUA2850
       IF (JPT.LT.O) CO TO 360
330
       IF (IEXIT-2) 360,340,350
                                                                                  QUA2860
                                                                                  QUA2870
       PRITT SGO, TEXIT
340
                                                                                  QUA2880
       CO TO 860
350
       PRINT 390, IEXIT
                                                                                  QUA2890
                                                                                  O002AU9
::60
       merum
                                                                                  QUA2910
(1
370
       FORFIAT (1110, 13, 2X, 14, E15.8, 99(14, E15.8, 14, E15.8/25X))
                                                                                  QUA2920
```

380 380	FORMAT (8H11EXIT =, 12, 40H THE PROGRAM IS UNABLE TO FIND A DOWNHILL 113HL DIRECTION. //36H POSSIBLE CAUSES ARE (1) EXCESSIVE R, 36HOUND	QUA2950
_	20FF ERROR DUE TO VERY SMALL EPS//21X,9H(2) ERROR,41HIN THE CALCUL STION OF THE GRADIENT VECTOR)	QUA2970
C		QUA2980
390	FORMAT (8H11EXIT =, 12,40H PERMISSIBLE NUMBER OF FUNCTION EVALUATI	, QUA2990
	136HONS AT THIS NODE HAVE BEEN PERFORMED)	QUA3000
\mathbf{C}		QUA3010
400	FORMAT (53H UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLE,	1QUA3020
	13HTCHERS METHOD/1X,65(1H-)//1X,21HITER. FUNC. LEAST PTH,10X,8HVAR	IQUA3030
	2ABLE, 11X, 8HGRADIENT/2X, 19HNO. EVAL. FUNCTION, 10X, 11HVECTOR X(I),	8QUA3040
	3X, 11HVECTOR G(1))	QUA3050
C		QUA3060
410	FORMAT (26H1FEASIBILITY CHECK AT NODE, 14/1X, 29(1H-))	QUA3070
\mathbf{C}		QUA3080
	END	QUA3090-

```
SUBROUTINE UOPT (AL, CONS, DIS, ER, G, H, IDCONS, IDVAR, INT, JECONS, RMULT, UOP
                                                                                          10
      1W, X, Y)
                                                                                          20
                                                                                    UOP
                                                                                         30
C
       THIS SUBROUTINE SOLVES THE NONLINEAR PROGRAMMING PROBLEM AT EVERY UOP
\mathbb{C}
                                                                                         40
\mathbb{C}
       NODE. THE ALGORITHM EMPLOYED HERE IS THE ONE THAT HAS BEEN PRESEN-UOP
                                                                                          50
       TED BY CHARALAFBOUS IN HIS PAPER ON NONLINEAR LEAST PTH OFTIMIZA- UOP
                                                                                         60
C
       TION AND NONLINEAR PROGRAMMING IN MATH. PROGRAMMING, VOL. 12, 1977. UOP
                                                                                          70
      THIS ALGORITHM, AS IMPLEMENTED IN THIS PROGRAM, HAS SOME NOTABLE FEATURES (1) BEFORE SOLVING THE ACTUAL PROBLEM, A FEASIBILITY CHECK IS MADE TO ENSURE THE EXISTENCE OF A FEASIBLE POINT. IF NO
                                                                                    UOP
                                                                                         89
                                                                                    UOP
                                                                                         90
                                                                                    UOP
                                                                                        100
       SUCH POINT EXICUS THEN NO ATTEMPT IS MADE TO SOLVE THE PROBLEH
                                                                                    TIMP
                                                                                        1 7 ()
       (D) WHILE THE ACTUAL PROBLEM IS BEING SOLVED, IF AN ITERATION
                                                                                    UMP
                                                                                         120
       LUADS TO A NONVEASIBLE POINT, THE STARTING POINT FOR THE NEXT ITE-UOP 130
       RATION IS NOT THE SAME POINT BUT A PREVIOUSLY OBTAINED FEASIBLE
                                                                                    UOP 140
       POINT
                                                                                    uor
                                                                                        150
                                                                                    UOP 160
               AL, DIS, WEXI, INT, IP, N, NODE, NORCONS, TOLCONS, TOLHEMI, TOLMULT, UOP 170
       THEMT
               TOLK, UPBND, X
                                                                                    UOP
                                                                                        180
(
                                                                                    TITLE
                                                                                        1490
       OUTPUT FEASBLE, X
                                                                                    UOP 200
                                                                                    UOP
                                                                                        210
(:
       DIMENSION AL(1), CONS(1), DIS(1), ER(1), G(1), H(1), IDCONS(1), IDUOP 220
      IVAR(1), INT(1), JDCONS(1), RMULT(1), W(1), K(1), Y(1)
                                                                                    UOP 230
                                                                                    UOP 240
(:
       LOGICAL FEASBLE, FEASCHK, FLAG, MULTS, REDUCE, UONLY
                                                                                    UOP 250
\mathbf{C}
                                                                                    UOP 260
       COMMON /1/ IP, MAXNODE, N, NORCONS, PRINTID, PRINTP
                                                                                    mor 220
       COMMON /2/ LARCE, TOLCONS, TOLDIS, TOLHEXI, TOLMULT, TOLX
                                                                                    UOP 280
       COMMON /2/ IEXTRA, LASTDIS, LASTIAR, NODE, NODES
                                                                                    UOP 290
       COMMON /4/ DISCRET, FEASBLE, FEASCHK, MULTS, UONLY
                                                                                    UOP 300
       COMMON /5/ IFIND, II, IPT, JPT, MAXIFN, MAXITN, MODE, NA, NCONS, NNCON, NX
                                                                                    UOP
                                                                                        310
       COMMON /6/ ALMIN. DMIN. ERMAX, EST, HEXI, UPBND, XL, XU
                                                                                    HOP
                                                                                        320
       COMMON /7/ IFN, IND1, IND2
                                                                                    UOP 330
C
                                                                                    UOP
                                                                                        240
       PERFORM A FEASIBILITY CHECK FIRST TO ENSURE THE EXISTENCE OF A
C
                                                                                    UOP 350
                                                                                    UOP 860
\mathbb{C}
       FEASIBLE SOLUTION
                                                                                    UOP 370
       FEASBLE=.FALSE.
                                                                                    UOP 389
       FEASCHK=.TRUE.
                                                                                    UOP 390
       NCONS=NORCONS+NODE
                                                                                    UOP 400
       NA=NCONS
                                                                                    UOP 410
C
                                                                                    UOP 420
       DO 10 1=1,NA
                                                                                    UOP 430
       IDCONS( D = I
                                                                                    UOP 440
                                                                                    UOP 450
10
       CONTINUE
                                                                                    UOP 460
                                                                                    UOP 470
       IPD= IP
       FP=2
                                                                                    UOP 489
       CALL QUASID (AL, CONS, DIS, ER, G, H, IDCONS, IDVAR, INT, W, X)
                                                                                    UOP 490
       IP=IPD
                                                                                    UOP 500
       FEASCHK=.FALSE.
                                                                                    UOP 510
                                                                                    UOP 520
       IF (.NOT.FEASBLE) GO TO 210
                                                                                    HOP 520
       PERFORM AN OPTIMIZATION ONLY IF A FEASIBLE POINT HAS EEEN FOUND
0
                                                                                    UOP
                                                                                        540
C
                                                                                    UOP 550
       DO 20 1=1.N
                                                                                    UOP 560
       J=IDVAR(I)
                                                                                    UOP 570
       Y(J) = X(J)
                                                                                    UOP 580
20
       CONTINUE
                                                                                    HOP 590
                                                                                    UOP 600
       ALMAX= ALMIN
                                                                                    UOP 610
       K=-1
                                                                                    UOP 620
       KOUNT=0
                                                                                    UOP 630
       REDUCE - TRUE.
                                                                                    UOP 640
                                                                                    UOP 650
0.0
       CONTINUE
                                                                                    HOP 660
( ;
       DO 40 I=1, NA
                                                                                    UOP 670
       ALCD = ALHAX
                                                                                    UOP 680
40
       CONTINUE
                                                                                    UOP 690
\mathbb{C}^{1}
                                                                                    UOP
                                                                                        700
       AL(1)=0.
                                                                                    TIMP
                                                                                        710
C
                                                                                    TIOP 720
       DO NOT REINITIALIZE THE STARTING POINT IF IT HAPPENS TO BE A FEAS-UOP 730
```

```
IBLE POINT
C
                                                                                    UOP 740
\mathbf{C}
                                                                                    UOP 750
       IF (FEASBLE) GO TO 60
                                                                                    UOP 760
                                                                                    UOP 770
C
                                                                                    UOP 789
       DO 50 I=1.N
       J= IDVAR(I)
                                                                                    UOP 790
       X(J) = Y(J)
                                                                                    UOP 800
       CONTINUE
                                                                                    UOP 810
50
C
                                                                                    UOP 820
       IF (IPT.GT.0) PRINT 220, (I,CONS(I), I=1,NCONS)
                                                                                    UOP 830
                                                                                    UOP 840
60
       HEXI=0.
                                                                                    UOP 850
                                                                                    UOP 860
       UONLY= . TRUE .
       IND2=0
                                                                                    UOP 870
                                                                                    UOP 889
       CALL OBJ (AL, CONS, DIS, ER, 1., IDCONS, IDVAR, INT, 1., X)
       IND2=1
                                                                                    UOP 890
       UONLY=.FALSE.
                                                                                    UOP 900
       HEXI = AMIN1 (HEXI, ERMAX+1.E-10)
                                                                                    UOP 910
70
       CONTINUE
                                                                                    UOP 920
       IF (KOUNT.GE. MAXITN) GO TO 200
                                                                                    UOP 930
       KOUNT=KOUNT+1
                                                                                    UOP 940
                                                                                    UOP 950
       PERFORM THE NECESSARY PRINTING
                                                                                    UOP 960
C
\mathbf{C}
                                                                                    UOP 970
       IF (IPT.LE.0) GO TO 100
                                                                                    UOP 980
      PRINT 230, KOUNT, NODES, HEXI
                                                                                    UOP 990
       FLAG= . FALSE .
                                                                                    UOP 1000
       IF (REDUCE.AND.(K.GT.0)) FLAG=.TRUE.
                                                                                    UOP 10 10
       IF (FLAG) PRINT 260, CONS(1)
IF (.NOT.FLAG) PRINT 270, CONS(1)
                                                                                    UOP 1020
                                                                                    UOP 1030
       IF (NCONS.EQ. 1) GO TO 100
                                                                                    UOP 1040
       J=2
                                                                                    UOP 1050
C
                                                                                    UOP 1060
       DO 90 I=2, NCONS
                                                                                    UOP 1070
       IF (I.EQ. IDCONS(J)) GO TO 80
                                                                                    UOP 1080
       PRINT 280, I, RMULT(1), I, I, CONS(1)
                                                                                    UOP 1090
       GO TO 90
                                                                                    UOP1100
                                                                                    UOP1110
80
       CONTINUE
       IF (FLAG) PRINT 290, I, RMULT(I), I, AL(I), I, CONS(I) IF (.NOT.FLAG) PRINT 250, I, AL(I), I, CONS(I)
                                                                                    UOP1120
                                                                                    UOP1130
       IF (J.LT.NA) J=J+1
                                                                                    UOP1140
90
       CONTINUE
                                                                                    UOP1150
                                                                                    UOP 1160
100
       CONTINUE
                                                                                    UOP1170
       PRINT 240
                                                                                    UOP 1189
C
                                                                                    UOP1190
C
       PERFORM THE UNCONSTRAINED OPTIMIZATION
                                                                                    UOP 1200
C
                                                                                    UOP1210
       CALL QUASID (AL, CONS, DIS, ER, G, H, IDCONS, IDVAR, INT, W, X)
                                                                                    UOP 1220
C
                                                                                    UOP1230
\mathbf{C}
       CHECK THE FEASIBILITY OF THE SOLUTION
                                                                                    UOP1240
                                                                                    UOP 1250
       IF (NCONS.EQ.1) GO TO 140
                                                                                    UOP1260
       NAD= NA
                                                                                    UOP 1270
       NA=NCONS
                                                                                    UOP1280
       IND2=0
                                                                                    UOP 1290
       UONLY= . TRUE .
                                                                                    UOP 1300
       CALL OBJ (AL, CONS, DIS, ER, 1., JDCONS, IDVAR, INT, 1., X)
                                                                                    UOP 13 10
       UONLY=.FALSE.
                                                                                    UOP 1320
       IND2=1
                                                                                    UOP 1330
      NA=NAD
                                                                                    UOP 1340
      FEASBLE=.TRUE.
                                                                                    UOP 1350
C
                                                                                    UOP 1360
       DO 110 I=2, NCONS
                                                                                    UOP 1370
       IF (CONS(I).LT.TOLCONS) GO TO 120
                                                                                    UOP 1380
       CONTINUE
110
                                                                                    UOP 1390
                                                                                    UOP1400
       GO TO 140
                                                                                    UOP1410
       IF (K.LE.0) ALMAX=ALMAX*10.
120
                                                                                    UOP 1420
       FEASBLE=.FALSE.
                                                                                    UOP 1430
       IF ((K.LE.0).OR.(.NOT.REDUCE)) GO TO 30
                                                                                    UOP 1440
      REDUCE= . FALSE.
                                                                                    UOP 1450
      DO 130 I=1, NCONS
                                                                                    UOP 1460
```

```
UOP 1470
       IDCONS(I)=I
                                                                                   UOP1480
130
       CONTINUE
                                                                                   UOP 1490
\mathbf{C}
                                                                                   UOP1509
      NA=NCONS
                                                                                   UOP1510
       GO TO 30
                                                                                   UOP 1520
G
                                                                                   UOP 1530
C
      SELECT ACTIVE FUNCTIONS
                                                                                    UOP1540
C
                                                                                   UOP 1550
140
       CONTINUE
                                                                                    UDP LUGO
      K= K+ 1
                                                                                   UOP 1570
       IF ((K.LE.O).OR.(.NOT.REDUCE).OR.(NA.EQ.1)) GO TO 180
                                                                                   UOP 1530
       INDS=0
                                                                                    UOP 1500
       HULTS= . TRUE.
       CALL OBJ (AL, CONS, DIS, ER, 1., IDCONS, IDVAR, INT, RMULT, X)
                                                                                    HOP1600
                                                                                   UOP1610
       NAD=2
                                                                                   UPP LGCO
\mathbf{C}
                                                                                   U0P1629
      DO 150 I=2.NA
                                                                                    UOP 1660
       J=IDCONS(I)
                                                                                   UOP 1650
       IF (RHULT(J).LE.TOLMULT) GO TO 150
       IDCONS(NAD)=J
                                                                                    U0P1660
                                                                                    UOP1670
       NADEHADEL
                                                                                    TIMPIGNO
150
       CONTINUE
                                                                                    UOP1690
                                                                                    UOP 17'00
       DO 160 1=NAD, NORCONS
                                                                                    UOP1710
       IDCONS(I) = (NORCONS+1)
                                                                                    UOP1720
160
       CONTINUE
                                                                                    UOP 1730
                                                                                    UOP 1740
       NA=NAD-1
                                                                                    UOP1750
       UPDATE FLEMENTS OF VECTOR AL CORRESPONDING TO THE ACTIVE FUNCTIONSUOP 1760
       AND CALCULATE ERMAX FOR THESE NEW FUNCTIONS
                                                                                    UOP1770
G
                                                                                    UOP 1789
                                                                                    UOP 1790
       DO 170 1=0.NA
                                                                                    UOP 1890
       J= IDCONS( D)
                                                                                    UOP1810
       AL(J) = FLOAT(NA) *RMULT(J)
                                                                                    UOP 1820
 70
       CONTINUE
                                                                                    UOP1830
                                                                                    TIOP 1840
       UONLY= . TRUE .
                                                                                    UOP 1850
       CALL OBJ (AL. CONS, DIS, ER, 1., IDCONS, IDVAR, INT, 1., X)
                                                                                    UOP 1860
       UONLY . FALSE.
                                                                                    UOP 1870
       IND2=1
                                                                                    UOP 1830
                                                                                    UOP 1890
       CHECK THE STOPPING CRITERION. IF IT IS NOT SATISFIED UPDATE HEXI
                                                                                    UOP1900
                                                                                    UOP1910
100
       CONTINUE
                                                                                    UOP1920
       HEXID=HEXI
                                                                                    UOP 1930
       IF (HEXID.EQ.O) NEXID=1.E-10
                                                                                    UOP 1940
       IF (ABS((ERMAX+1.E-10)/HEXID).LE.TOLHEXI) GO TO 200
                                                                                    UOP 1950
       HEXI=HEXI+ERMAX+1.E-10
                                                                                    UOP 1960
€.
       DO 100 I=1,N
                                                                                    UOP1970
                                                                                    UOP 1989
       J= IDVAR(I)
                                                                                    UOP1990
       Y(J) = X(J)
                                                                                    U072000
100
       CONTINUE
                                                                                    UOP2010
C
                                                                                    UOP2020
       CO TO 70
                                                                                    UOP2030
200
       CONTINUE
                                                                                    U0P2040
.540
       CONTINUE
                                                                                    UOP2050
       RETURN
                                                                                    U0P2060
       FORMAT (/64H THE ABOVE ITERATION HAS RESULTED IN A NONFEASIBLE SOLUOP2070
000
      TUTION. THEZ/GOR CONSTRAINTS AT THIS POINT ARE GIVEN AS FOLLOWS. ITUOP 2080
      ? MAY BE NOTED//64H THAT THE STARTING POINT FOR THE NEXT ITERATION USP2000
      OF THE ABOVE / SON SOLUTION BUT THE BEST FEASIBLE POINT OBTAINEUOP2100 4D SO FAR / 6H CONS , 99(14, E15.8, 14, E15.8, 14, E15.8/6X) UOP2110
                                                                                    UOP2120
       FORDAY (17H1 ITERATION NUMBER, 13,30H OF THE CHARALAMBOUS METHOD CL., UOP2130
      CICHEAGT PTH APPROACHD / IX, 67(IH-)/21H FOR THE NONLINEAR PR, 25HOGRAMUOP2140
      CHINC PROBLEM AT NODE, 14/1X, 49(1H-)//10H VALUE OF .38HHEXI FOR THISUOP2150 CHERATION .... HEXI = ,E15.8//14X, 2HMU, SHLTIPLIER, 10X, 5HALPHA, 1U0P2160
      WOY, FORCOMETRAINT/12X, OPHVECTOR RM, 6HULT(I), 4X, 12HVECTOR AL(I), 7X, 1UOP2170
                                                                                    UOP2180
      SHAVEGTOR CONS(I)/)
                                                                                    UOP2190
```

240 C	FORMAT	(1X)	UOP2200 UOP2210
250 C	FORMAT	(25X, 14, E15.8, 14, E15.8)	UOP2220 UOP2230
260 C	FORMAT	(9X,9H1 ACTIVE, 10X, 12H1 OBJECTIVE, 7X, 1H1, E15.8)	UOP2240 UOP2250
270 C	FORMAT	(12X,28HNOT CALCULATED 1 OBJECTIVE,7X,1H1,E15.8)	UOP2260 UOP2270
280 C	FORMAT	(6X, I4, E15.8, I4, 10H INACTIVE, 5X, I4, E15.8)	UOP2280 UOP2290
290 C	FORMAT	(6X,3(I4,E15.8))	UOP2300 UOP2310
ŭ	END		U0P2320-

Appendix 2

REFERENCES

- [1] J.W. Bandler and C. Charalambous, "Nonlinear programming using minimax techniques", <u>J. Optimization Theory and Applications</u>, vol. 13, 1974, pp. 607-619.
- [2] C. Charalambous, "Nonlinear least pth optimization and nonlinear programming", <u>Mathematical Programming</u>, vol. 12, 1977, pp. 195-225.
- [3] R. Fletcher, "FORTRAN subroutines for minimization by quasi-Newton methods", Atomic Energy Research Establishment, Harwell, Berkshire, England, Report AERE-R7125, 1972.
- [4] R.J. Dakin, "A tree-search algorithm for mixed integer programming problems", Computer J., vol. 8, 1966, pp. 250-255.
- [5] J.H.K. Chen, "DISOPT a general program for continuous and discrete nonlinear programming problems", McMaster University, Hamilton, Canada, Report SOC-29, March 1974 (Revised June 1975).
- [6] J.W. Bandler and J.H.K. Chen, "DISOPT a general program for continuous and discrete nonlinear programming problems", <u>Int. J. Systems Science</u>, vol. 6, 1975, pp. 665-680.
- [7] J.W. Bandler and C. Charalambous, "Practical least pth optimization of networks", <u>IEEE Trans. Microwave Theory Tech.</u>, vol. MTT-20, 1972, pp. 834-840.
- [8] C. Charalambous and J.W. Bandler, "New algorithms for network optimization", <u>IEEE Trans. Microwave Theory Tech.</u>, vol. MTT-21, 1973, pp. 815-818.
- [9] J.W. Bandler, C. Charalambous, J.H.K. Chen and W.Y. Chu, "New results in the least pth approach to minimax design", <u>IEEE Trans.</u>
 <u>Microwave Theory Tech.</u>, vol. MTT-24, 1976, pp. 116-119.
- [10] C. Charalambous and J.W. Bandler, "Nonlinear minimax optimization as a sequence of least pth optimization with finite value of p", Int. J. Systems Science, vol. 7, 1976, pp. 377-391.
- [11] C. Charalambous, "A unified review of optimization", IEEE Trans.

 Microwave Theory Tech., vol. MTT-22, 1974, pp. 289-300.
- [12] J. Asaadi, "A computational comparison of some non-linear programs", Mathematical Programming, vol. 4, 1973, pp. 144-154.
- [13] B.J. Karafin, "The optimum assignment of component tolerances for electrical networks", <u>BSTJ</u>, vol. 50, 1971, pp. 1255-1242.

SOC-174

DISOPT3 - A USER-ORIENTED PACKAGE FOR NONLINEAR CONTINUOUS AND DISCRETE OPTIMIZATION PROBLEMS

J.W. Bandler and D. Sinha

July 1977, No. of Pages: 188

Revised:

Key Words: Engineering optimization, nonlinear programming,

discrete optimization, least pth optimization, branch

and bound method, computer programs

Abstract: A package of FORTRAN subroutines called DISOPT3 for solving continuous and discrete, constrained or unconstrained general optimization problems is presented. The method used for arriving at the discrete solution involves conversion of the original constrained problem into a minimax problem by the Bandler-Charalambous technique, solving the continuous minimax problem using the latest (1977) Charalambous least pth algorithm, Fletcher's 1972 method for unconstrained minimization and use of the Dakin branch and bound technique to generate the additional constraints. These steps are iteratively implemented until all the discrete solutions have been found. DISOPT3 is based conceptually on the DISOPT program developed by Bandler and Chen. All of the desirable features of DISOPT have been retained in DISOPT3 and some more have been added. DISOPT has been used as a yardstick against which the performance and validity of DISOPT3 have been measured. A CDC 6400 computer was used for developing and running this program.

Description: Contains Fortran listing, user's manual.

Source deck available for \$400.00.

The listing contains 1707 cards, of which 708 are

comment cards.

Related Work: As for SOC-29. Represents a complete restructuring and

redevelopment of work presented in SOC-29.

Price: \$ 150.00.

