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DISOPT3 - A USER-ORIENTED PACKAGE FOR NONLINEAR

CONTINUOUS AND DISCRETE OPTIMIZATION PROBLEMS

J.W. Bandler and D. Sinha

Abstract
A package of FORTRAN subroutines called DISOPT3 for solving

continuous and discrete, constrained or unconstrained general
optimization problems is presented. The method used for arriving at the
discrete solution involves conversion of the original constrained
problem into a minimax problem by the Bandler-Charalambous technique,
solving the continuous minimax problem using the latest (1977)
Charalambous least pth algorithm, Fletcher's 1972 method for uncon-
strained minimization and use of the Dakin branch and bound technique to
generate the additional constraints. These steps are iteratively
implemented until all the discrete solutions have been found. DISOPT3
is based conceptually on the DISOPT program developed by Bandler and
Chen. All of the desirable features of DISOPT have been retained in
DISOPT3 and some more have been added. DISOPT has been used as a
yardstick against which the performance and validity of DISOPT3 have
been measured. A CDC 6400 computer was used for developing and running

this program.

This work was supported by the National Research Council of Canada
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CHAPTER 1

INTRODUCTION

DISOPT3 is a package of FORTRAN subroutines for solving continuous
and discrete, constrained or unconstrained general optimization
problems. The method used for arriving at the discrete solution
involves basically, three steps: (1) Conversion of the original
constrained problem into a minimax probliem by the Bandler-Charalambous
technique [1], (2) Allowing all the variables to be continuous for
solving this wminimax proviem using the latest (1977) Charalambous
algorithm [2] and Fletcher's 1572 method for unconstrained minimization
i3] and (3) Uée of the Dakin brasch and oound technigue L4 ] to generate
the additionai coenstraints. Trose stens are iterativaly implewmented
until all the, discrete soiuticns nave been found.

DISOPT3 is based conceptuaiivy on OLIZS0PT {5,061, a program with
similar objectives, developed by Bandier and Chen in 1974. All of the
desirable features of DISOPT have been retained in DISOPT3 and some more
have been added. DISOPT has been used as a yardstick against which the
performance and validity of DISOPT3 have been measured. A CDC 6400
computer was used for developing and running this program.

The goal in developiﬁg DISOPT3 was to éreate an efficient user
oriented program. This goal has been amply achieved. DISOPT3 not only
incorporates some of the most efficient optimization algorithms but also

conforms to the precepts of structured programming. For example, each

subroutine performs only one function or some strongly related

2



3

functions, the program listing is segmented into logical modules by
means of comment cards, the use of GO TO statements is minimal, the
logical structures are simple, and last but not least, descriptive
comments are an integral part of the program listing enhancing its
readability and ease of understanding.

This documentation is so organized that it should be possible to
solve problems using DISOPT3 after only reading Chapter 2. Chapter 3
has a discussion of the many available options. Chapter 4 deals with
the concepts used in developing this program. Chapter 5 summarizes some
results obtained by this program. The program listing and some useful
references are appended. The reader and potential user of this package
should consult, in addition to the references mentioned already [1-61],
the following material dealing with the least pth approach in
optimization: the paper by Bandler and Charalambous [7] introducing the
least pth approach, some extensions [8-10] and a review article by

Charalambous [11].



CHAPTER 2
USING DISOPTS3
DISOPT3 may be used for solving a mixed continuous-discrete non-

linear programming problem which can be formulated as follows:

minimize f(x1, Koy vony xN)

subject to
31(x1, Xy eees xN) 20
g2(x1, Xoy eees xN) 20
where X,, X5, ..., Xg Or X(1), X(2), ..., X(K) (K.LE.N) are variables

that can vary continuously but must assume only certain specified
values. These are called discrete variables. Out of the N variables,
it is always the first K variables that may be discrete. There are two
kinds of discrete variables. The first kind of variable can only assume
a finite number of values. The second kind of variable can assume
values that correspond to uniformly spaced points on a line, i.e., any
value belonging to the infinite set (..., =-3a, -2a, -a, 0, a, 2a, 3a,
...) where a is a finite positive quantity. The number a may be called
the step size of a uniformly discrete variable. Each of the Xqy Xo»

..., X, can be a discrete variable of either kind (but always the first

K
K out of the N variables must be discrete).

To use DISOPT3 the main program and a subroutine called FUN have to
be provided by the user. The main program is used for dimensioning and

initializing some variables and for calling subroutine DISOPT3.

4
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Subroutine FUN evaluates the objective function, the constraints and the
gradient vectors at a given point X. Example 1, at the end of this
Chapter, illustrates these two subprograms as well as the resulting
output. According to a convention used in DISOPT3 the objective
function is described as the first constraint and must be counted in
along with the constraints.

The arrays and variables that are used in the main program and
subroutine FUN are described here.

CONS An array storing the constraints of the problem. The objective
function is, by convention, called the first constraint. It
must be dimensioned in subroutine FUN as CONS(1) or
CONS (NORCONS) .

DIS An array of M + IEXTRA ¥ (N+2) elements that must be
dimensioned in the main program. The first M elements of DIS
must be initialized in the main program according to the
following convention:

(a) If a discrete solution is required go to step (b);
otherwise, let DIS(1) = O. In this case M = 1 and skip the
following steps.

(b) Let I = 1and J = 1.

(e) If X(I) is not uniformly discrete go to step (d);
otherwise, let DIS(J) = 1 and DIS(J+1) = the step size of X(I).
Let J = J+2. go to step (e).

(d) 1f the number of available discrete values, V(1)
V(NI), for X(I) is NI, let DIS(J) = NI, DIS(J+1) = v(1),
DIS(J+2) = V(2), ... and DIS(J+NI) = V(NI). Let J = J+NI+1.

Go to step (e).
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(e) 1Is X(I) the last discrete variable? If yes, let DIS(J) =
0. The initialization of array DIS is complete and M = J.
Otherwise, let I = I+1 and return to step (b).

To further illustrate this convention, consider the following
example. The problem considered has three variables which are
discrete. X(1) has a set of values {1.0, 2.5, 3.7}; X(2) has a
uniform step size of 1.5 and X(3) has a set of values {2.0,

5.0, 10.0, 15.0}. The correct initialization of DIS would

require:

DIS(1) = 3.0 DIS(2) = 1.0 DIS(3) = 2.5 DIS(4) = 3.7

DIS(5) = 1.0 DIS(6) = 1.5

DIS(7) = 4.0 DIS(8) = 2.0 DIS(9) = 5.0 DIS(10) = 10.0 DIS(11) = 15.0

DIS(12) = 0.0

GCONS An array of (N, NORCONS) elements storing the gradient vectors
of the constraints. For each of the NORCONS constraints there
are N elements storing its partial derivatives. It must be
dimensioned in subroutine FUN.

1AR An array of 6 # IEXTRA + 4 * N + 2 * NORCONS elements used as
working space. It must be dimensioned in the main program.

1EXTRA The default value is 2 # N. IEXTRA is a2 measure of the space
allowed by the user to accomodate the additional constraints
generated by the branch and bound algorithm.

IFN Serves as a counter for the function evaluations.

N The number of variables in the problem. It must always be
greater than 1.

NORCONS The number of constraints in the problem. The objective

function must be counted in along with the constraints.



XD

1:

7

An array of (10 # IEXTRA + N %% 2 4 15 # N + 2 # N # NORCONS +
10 * NORCONS)/2 elements used as working space. The first N
elements store the starting point at the beginning and the
solution point at all other times. This array must be
dimensioned in the main program and the first N elements should
be initialized. It should also be dimensioned as X(1) in
subroutine FUN.

An array of N elements storing the best discrete solution. It

must be dimensioned in the main program.

nan ape ncti

Minimize

where x

1

f = 100((x2+0.5) e (x1+0.6)2)2 + (0.4 - x1)2

and x2 are constrained to be natural numbers.

The optimal solution is

f =0.72
X1 = 1.0
x2 = 2.0

In order to arrive at this solution, many nodes are generated by the

branch and bound algorithm. The solution and the constraint added at

each node are shown in Table I and Figure 1. The nodes are numbered to

reflect the order in which they are generated. A listing of the main

program, subroutine FUN and the output are also presented.
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TABLE I SUMMARY OF RESULTS FOR EXAMPLE 1

Node Upper Objective Solution Description
number bound function X1, Xp
0 1010 0 0.40, 0.50 continuous
1 2.12 0.16 0.00, =0.14 feasible
2 - 2.14 -0.56, -0.61 nonfeasible
3 - 2.12 0.00, 0.00 discrete
y - 0.36 1.00, 2.06 feasible
5 - 0.72 1.00, 2.00 discrete
6 0.72 0.75 1.26, 2.99 nonfeasible
!
0
1 4
x159 xlz}
2 3 5 6
x,2-1 X520 X,<2 x,>3

Fig. 1 Tree structure for Example 1.
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PROGRAM TST( INPUT, OUTPUT, TAPEG= INPUT, TAPE6=0UTPUT)

MAIN PROGRAM FOR EXAMPLE 1
DIMENSION DIS(25), IAR(35), X(45), XD(2)
COMMON -1/ IP,MAXNODE, N, NORCONS,PRINTID,PRINTP

DATA X(1),X(2)/-1.8,0.57
DATA DIS(1),DIS(2),DIS(3),DIS(4),DIS(5)/4%1.0,0./"

N=2

NORCONS= 1

CALL DISOPT3 (DIS, IAR, X, XD)
STOP

END

MAI
MAT
MAI
MAIX
MAT
MAT
MAI
MAT
MAT
MAT
MAT
HAT
MAT
AT
MAT
MAT

88

°0
160
110
1260
136
140
150
166—
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SUBROUTINE FUN (CONS,GCONS, IDCORS, IDVAR, X)

THE MODIFIED BANANA SHAPED FUNCTION

THIS SUBROUTINE DEFINES THE CORSTRAINTS AND THEIR GRADIENT VECTORSFUN:

FUN
FUN
FUN
FUN

ACCORDING TO THE CONVENTION FOLLOWED IN THIS PROGRAM THE OBJECTIVEFUN

FUNCTION IS CALLED THE FIRST CONSTRAINT
DIMENSION CONS(1), CCONS(2), X(2)
COMMON -7/ IFN, IND1, IND2
A=¥(1)+.6

B=X(2)+.5

C=.4-X(1)

D=B-A%A

DEFINE THE OBJECTIVE FUNCTION
CONS( 1) =100 . *D*D+C*C

DEFINE THE GRADIENT VECTOR
GCONS(2) =200, *D

GCONS( 1) ==2,%( GCONS( 2) %A+Q)
IFN=IFN+1

RETURN
END

FUN
FUN
FUN
FUN
FUN
FUN
FUN

FUON

FUN
FUN
FUN
FUN
FUN
FUN
FUN
FUN
FUN
FUN
FUN
FUN
FUN
FUN

10
20
20
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280-
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INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPT3

INITIAL VALUE OF THE ELEMENTS OF AL ... ALMIN
OPTIMAL OBJECTIVE AT NODE 6 (GUESS) ..... EST
VALUE OF PARAMETER P ......cccevcveeeceses IP
(-LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE
ALLOWED FUNCTION CALLS AT EACH NODE .. MAXIFN
ALLOWED QUASID CALLS AT EACH NODE .... MAXITN
ALLOWED NUMBER OF NODES ............. MAXNOBDE
NUMBER OF DISCRETE VARIABLES ........... NDIS
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS
NUMBER OF UNITFORM STEP VARIABLES ....... NUNI
TOLERANCE FOR THE CONSTRAINTS ....... TOLCONS
TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS

STOPPING CRITERION FOR UOPT ......... TOLHEXI
TOLERANCE FOR THE MULTIPLIERS ....... TOLMULT
STOPPING CRITERION FOR QUASID .......... TOLX

INITIAL VALUE OF THE UPPER BOUND ...... UPBND
STARTING POINT FOR THIS PROBLEM ........... X

X( 1) IS UNIFORM STEP WITH STEP SIZE
X( 2) IS UNIFORM STEP WITH STEP SIZE

OPTIONS IN EFFECT

GRADIENT CHECK AT THE STARTING POINT

ONE VARIABLE HELD CONSTANT DURING OPTIMIZATION
VERTICES AROUND NODE 6 SOLUTION EXAMINED
OPTIMAL SOLUTION AT EACH NODE PRINTED

" 1]

] D == u L] (1] ] u i

« 10000000E+02
9.
10
. 10000006E+11
1000
15
1000
/]
1
2
-. 10006000E-02
. 10000000E~-02
. 16000006E-02
. 10000000E-07
. 10000000E-06
. 10000000E+11

-.18000000E+01
.50000000E+00

. 100000600E+01
. 10000000E+01
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GRADIENT CHECK AT THE STARTING POINT

e ——

ANALYTICAL NUMERICAL
GRADIENT GRADIENT
VECTOR G(I) VECTOR Y(I)

1 -.21560000E+03 1 -.21560002E+03
2 -.88000000E+02 2 -.88000000E+02

THE GRADIENTS APPEAR TO BE CORRECT

1
2

PERCENTAGE
ERROR
VECTOR PERCERT( I)

+.72116698E-058
.31356897E~-08
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE (]

THE SOLUTION WITH 1 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .40000000E+00 2 .50000000E+00
CONSs 1 .25718870E-24
THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS
OUT OF THESE 52 WERE PERFORMED AT THIS NODE

THE UPPER BOUND HAS BEEN UPDATED AT THIS NODE. THE DISCRETE

SOLUTION AND THE CONSTRAINTS (CONS(1)=UPPER BOUND) FOLLOWING

A CEECK AT THE VERTICES SURROUNDING THE NODE © SOLUTION ARE
X 1 0. 2 0.

CONS 1 .21200000E+01

57
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 1

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 1 0.

THE SOLUTION WITH 2 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 0. 2 —-.14000000E+00
CONS 1 .16000000E+00 2 0.
THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 131
OUT OF THESE 69 WERE PERFORMED AT THIS NODE



15

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 2

THIS SOLUTION IS NONFEASIBLE

e e e e s e G S e St S it e e St S e Bt i S S e

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 2 -.10000000E+01 1 0.
THE SOLUTION WITH 3 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 ~-.55673257E+00 2 -.60868830LE+00
CONS 1 .21376967VE+01 2 .5567V3257E+060 3 ~.39131170E+00

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 177
OUT OF THESE 46 WERE PERFORMED AT THIS NODE
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 3

THIS IS A DISCRETE SOLUTION

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 1 0.

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 2 0.

THE SOLUTION WITH 3 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 0. 2 0.
CONS 1 .21200000E+01 2 0. 3 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 248
OUT OF THESE 7?1 WERE PERFORMED AT THIS NODE



17

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 4

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 1 .10000000E+01

THE SOLUTION WITH 2 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 .10906000E+01 2 .20600000E+01
CONS 1 .360006069E+060 2 0.
THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 304
OUT OF THESE 56 WERE PERFORMED AT THIS NODE
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 5

THIS IS A DISCRETE SOLUTION

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 2 .20000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 1 .10000000E+01

THE SOLUTION WITH 3 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 .10000000E+01 2 .20000000E+01
CONS 1 .72000000E+00 2 0. 3 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONRS PERFORMED S0 FAR IS 379
OUT OF THESE 75 WERE PERFORMED AT THIS NODE
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OPTIMAL SOLUTION AT DAKIR BRANCH AND BOUND NODE 6

-

THIS SOLUTION IS NONFEASIBLE

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.CE. 2 .30000000E+01 1 .10000000E+01 ’
THE SOLUTION WITH 8 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 .12663456E+01 2 .29855667E+01
CONS 1 .75109331E+00 2 .26634555E+00 3 -.14433311E-061

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 396
OUT OF THESE 17 WERE PERFORMED AT THIS NODE



CHAPTER 3
OPTIONS IN DISOPT3

The feature of default values for many of the variables in DISOPT3
has been provided for the convenience of the user; but it is, indeed,
possible and sometimes desirable to initialize these variables in the
main program choosing different values. The user could, thus, opt for

fast execution, no printout at ail or, a detailed printout, etc. Table

= - - " 5 o . e -
i1 &t the end of thisg ¢ Lists the delauit
g [ . T e, tm D Cr ey T2 E I T TR N S PR P P
Variadiesd. RHEWMPLED £ and 3 ria@ideidte Lag A0 OF
BY CLODBLNE Epoiipriaile valiuls Voeoonhe varlanles Loy Lnsllallniilng

B D . U T [

CRESe Vearlialies I e 1o

oy nCLUdLNE 4 felevalnd sy
A e i - —_— T

Cad greatily L aunie S8 DellD e W] [ Dl Malh. L0

aiterpavives U0 Ciadose [Val Wilili DoW oo GE3Criond.

R RN R R - T NS S VS T I A T : L VAN
S SR VLV - Lo R R U T Y P L P R S LA L e

1. Oniv Okb

If there are many optimal clscreve zolutions Lo a problem, wilil the
user be satisfied with just one? If the answer is yes, let ONESOL, a
logical variable, be TRUE; otherwise, FALSE. Finding all the solutions

requires more effort than finding just one.

2. JYERTICES to be checked for an UPPER BOUND?

The effort required to find an‘optimal discrete solution using the
branch and bound algorithm strongly depends on how soon a good upper
bound can be found. If the user thinks that the objective function for

20
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his problem could not be larger than, say, 10.5 at the optimal discrete
solution, he could set UPBND (the upper bound) = 10.5 in the main
program. A value of UPBND which is lower than the actual objective
function value (at the optimal discrete solution) will result in the
program's inability to find any solution at all; whereas, too large a
value will not save any effort.

An upper bound is automatically generated and updated whenever a
discrete solution is found at a node but DISOPT3 also examines the
discrete points surrounding the solution at node 0 if VERTCHK, a logical
variable, is TRUE. This method of generating the upper bound could save
a lot of effort if the user has no idea about the upper bound. If the
user has a good idea, let VERTCHK be FALSE, and save some function

evaluations.

3. ER ?

The choice of numbers for such variables as TOLCONS, TOLDIS,
TOLHEXI, TOLMULT and TOLX is critical to the efficiency of the program.
All the tolerances should be chosen sufficiently small with respect to
the magnitude of numbers involved in a problem. While too small a value
for TOLX and TOLHEXI may result in excessive effort, too large a value
could lead to the program's inability to find any solution at all. 1In
test runs and to gain information about a problem, one could use large
values and then switch to tight values along with some of the above
features to economize on effort and obtain a highly refined solution.

These tolerarces are described as follows:

TOLCONS A small}negative number. If a constraint value is smaller than

0 but larger than or equal to TOLCONS, it is considered as
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satisfied.

TOLDIS A small positive number. If a variable lies within TOLDIS
neighbourhood of a discrete value, it is assumed to be
discrete.

TOLﬁEXI A small positive number. Used by subroutine UOPT as a stopping
criterion in the algorithm (see Charalambous [2]) that
determines the continuous solution at each node.

TOLMULT A small positive number. Used in subroutine UQPT to select
active constraints. If the multiplier (see Charalambous [2])
for a constraint exceeds TOLMULT, it is considered to be
active. The active constraints are the only constraints that
are used during the following optimization. By choosing
TOLMULT as 0, the user can force all the constraints to be
active all the time.

TOLX A small positive number. Used in subroutine QUASID (Fletcher

algorithm [3]) to test the convergence of the solution.

b, r G r
Two hollerith variables, PRINTID and PRINTP, influence printing and
offer the following options.
PRINTID = 3HYES if the input data is to be printed, 2HNO otherwise.
PRINTP = 4HNONE for no printing at all by any part of the program.
THONLYDIS for printing discrete solutions only.
THNODEOPT for printing the optimal solution at each node
whether or not it is discrete.
3HALL for printing the details of the optimization at

each node. Results are printed after every IPT
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iterations of subroutine QUASID. IPT may also be

changed by the user.

5. Check the user's definition of the gradients?

Often, there is a mistake in the definition of gradients in sub-
routine FUN. The results obtained as such will be meaningless. This
waste of effort might be avoided by setting GRADCHK, a logical variable,
as TRUE.

When GRADCHK is true,bthe gradients are calculated (at the starting
point) numerically and also by the user's definition. If the dis-
crepancy is less than 10%, the user's definition is assumed to be
correct; the possibility that the gradients are wrong must not still be
ruled out, though. If the gradients are correct, a logical variable
WRONG is FALSE; otherwise, it is TRUE and the program is terminated. In

either case a message is printed.

6. DISCRETE VARIAB

In the branch and bound algorithm, additional constraints e.g., X <
XL or X > XU are added to the problem if X is supposed to be a discrete
variable but does not assume a discrete value in the optimal solution.
There are two ways to implement it: (1) add the constraint and
optimize, (2) do not add the constraint, hold X constant at the
appropriate bound and optimize. The second alternative is, generally,
more efficient and may be chosen by setting HOLDVAR, a logical variable,
equal to TRUE. 1In the rare case when this method fails, it should not

be used.
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7. Branching on the FIRST or the LAST variable?

Many of the discrete variables may not have a discrete value in the
solution. For the additional constraint, as explained above, should the
first variable be chosen or the last? It is not possible to predict the
best choice for every problem. However, if REVERSE, a logical variable,

is TRUE the last variable is chosen.

8. Qther options?

In addition to the variables described in the above options, the
following could also be of interest to the user.

ALMIN Used to initialize each element of vector AL. Vector AL is
used to convert the nonlinear programming problem at each node
into an exact minimax problem as proposed by Bandler and
Charalambous [1]. ALMIN greatly influences the efficiency of
the program but usually there is no way to predict a good value
for a particular problem.

EST An estimate of the optimal least pth function value at node O.
If initialized properly, this could save some function
evaluations in the very first optimization.

IDCONS An array identifying the active constraints, i.e., those
constraints which are actually being used in the optimization
at any node. This array may be used in subroutine FUN to
evaluate only those constraints which are required.

IDVAR An array identifying all the variables except the one which is
held constant. If the evaluation of partial derivatives is
very time consuming then IDVAR should be used in subroutine FUN

to avoid the evaluation of those derivatives which are not
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needed.
IP The parameter p of least pth optimization (see [2, T7-11]).
An exhaustive list and a complete description of the variables is

provided in the program listing of subroutine DISOPTS3.
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TABLE II DEFAULT VALUES

Variable Name Default Value
ALMIN 10.
EST 0.
GRADCHK .TRUE.
HOLDVAR .TRUE.
IEXTRA 2 &N
IP 10
IPT 500
LARGE 1.0 E+10
MAXIFN 1000
MAXITN 15
MAXNODE 1000
ONESOL .FALSE.
PRINTID 3HYES
PRINTP THNODEOPT
REVERSE .FALSE.
TOLCONS -0.001
TOLDIS 0.001
TOLHEXI 0.001
TOLMULT 0.1E=7
TOLX 0.1E-6
UPBND 1.0E+10
VERTCHK .TRUE.

A variable, with a default value, should not be initialized in the main

program by a DATA statement.




27
The constraine r em

Minimize, as in the Beale problem [12],

f=z9 - 8x1 - 6x2 - ux3 + fo + 2x§ + xg + 2x, X, + 2x 4 X3
subject to
X, 20
X, 2 0
x3.2 0

3 - Xy = X, - 2x3‘2 0
but where X4, X, and x3 are constrained to be natural numbers.

The optimal solutions are

f=1.0
X, = 2.0 x, = 1.0 X, = 2.0
X, = 0.0 X, = 1.0 X, = 1.0
x3 = 0.0 x3 = 0.0 x3 = 0.0

The tree generated by the branch and bound algorithm is shown in
Figure 2 and results summarized in Table 1II. A listing of the main

program, subroutine FUN and the output is also presented.
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TABLE III SUMMARY OF RESULTS FOR EXAMPLE 2

Node Upper Objecg}ve Solution Description
number  bound function X1y X2, X3
0 1010 0.11 1.33, 0.77, 0.44 continuous
1 1.00 0.22 1.00, 0.88, 0.55 feasible
2 - 1.34 1.41, 0.00, 0.59 nonfeasible
3 - 0.25 1.00, 1.00, 0.50 feasible
y - 1.00 1.00, 1.00, 0.00 discrete
5 - 1.07 0.32, 0.91, 1.00 nonfeasible
6 - 0.50 2.00, 0.50, 0.00 feasible
T - 1.00 2.00, 0.00, 0.00 discrete
8 - 1.00 2.00, 1.00, 0.00 discrete

0
1 6
xlf} xlzg N
x,<0 xzfp xzz}

2 3 7 8
xzz}

4 5
<0 X,>1

X3S 32

Fig. 2 Tree structure for Example 2.



0 0O O aana

29

PROGRAM TST ( INPUT, OUTPUT, TAPEG=INPUT, TAPE6=0UTPUT)
MAIN PROGRAM FOR EXAMPLE 2

DIMENSION DIS(350), IAR(60), X(100), XD(3)

LOGICAL HOLDVAR, ONESOL, REVERSE, VERTCHK

COMMON -1/ IP,MAXNODE, N, NORCONS, PRINTID, PRINTP

DATA X/1.0,2.0,1.0/
DATA DIS/6%1.0,0.0/

N=3

NORCONS=§

PRINTP=3HALL

CALL DISOPT3 (DIS, IAR, X, XD)
STOP

END

MAI
MAI
MAI
MAI
MAI
MAI
MAT
MAT
MAIX
MA

MAT
MATX
MAT
MAIT
MAIX
MAI
MAI
MAI
MAI

19
20
30
40
50
60
70
890
20
100
110
120
130
140
150
160
170
189
10—
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SUBROUTINE FUN (CONS,GCONS, IDCONS, IDVAR,X) FON 10
FUN 20
THE BEALE CONSTRAINED FUNCTION FUN 3o
FUN 40

THIS SUBROUTINE DEFINES THE CONSTRAINTS AND THEIR GRADIENT VECTORSFUN- 50
ACCORDING TO THE CONVENTION FOLLOWED IN THIS PROGRAM THE OBJECTIVEFUN 60

FUNCTION IS CALLED THE FIRST CONSTRAINT FUN 70
. FUN 80
DIMENSION CONS(3), GCONS(15), IDCONS(1), X(3) FUN 90
FUN 100
COMMON /77 IFN, IND1, IND2 FUN 110
FUN 120
P=X(1)
Q=X(2)
R=X(3)
A=P+Q
B=P+R

Do 66 I1=1,8

J=IDCONS(¢ I)

IF (J.GE.6) GO TO 60

GO TO (10,20,30,40,50), J
CONTINUE

DEFINE TIIE OBJECTIVE FUNCTION

CONS(1)=9.+(A-6.)%A+(B-2.) *B-R-R+@*@
IF (IND1.FQ.0) RETURN
GCONS( 1) =(—-4.+A+B) %2,
CCONS(2) =(A+0—-3. ) %2,
GCONS(3)=-4.+2.%B
GO TO 69
CONTIWUE
! (=P

1

CONTINUN
CONBS{4) =1
CCONS( 105 =0.
GCONS(1i)=0.
- GCONS(12)=1.
GO TO 60
CONTINUE
CONS(5)=3.~-B-Q-R
GCONS(13)=-1.,
GCONS(14)=~1.
GCONS( 15)=-2,
CONTINUE

IFN= IFN+1
RETURN
END
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INPUT DATA FOR THE DISCRETE OPTIMIZATION PROGRAM DISOPTS3

INITIAL VALUE OF THE ELEMENTS OF AL ... ALMIN
OPTIMAL OBJECTIVE AT NODE @ (GUESS) ..... EST
VALUE OF PARAMETER P ........cvvvevevesess IP
(~LARGE, LARGE) BRACKETS ALL VARIABLES . LARGE
ALLOWED FUNCTION CALLS AT EACH NODE .. MAXIFN
ALLOVED QUASID CALLS AT EACH NODE .... MAXITN
ALLOWED NUMBER OF NODES ......«.s.... MAXNODE
NUMBER OF DISCRETE VARIABLES ........... NDIS
NUMBER OF CONSTRAINTS IN THE PROBLEM NORCONS
NUMBER OF UNIFORM STEP VARIABLES ....... NUNI

TOLERANCE FOR THE CONSTRAINTS ....... TOLCONS =

TOLERANCE FOR THE DISCRETE VARIABLES . TOLDIS
STOPPING CRITERION FOR UOPT ......... TOLHEXI
TOLERANCE FOR THE MULTIPLIERS ....... TOLMULT

STOPPING CRITERION FOR QUASID .......... TOLX =

INITIAL VALUE OF THE UPPER BOUND ...... UPBND
STARTING POINT FOR THIS PROBLEM ........... X

X( 1) IS UNIFORM STEP WITH STEP SIZE
X(C 2) IS UNIVORM STEP WITH STEP SIZE
X{ 3) IS UNIFORM STEP WITH STEP SIZE

OPTIONS IN EFFECT

GRADIENT CHECK AT THE STARTING POINT

ONE VARIABLE UELD CONSTANT DURING GPTIMIZATION
VERTICES AROUND NODE @ SOLUTION EXAMINED
DETAILED PRINTING REQUESTED

"

L} CO BN 1] "

11}

- 10000000E+02
0.
10
. 10060600E+11
1060
15
1000
9
5
3
-.16000000E-62
. 10000000E-02
. 10000000E-02
. 10000000E-07
. 10000000E-06
. 10000600E+11
. 10000000E+01
. 20000000E+01
. 10000000E+0 1
. 10000000E+0 1
. 10060606E+01
. 10000000E+61
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GRADIENT CHECK AT THE STARTING POIRNT

ANALYTICAL NUMERICAL PERCENTAGE
GRADIENT GRADIENT ERROR
VECTOR G(I) VECTOR Y( D) VECTOR PERCENT( I)

1 .12900000E+02 1 .12000000E+02 1 .27853275E-09
2 .140900600E+62 2 .14000000E+062 2 ,76291989E-09
3 .200600000E+02 3 .20000000E+02 3 .45793058E-08

THE GRADIENTS APPEAR TO BE CORRECT
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FEASIBILITY CHECK AT NODE @

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I)
0 1 .20060600E+61 1 .10000000E+01 1 .10600000E+01
2 .20000000E+01 2 ,10000000E+01
3 .10000000E+01 3 .20000000E+01

2 3 .33333333E+00 . 22727273E+00 1 —-.23229083E+00
. 12272727E+01 2 .17811275E-03

.18181818E+00 3 ~.45361504E+00

R =
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ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE o

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = 0.

MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT( I) VECTOR AL(I) VECTOR CONS(I)

NOT CALCULATED 1 OBJECTIVE 1 .28861653E+01
2 .10000000E+02 2 .22727273E+006
3 .10000000E+02 8 .12272727F+01
4 .10000000E+02 4 .18181818E+00
5 ]

. 10000000E+062 .11818182E+01
UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

—— ot Gt . s 2 G S e S 1t S A s Ol i S s i o 2004 e e ot e o 2t st o s e

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(1I)
o 5 .28801787E+01 1 .22727273E+60 1 ~.42736980E+01
2 . 12272727E+01 2 -.63641762E+00
3 .18181818E+00 3 ~-.31833479E+01

22 47 .11213284E+00 1 .13346134E+01 1 .21623398E-08
2 77692441E+00 2 ,19607237E-08
3 .442311064E+00 3 .44486781E-08
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ITERATION NUMBER 2 OF THE CHARAL

AMBOUS METHOD (LEAST PTH APPROACH)

VALUE OF HEXI FOR THIS ITERATION .

UNCONSTRAINED OPTIMIZATION

o e o

ITER.
NO.

0

MULTIPLIER
VECTOR RMULT( I)

NOT CALCULATED

1
2
3
4
35

USING 1972 VERSION

————

e s 00 00

ALPHA
VECTOR AL(I)

OBJECTIVE

. 10000000E+02
. 10000000E+02
. 10000000E+02
. 10000000E+02

HEXI

1
2
3
4
5

.11196611E+00
CONSTRAINT

VECTOR CONS(I)

.11196611F+00
. 13346 134E+01
7769244 1E+00
.44231104E+00
.38401338E-02

OF FLETCHERS METHOD

e

FUNC. LEAST PTH
EVAL. FUNCTION

49 -.99999564E-10

77 -.84460118E-03

WIN =

WM~

R —

VARIABLE
VECTOR X(I)

. 13346 134E+01
.Y7692441E+00
.44231104E+00

. 13333449E+01
TTT77004E+00
. 444425 12E+00

QO =

N =

GRADIENT
VECTOR G(I)

=.22307559E+060
-, 22307559E+00
-.44615117E+00

-.40486 177E~-04
-.40526508E-04
-.8098655 1E-04
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ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

P

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE

-~ s

pu— e e e s e o e e S e e S S e B s - S S S e B D -

VALUE OF HEXI FOR THIS ITERATION ....... HEXI

UNCONSTRAINED OPTIMIZATION

ITER.
NOO

0

8

MULTIPLIER
VECTOR RMULT( I)

ACTIVE

. 6665 1804E-45
.25037991E-42
. 11797444E~39
.22218895E+00

D SN -

FUNC. LEAST PTH
EVAL. FUNCTION

81 -.99999564E~10

96 -.72137727E-05 "

1
2
3
4
5

USING 1972 VERSION

ot

ALPHA
VECTOR ALCI)

OBJECTIVE
INACTIVE
INACTIVE
INACTIVE
. 44437790E+00

VARIABLE
VECTOR X(I)

. 13333449E+01
JITTITOB4EHOO
+ 444425 12E+00

. 13333333E+01
JRTTYTTTTE+ 00
+44444445E+00

1
2
3
4
5

.11111884E+00

CONSTRAINT
VECTOR CONS(I)

.11111884E+00
. 13333449E+01
LTCTTTOO4E+0O
. 444425 12E+00
. 34796830E-04

OF FLETCHERS METHOD

o s e s e S e S St e S S S S S e P St S e D e S S Wt S S St S o D 200 B St ) D R D S S G G Y e o St S B St S S e e e o S

WD =

N =

GRADIENT
VECTOR G(I)

-.22222994FE+00
~.22222998E+00
-.44445989E+00

~.30262976E-05
-.30395519E-05
-.60223060E-05
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 9

THE SOLUTION WITH 5 CONSTRAINTS (CONRS(1)=0BJECTIVE) IS
X 1 .13333333E+01 2  JUYTIIIITEFOO 3 .44444445E+06
CONS 1 .11111111E+00 2 .13333333E+01 3 (YTYTTIVIEA0O
4 .44444445E+00 6 ~.42769699E-09

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 107
OUT OF TEHESE 100 WERE PERFORMED AT THIS NODE

THE UPPER BOUND HAS BEEN UPDATED AT THIS NODE. THE DISCRETE

SOLUTION AND THE CONSTRAINTS (CONS(1)=UPPER BOUND) FOLLOWING

A CHECK AT THE VERTICES SURROUNDING THE NODE 6 SOLUTION ARE
X i1 .20000000LE+01 2 0. 3 o.

CONS 1 .10000000E+61 2 .20000000E+01 3 0.
4 0. 5 .10000000E+01
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FEASIBILITY CHECK AT NODE 1

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G( D)
] 1 -.22608922E+00 2 YTITTTTIE+0O 2 .23810759E+00

3 .44444445E+00 3 .43072415E+00



FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE

39

1

VALUE OF HEXI FOR THIS ITERATION ....... HEXI
MULTIPLIER ALPHA
VECTOR RMULT(I) VECTOR AL(I)

NOT CALCULATED 17 OBJECTIVE

. 2 .16090000E+02

3 .10000060L+062

4 .10000000E+02

5 .100000600E+02

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION

ITER. FUNC. LEAST PTH

NO. EVAL. FUNCTION

o 3 .40740741E+00 2
3

11 27

. 22585559E+00 2
3

= 0.

CONSTRAINT
VECTOR CONS(I)

1 .40740741E+00
2 .10600600600E+01
8 ?VTYCVICELO0
4 .44444445E+00
5 .33333333E+00

OF FLETCHERS METHOD

VARIABLE
VECTOR X(I)

JTYITUITIE+OO
. 44444445E+00

.88B816768E+00

.352670676E+00

GRADIENT
VECTOR G(I)

2 -.8888889 1E+00
3 -.11111111E+01

2 -.32797472F-06
3 -.60288207E-06
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ITERATION NUMBER 2 OF THE GHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 1

o et e e e e et e S s e B P

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = .22G11639E+00
MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT( I) VECTOR AL( I) VECTOR CONS(I)
NOT CALCULATED 1 OBJECTIVE 1 .22511639E+00
2 .10000000E+02 2 .10000000E+01
3 .100000600L+02 3 .88816768E+00
4 .10000000E+02 4 .55267076E+00
5 .10000000E+02 5 .64908043E-02
UNCORSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD
ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I)

o 29 -.99999120E-106 .88816768E+00 2 -.44732927E+00

.55267076E+00 © 3 ~.89465849E+00

Wi

6 52 -.28363944E-02 2 .888B87869E+00 2 -.41278681E-06
3 .55551476E+00 3 -.83238579E-06
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ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

——— ——— —— —— ———

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 1

— e oot e s o - s . o s o e e S 2 i S e o

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = .22226302E+00
MULTIPLIER ALPHA CONSTRAINT

VECTOR RMULT(I) VECTOR AL(I) VECTOR CONS(I)

1 ACTIVE 1  OBJECTIVE 1 .22226302E+00

2 .97235922E-38 2 INACTIVE 2 .10090000E+01

3 .35513129E-37 3 INACTIVE 3 .83887869E+00

4 .62385672E-35 4 INACTIVE 4 .55551476E+060

5 .44448481E+00 5 .88896963LE+00 5 .91787746E-04

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH VARTABLE GRADIENT

NO. EVAL. FUNCTION VECTOR X( 1) VECTOR G(I)

9 56 -.99999]126E-10 2 .88887369E+00 2 -.44448524F+00
3 .55551476E+00 3 -.88897048E+00

6 7@ ~.38064565E-04 2 .88888889E+00 2 -.53115074E-08
3 .55555556E+00 3 -.10631369E-07
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 1

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE.
X.LE. 1 .10000600E+01
THE SOLUTION WITH 5 CONSTRAINTS (CONS(1)=O0BJECTIVE) IS

X 1 .100000006E+01 2 .888BBBBBYE+0O 3 .50556566E+00

CONS 1 .22222222E+00 2 .10000000E+01 3 .B88888889E+00
4 .355555556E+00 5 .78795015E-09
THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 185

OUT OF THESE 74 WERE PERFORMED AT THIS NODE
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FEASIBILITY CHECK AT NODE 2

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

—— e s e . s s S S e S S e S S . o s

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I)
U 1 .11975309E+01 1 .10000000E+01 1 ~.28888889E+01
3 .355555556E+00 3 ~-.88888889E+00

10 11 .53784145E+06 . 14102455E+01 1 .28057037E-07

.58975458E+00 3 .76916869E-07

QO



)
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOURD NODE 2
THIS SOLUTION IS NONFEASIBLE

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 2 0. 1 .10000000E+01
THE SOLUTION WITH 6 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 .14102455E+01 2 0. 3 .58975458E+00

CONS 1 .13478104E+01 2 .14102433E+01 3 0.
4 .58975458E+00 5 .41924536E+00 6 —-.41024548E+00

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED S0 FAR IS 197
OUT OF THESE 12 WERE PERFORMED AT THIS NODE



FEASIBILITY CHECK AT NODE
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ITER. FUNC. LEAST PTH
EVAL. FUNCTIOR

KNO.
@

1

2

.11111111E+00

.11111111E+00

[

QI

VARIABLE
VECTOR X(I)

. 10000060E+01
.55555556E+00

-95555556E+00
.46666667E+00

GRADIENT
VECTOR G(I)

. 10000000E+01
.20000000E+01

.83215416E+00
.99206532E-01
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ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE

VALUE OF HEXI FOR THIS ITERATION .......

UNCONSTRAINED OPTIMIZATION

e i o . S g S et . e e e

o s

MULTIPLIER

VECTOR RMULT( I)

NOT CALCULATED

1
2
3
4
5
6

e e e

3
HEXI = 0.

ALPHA CONSTRAINT
VECTOR ALCI) VECTOR CONS(I)
OBJECTIVE 1 .33580247E+00
. 10000000E+02 2 .95355556E+00
. 10000000E+02 3 .10000000E+01
. 10000000E+02 4 .46666667E+00
. 10000000E+02 5 .11111111E+00
. 10000000E+02 6 .44444444E~-01

ITER. FUNC. LEAST PTH
NO. EVAL. FUNCTION

4] 4 .33580247E+00
1@ 30 .25916355E+00

[/ =y

3

VARIABLE
VECTOR X(I)

.95555556E+00
4666666 7E+00

+.99302956E+00
+49997 180E+00

GRADIENT
VECTOR G(I)

1 ~.12444444E+01
3 -.115855G6E+61

1 -.39806387E-07
3 -.85146215E~07

s s e P e 7 S e e s e W e S S St
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ITERATION NUMBER 2 OF THE CHABALAMBOUS "METHOD (LEAST PTH APPBDACH)

s s .t S s

VALUE OF HEXI FOR THIS ITERATION .......

UNCONSTRAINED OPTIMIZATION

ITER.
NO.

]

8

MULTIPLIER
VECTOR RMULT( I)

NOT CALCULATED

FUNC. LEAST PTH
EVAL. FUNCTION

32 -.99998232E-10

68 -.67967310E-02

1
2
3
4
5
6

USING 1972 VERSION

—— — o

3

ALPHA
VECTOR ALCI)

OBJECTIVE

. 1660006GOE+02
. 100300060E+02
. 100000BOE+62
. 10000660E+02
. 10000000LE+062

VARIABLE
VECTOR X(I)

.99302956E+00
.49997 180E+060

.99979308LE+00
+49999997E+00

HEXI =

1
2
3
4
5
6

. 25709620E+00

CONSTRAINT
VECTOR CONS(I)

.25709620F+00
< 99302956E+00
. 10000000E+01
. 49997 180L+00
. 76268309E-02
.69704366E-02

OF FLETCUERS METHOD

1
3

1
3

GRADIENT
VECTOR G(I)

. 10279381E+01
.10139973E+01

21796770E-05
.23605788E-05
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ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 3

[ — —— — e S e s e e e e ot o e G G

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = .23620704E+00

MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT( I) VECTOR AL(D) VECTOR CONS(I)
1 ACTIVE 1 OBJECTIVE 1 .25020704FE+00
2 .14850122E-38 2 INACTIVE 2  .99979308FE+00
3 .14816379E-33 3 INACTIVE 3 .10006000F+01
4 .30115122E-30 4 INACTIVE 4 .49999997FE+00
5 .50020819E+00 5 .13006246E+01 5 .20698885E-03
6 .50062184E+00 6 .15018655E+01 6 .20692153E-03
UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD
ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X( D) VECTOR G( 1)

L] 72 -.99998232E-10 1 .99979308E+00 1 -.10668278E+01
3 .49999997E+00 8 -.10004139E+01

. 99999996 E+00 1 -.43407569E-04
. 5000000 1E+00 3 -.10513514E-05

5 91 -.18550009E~-63

[/
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 3

— e e e e e e i e e S e i S e e e

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 1 .1000006G0E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 2 .16066069E+01

THE SOLUTION WITH 6 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 .16000600E+01 2 .10000000E+01 3 .50000001E+060

CONS 1 .24959999E+00 2 .100000600E+01 3 .10000000E+01
4 .30000001E+00 5 —-.11520996E-07 6 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 292
OUT OF THESE 95 WERE PERFORMED AT THIS NODE
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FEASIBILITY CHECK AT NODE 4
UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

I o et e hant it it g ke s Gt e i Bt B

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(1I)
U] 1 ~-.50000000E~10 1 .106000600E+01 1 -.12500000L+00

2 .10000000E+01 2 ~-.12500000E+00
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ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 4

———— ——— —— o

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = 0.
MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT( I) VECTOR AL(I) VECTOR CONS(I)
NOT CALCULATED 1 OBJECTIVE 1 .100006600E+01
2 .10060000E+02 2 .10006000E+01
3 . 10000900E+02 3 .10090000E+01
4 .10000000E+02 4 0.
5 .10000000E+02 5 .1000600600E+01
6 .10000000E+02 6 0.
7 .10600000E+02 7 6.

UNCONRSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

o T e e e e e e e 0 ot e o o et e o St i e e S s S et o St St S S e . S S St e e S e et . B o o S o e

ITER. FUNC. LEAST PTH VARTABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I)
e 3 .11486984E+01 1 .10000G00E+01 1 .57434918E+00
2 .10060000E+01 2 —-.28717459E+01

19 17 . 111836726E+01 .99238094E+00 1 .35642626E-05

. 10329596E+01 2 .36651024E-06

B



52

ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE

e ——

4

VALUE OF HEXI FOR THIS ITERATION ...

UNCONSTRAINED OPTIMIZATION

I'TER.
NO.

U]

10

MULTIPLIER

VECTOR RMULT(I)

NOT CALCULATED

1
2
3
4
5
6
7

USING 1972 VERSION

ALPHA
VECTOR AL(ID)

OBJECTIVE

. 10000000E+02
. 100000600E+02
. 10000000E+02
. 100000600E+02
. 10000000E+02
. 10000000E+02

L HEXI

1
2
3
4
5
6
7

. 10176247E+01
CONSTRAINT

VECTOR CONS(I)

. 101760247E+01
.99238994E+00
. 10329596E+01
Q.
.97465949E+00
. 76199063 1E-02
.32959577E~01

OF FLETCHERS METHOD

FUNC.
EVAL.

LEAST PTH
FUNCTION

19 -.93298335E-10

45 -.15310072E-01

| SR

VARIABLE
VECTOR X(I)

«99238094E+00
. 10329596E+01

.999890359E+00
-10013870E+01

1
2

1
2

GRADIENT
VECTOR G( D)

-.18329966E+01

. 10879 182E+00

.29964347E-07
.34933965E-08

o s e o e et e e S ot s e
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ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPBOACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 4

o o s s o . s o S S B 2

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = .10002224E+01
MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT( ID VECTOR AL(I) VECTOR CONS(I)
1 ACTIVE 1 OBJECTIVE 1 .100022245+61
2 .11842496E-29 2 INACTIVE 2 .99989059E+00
3 .11649596E~29 3 INACTIVE 3 .10013870E+01
4 .39985035E+01 4 .15994014E+02 4 0.
5 .119955066E-29 5 INACTIVE 5 .99872237E+00
6 .19976636E+01 6 .79906544E+01 6 .10941360F-03
7 .53293373E-62 7 .21317349E-01 7 .138706418E-02

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

e e e o ot i ot S e e i et e ot e S e

ITER. FUNC.
NO. EVAL.

LEAST PTH
FUNCTION

VARIABLE
VECTOR X(I)

GRADIENT
VECTOR G(I)
o 49 -.93298335E~16 1

.99989039E+06 1 ~.18638860E+01

2 .10013870E+01 2 .49724512E-02
7 66 ~.19529393E-03 1  .99999950E+00 1 .126153736E-64
2 .10097367E+01 2 .49573347E-06



54

OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 4
THIS IS A DISCRETE SOLUTION

— ——— o o

THE ¥ LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 3 0. 1 .10000600E+061

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 2 .10000000E+01

THE SOLUTION WITH 7 CONSTRAINTS (CONS(1)=OBJECTIVE) IS

X 1 .10000000E+01 2 .10000000E+01 3 eo.

CONS 1 .10000000E+01 2 .10000000E+01 3 .10000000E+01
4 0. 5 .10000000E+01 6 0.
7 0.
THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 362

OUT OF THESE 70 WERE PERFORMED AT THIS NODE
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FEASIBILITY CHECK AT NODE 5

UNCONSTRAINED OPTIMIZATION USIKG 1972 VERSION OF FLETCHERS METHOD

ITER. FUKC. LEAST PTH VARIABLE GRADIENT
RO. EVAL. FUNCTION VECTOR X(1I) VECTOR G(I)
0 1 .10000000E+01 1 .10900000E+01 1 .10000000E+01

. 2 .10000000E+01 2 .10000000E+01

11 16 .25455486E+00 - 31608494E+00 1 .26094082E~-07

.90870323E+60 2 .14392533E-07

[V

i
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 3§

THIS SOLUTION IS NONFEASIBLE

e e s . S e S i St it i S e S o S S St ) s S G B

THE X LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 1 .10000000E+01

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 3 .10000000E+61 2 .10000000E+01

THE SOLUTION WITH 7 CONRSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 .31608494E+006 2 .90870323E+00 3 .10000000E+01

CONS 1 .10770283E+01 2 .316068494L+00 3 .906876323E+00
4 .10000000E+01 5 -.22478816E+00 6 .68391566E+00
7 -.91296773E~01
THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 379

OUT OF THESE 17 WERE PERFORMED AT THIS NODE
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FEASIBILITY CHECK AT NODE 6

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I)
1] 1 .66666667E+00 2 TTTTIIVESOO . 10060000E+@1

2
3 .44444445E+90 3 .20000000E+01

2 3 .88888887E-61 2 .28730158E+060 2 ~-.79264268E~-01
3 .16349207E+00 3 -.37338345E+00
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ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 6

—— e s s e e

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = 0.
MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT( ID VECTOR ALCI) VECTOR CONRS(I)
NOT CALCULATED 1 OBJECTIVE 1 .61721689E+00
2 .1000090GE+02 2 .20000000E+061
3 .10000000E+02 3 .28730158E+00
4 .100006000E+02 4 .16349207E+00
5 .10000000E+02 5 .38571429E+00

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

P —at s ot o e s Bt e e 2 S e St e s o e e et e B B e St e B et e S S S Bt e . Gt o

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NG. EVAL. FURCTION VECTOR X(I) VECTOR G(I)
U] 5 .61721089E+00 2 .28730138E+00 2 ~-.B5079368BE+00
3 .16349207E+00 3 .32698413E+00

12 20 .50063389E+00 2 .50000000E+00 2 ~.7516517Y9E-09
. 22570296E~-01 3 ~-.12247543E-08

w



ITERATION NUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

59

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 6

VALUE OF HEXI FOR THIS ITERATION ....... HEXI
MULTIPLIER ALPHA
VECTOR RMULTC I) VECTOR ALCI)
NOT CALCULATED 1 OBJECTIVE
2 .10000000LE+02
3 .1000000GOE+02
4 .10000000LE+02
5 .10000000E+62

UNCONSTRAINED OPTIM

ITER. FUNC.
NO. EVAL.
(5} 22 -
6

G O N =

IZATION USING 1972 VERSION OF

.50050942E+00

CONSTRAINT
VECTOR CONS(I)

. 50050242E+00
. 20000000E+61
. 50009000F+00
.22570296E~-01
. 4548594 1E+00

FLETCHERS METHOD

LEAST PTH
FUNCTION

. 99998232E~-106

34 -.50940839E-03

b
P

2
3

VARIABLE
VECTOR X(I)

. 50000009E+00
. 22570296E-01

- 50009000E+00
. 87027274E-04

2
3

02

ol

3

GRADIENT
VECTOR G(I)

. 74993523E-09
.435140592E-01

.27638593E~-08
. 20734285E-66
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ITERATION NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

o b S e o e e o G S G S o e e s e s s e

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 6

n o - ama —

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = .50000001E+00
MULTIPLIER ALPHA CONSTRAINT

VECTOR RMULT(I) VECTOR ALCI) VECTOR CONS(I)

1 ACTIVE 1 OBJECTIVE 1 .50000001E+00

2 .29261078E~49 2 INACTIVE 2 .20000000E+01

3 . 12262675E-42 3 INACTIVE 3 .B300O0OOGOE+00

4 .17384720E-03 4 .34769440E-03 4 .87027274E-04

5 .12309723E-42 6 INACTIVE 5 .49982594E+00

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

e . S S O o B e Gt i e e i S B S el i B S o S ) e T (B i o e O S BB O B D D D S S 2 D S R . o oo o

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNRCTIOR VECTOR X(I) VECTOR G( 1)

0 38 -.99998232E~106 2 .50000000E+06 2 .27638976E-08
3 .87027274E-04 3 .17463455E-03

.50000000L+00 2 -.47837777E-08
- 72849047E-05 3 .36575737E~-06

5 47 -.75787222E-08

N
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 6

[ —— ——

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 1 .20006060E+01

THE SOLUTION WITH 5 CONSTRAINTS (CONS(1)=OBJECTIVE) IS
X 1 .20068000E+01 2 .5000G0000E+00 3 .72849047E-05

CONS 1 .50000900E+00 2 .20000000E+01 8 .5000D000E+00
4 .72849047E-05 § .49998543E+00
THE TOTAL NUIMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 430

OUT OF THESE 51 WERE PERFORMED AT THIS NODE
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FEASIBILITY CHECK AT NODE k4

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G( D)

] 1 .52963856E~160 1 .20000000E+01 1 .14569809E-04
3 .72849047E-05 3 .14569809E-04
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ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 7

- o o o s

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = 0.
MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT( I) VECTOR AL(I) VECTOR CONS(I)

NOT CALCULATED 1 OBJECTIVE 1 .10000060E+01
2 .10000000E+02 2 .20000000E+01
3 .10000000E+02 3 0.

4 .106C600000E+02 4 .72849047E-05
5 .100060000E+02 5 .99998543E+00
6

. 100060000E+02 6 9.
UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(ID -VECTOR G(I)
4] 3 .11486774E+01 1 .20000000E+01 1 -.28721998E+01
3 .72849647E-05 3 -.28703172E+01

. 20304293E+01 1 .70968842E-09
. 333996 16E~01 3 .70612281E-69

11 18 .10795185E+01

[A =
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ITERATION RUMBER 2 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

—— ——

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 7

ot o S e e St e e e S e o s e

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = .100560001E+01
MULTIPLIER ALPHA CONSTRAINT

VECTOR RMULT(I) VECTOR AL(I) VECTOR CONS(I)

NOT CALCULATED OBJECTIVE . 10050001E+01

. 10000000E+62 . 20304293E+01

. 10600000L+62

1 1
2 2
3 3 0
4 ,100000060E+02 4
5 5
6 6

.333996 16E-01
-90277 145E+00
.30429322E-01

. 10006006L+02
. 16000000E+02

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

e . e b e S St i o St S i D S e S S St s P ) ) i s 8 et S S it - o o e [

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(I)
] 20 -.93298335E-10 1 .20304293E+01 1 .17589213E+00
3 .83399616E-01 3 .11910901E+00
13 44 -.46636242E-02 1 .20004823E+01 1 .41285727E-06
3 .518035758E-03 3 -.71255293E-06



ITERATICN NUMBER 3 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

65

——

k4

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE
VALUL OF HEXI FOR THIS ITERATION ....... HEXI
MULTIPLIER ALPHA
VECTOR RMULT(I) VECTOR AL(I)
ACTIVE OBJECTIVE
. 118207 16E-38 INACTIVE
.49975167E+01 < 1999006 7E+02

1
2
3
4
5]
6

UNCONSTRAINED OPTIMIZATION

o e e v e e e Wt 1 e e Sl s B St o it S S et e e S S St St S Sl e e S i . et oo S B e o

ITER. FUNC.
NO. EVAL.

. 2001549 1E-02
. 24614314E-35
.29650120E-02

LEAST PTH
FUNCTION

6 48 -.93298335E-10

& 60 —.11367681E-05

U O =

USING 1972 VERSION

C3

CS e

. 8006 1963E-02
INACTIVE
. 1186004EE~-01

VARIABLE
VECTOR X(I)

. 26004823E+01
.51805758E-03

.20000345E+01
»50192967E-04

=  .10000012E+01

CONSTRAINT
VECTOR. CONS(I)

1 .10000012E+01
2 .20004823E+01
3 0.

4 .51805738E-03
65 .92848155F+00
6 .48233489E-03

OF FLETCHERS‘METHOD

i e T . AP

GRADIENT
VECTOR G(1)

1 .27668671E-02
3 .18667984E-02

1 -.64944963E~-07
3 . 19487942E-07
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OPTIMAL SOLUTION AT DAKIN BRANCH AND BOUND NODE 7

s i o e e o S D 00 e G o 228 S B S B o e B 4 ) Sl B S S e s S S e St GBS G Do R e S e S S e S S € B

o S it e e i S s i B S St S e S G S 0 4 O S S Bt B

THE ¥ LESS THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.LE. 2 0.

THE X GREATER THAN OR EQUAL TO KIND OF CONSTRAINTS AT THIS NODE ARE
X.GE. 1 .20000000E+01

THE SOLUTION WITH 6 CONSTRAINTS (CONS(1)=0BJECTIVE) IS

X 1 .20000000E+01 2 0. 3 0.
CONS 1 .10000000E+01 2 .20000000E+01 3 0.
4 0. 5 .10000000E+01 6 0.

THE TOTAL NUMBER OF FUNCTION EVALUATIONS PERFORMED SO FAR IS 494
OUT OF THESE 64 WERE PERFORMED AT THIS NODE
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FEASIBILITY CHECK AT NODE 8

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X(I) VECTOR G(1I)
0 1 .14569809E-04 1 .200006060E+01 1 .10000073E+01

3 .72849047E-05 3 .20000000E+01
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ITERATION NUMBER 1 OF THE CHARALAMBOUS METHOD (LEAST PTH APPROACH)

FOR THE NONLINEAR PROGRAMMING PROBLEM AT NODE 8

VALUE OF HEXI FOR THIS ITERATION ....... HEXI = 8.

MULTIPLIER ALPHA CONSTRAINT
VECTOR RMULT(I) VECTOR AL(CI) VECTOR CONS(I)
NOT CALCULATED 1 OBJECTIVE 1 .100000060E+01
2 .10000000E+G2 2 .20000000E+01
3 .(10000600E+02 3 .10000000K+01
4 .10000000E+02 4 .72849047E-05
5 .10000000E+02 5 ~-.14569809E-04
6 .10000600L+02 6 0.

UNCONSTRAINED OPTIMIZATION USING 1972 VERSION OF FLETCHERS METHOD

ot e S i S S e S i i S e S s .t - o e e

ITER. FUNC. LEAST PTH VARIABLE GRADIENT
NO. EVAL. FUNCTION VECTOR X( D) VECTOR G( 1)
/] 3 .11487193E+01 .20000000E+01 1 .23011806E+@1

1
3 .72849047E-05 3 .28807077E+01

6 13 .11430524E+61 1 .19964769E+01 1 -.37383559E-07
3 ~.12992859E-02 3 .B88105253E-07
THE ABOVE ITERATION HAS RESULTED IN A NONFEASIBLE SOLUTION. THE
CONSTRAINTS AT THIS POINT ARE GIVEN AS FOLLOWS. IT MAY BE NOTED
THAT THE STARTING POINT FOR THE NEXT ITERATION IS NOT THE ABOVE
SOLUTION BUT THE BEST FEASIBLE POINT OBTAINED <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>