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AN INTRODUCTION TO SIMULATION AND OPTIMIZATION

J. W. BANDLER
Group on Simulation, Optimization and Control
‘and Department of Electrical Engineering
McMaster University, Hamilton, Canada

Innited Papar

Abstract .

A review of recent work in simulation and optimizatiop is made with the aim of introducing the designer to the
benefits of automating optimal design procedures and to indicate limitations imposed by the current state of the

are.
Introduction

This paper is directed to the engineer interested
in using computer aids to modeling and design, and con-
sidering the application of optimization techniques.
Limitations on the size and scope of problems which can
be approached from the optimization point of view as
imposed by the current state of the art are also indi-
cated.

It seems that the gap between theoretical develop-
ments and their practical implementation is in danger
of widening. With the plethora of literature in optimi-
zation methods and computer-aided circuit design, par-
ticularly articles laying claim to superiority of tech-
nique, a confused impression is created.

With these thoughts in mind, the author will attem-
pt to direct the microwave reader to work which appears
relevant, useful, instructive or stimulating within the
domain of activity of the respective authors.

Review

It is felt that Calahan's book on computer-aided
network designl is a good indicator of current trends
and possible future developments in computer based cir-
cuit and system design _techniques and philosophies. The
collection of articles? considered by Director to be
benchinarks in simulation and optimization is also re-
commended, again not so much for the details as for its
point of view. Szentirmai's reprint volume3 deals with
various aspects of filter design, and appears represent-
ative of numerical advances in that area.

Complementary survey articles on optimization tech-
niques are those by Bandler? and CharalambousS. Also
appearing in the IEEE Transactions on Microwave Theory
and Techniques and somewhat complementary in the areas
of simulation and sensitivity analysis are papers by
Bandler and Scviora® and Monuco and Tiberio’/. A prag-
matic article of particular interest to microwave des-
igners is one by Perlman and Gelnovatch8,

Analysis

Eftort is being directed at solving larger systems
nore efficiently.  See, for example, Wexler et al® and
otherst0, 110 As far as engincering design is concerned,
it is fmportant to stress that it is gencrally inetfic-
tont to put o ceaventional simulation program iito an
optimization loop without tuking certain things into
aveount. Assuming, for example, that the program exp-
loits sparsity in the computations the question of eff-
icient computation of the effects of parameter changes
(indispensable to design) arises. In general, for econo-

entire response every time a relatively small number of
parameters is changed will result in a much larger com-
puting bill than is necessary. In considering the value
of an analysis routine for design purposes, then, the
manner in which the effects of component variation are
handled is crucial.

A much debated topic in the circuit literature, par-
ticularly in time-domain analysis, efficient sensiti-
vity evaluation is a cornerstone to automatic design4.
Braninl2 has dispelled some of the mystique shrouding
the adjoint network method?» by a compact, abstract
presentation. The adjoint network approach whereby, for
example, the first-order sensitivities of the output of
a circuit may be efficiently evaluated with respect to
all designable components using the results of only two
circuit analyses has, however, been a powerful motivat-
ing force.

Extensions and applications of the adjoint network
concept abound in the literature’»13. In the frequency
domain for linear circuits, at least, it appears that,
by suitable mathematical manipulations, higher-order
sensitivitiesl4, large-change sensitivitieslS, sensit-
ivities with respect to frequencylé etc., are available
relatively efficiently by suitable programming. The
most widely acclaimed optimization methods®, however,
require only first derivatives. Furthemmore, the value
of second- and higher-order sensitivities at points
possibly far from the optimum has not been established.

Formulation

There appear to be two principal approaches to the
formulation of design objectives. On the one hand, some
designers attempt to approximate ideal performance
specifications which, by definition, are unattainable.
This approach requires the lecast preparation of the
problem, but the results tend to be somewhdt ambiguous
in the context of meeting specifications and subscquent
assignment of tolerances. On the other hand, more in-
sight can be brought to bear if design problems arce
cast in the form of meecting or exceeding rcalistic per-
formance specifications?. One can go a step further,
exploiting more fully one's prior knowledge or insight
into the problem at hand, by devising avtificial
fications!’/ in an attempt to anticipate move closely
the actual optimum performance rcalizable by the config
uration and thereby pemit its more rapid evaluation,
Optimal assignment of manufacturing tolerances appuars
to be more well-defined in the context of realistic
specifications.

Objectives
NEAALIAL L

wical and physical reasons, not all possible design PO—

variables or degrees of freedom are always utilized. The ubiguitous least squares Ubjcctivo*’]h,uﬁuxlly

Setting up the necessary equations and recomputing the employed in conjunction with crror-prone dara or idenl
e e i et = e e+ = o e - e e e e+
This work was supported by the Nutional Rescarch Council of Canada under Grant A7239,
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specifications in the context, for.example, of modeling
or design, respectively, is probably the simplest to
implement. Particularly in filter design, however, non-
Euclidean measures of error have been widely applied
historically. See, for example, Szentirmai®. Numerical
approximation methods for minimax (Chebyshev) or near
minimax solutions, contrary to prevailing assumptions,
can, for all practical purposes be realized almost as
easily as least squares solutions®~. On paper, at lea-
st, they produce more impressive-looking responses.One
reason is that one or more trial runs are usually re-
quired in practice to verify a solution. Once a run, tor
example, using a least squares objective has been per-
formed, sufficient information about the properties of
the problem is often available to allow one to subseq-
uently force at least a near minimax solution with
relatively little additional effortl9.

Algorithms

It is known that a well-conditioned problem in
terms of selection of a well-behaved objective function
and nonredundant variables which have been properly
scaled allows the conventional steepest descent method
to perform adequately. The Newton method, which may be
viewed as steepest descent with respect to a different
norm?0 is generally less sensitive to scaling but, un-
like steepest descent, is affected by the properties of
the second derivatives and convexity.

Modern gradient methods?1:22 attempt to overcome
the limitations of the basic steepest descent and
Newton methods, as do analogous methods in the minimax
optimization of a set of functionsl9,23,24,  In mini-
max problems, in particular, classical assumptions
about the number or character of the equal (or active)
extrema vis a vis the number of independent variables
need not and, in general,do not hold.

Current efforts in optimizationzo are directed at
developing robust algorithms, however, anticipation and
alleviation of ill-conditioning, where possible, is
desirable.

Centering

Centering a design usually implies the process of
finding a nominal design somehow influenced by manu-
facturing tolerances and, possibly, post production
tunin52>’2°. The procedure may involve optimal assign-
nent of component tolerances, maximization of product-
ion vield, design subject to a specified yield, etc.
The problem could be a worst-case one with design var-
iables assumed independent; it might involve correlated
elements, statistical distributions, and so on. A num-
be of relevant works will provide the interested reader
with further details27. It should be emphasized that,
in veneral, all design parameters: nominal values, tol-
crances, tuning ranges and so on will interact in defin-
inv an vptimal designzs»zﬁ. A solution obtained from a
least squares or minimax approximatién in the usual
sense does not necessarily provide the best nominal
values. The centering problem is generally sighificant-

- sore expensive to solve, requiring careful prepar-

Software
A excellent survey of both available and proprie-
tam peneral purpose software for circuit designers has

boon made by Kuplunls. The article, however, appeurs
lizited to developments in the U.S. and probably places
undue cmphasis on least squares objectives. A number of
optimication programs with documentation is_available
from the present author?8.  Two colloction%:9'°0 of
reprints, reports, notes and programs should also be

mentioned. Documented listings of very useful optimiz-
ation programs are also available from the U.K. Atomic
Energy Research Establishment3l, and the Numerical Opt-
imization Centre32. See also pp.242-243 of Gill and
Murray20,

Should one use a commercially available analysis
and design package, for example, thrdugh a time-sharing
facility? It is felt that current optimization features
in these packages are generally weak, so that their
use will probably be expensive in the long run.

New algorithms or packages should be tested on
suitable examples and compared with respect to features,
flexibility, ease of use, convergence to known soclut-
ions, memory required and running times. This is par-
ticularly appropriate in optimal design where, over an
extended period of use, enormous numbers of simulations
night be required.

Techniques which appear different may sometimes be
alternative implementations of the same basic algo-
rithm®. This is, understandably, often not realized at
the time by the proponents of the techniques. As the
state of the art advances, unification takes place and
the techniques can be put into better perspective. See
also Braninl2 and Bonfatti et alll.

Conclusions

Having assimilated the essential past achievements
(regrettably inadequately referenced because of limited
space) where might one find indicators of possible new
developments? Three additional recent works may be
singled out: an advance in minimax algorithms where
derivatives are not required°3, an advance in efficient
design in the time domain employing sensitivity inform-
ation 4, and an advance in centering which takes
account of many uncertainties relevant to the micro-
wave aread5. A number of sessions at this year's IEEE
International Symposium on Circuits and Systems [Munich,
Germany, Apr. 1976) promise further achievements in
simulation and optimization in all areas covered by
this paper6,
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THE TOLERANCE PROBLEM IN OPTIMAL DESIGN

John W. Bandler

Metaster University
Hamilton, Ontario, Canada.

 Inv.ited Papen

This paper reviews recent results in the tolerance assignment problem. A
mathematical statement of the problem is made and difficulties in solving it
are pointed out. The approach is taken that component tolerance assignment is
an integral part of computer-aided circuit and system design. It is shown that
both the optimal nominal parameter values and tolerances should be determined
simultaneously using optimization methods for the best results. A bibliography

of recent or relevant work in the area of circuit design subject to tolerances
is appended.

1. Introduction

A very important practical problem in design is the problem of optimal design
subject to component tolerances. Computer-aided optimal design of microwave
circuits subject to tolerances seems, however, to have been relatively un-
explored from a systematic point of view. Basically, the problem is to ensure
that a design when fabricated will meet performance or other specifications.
Manufacturing tolerances, material uncertainties and parasitic effects, for
example, will generally result in the constructed design not performing as well
as an ideal theoretical design. Mass production of a design may be invisaged
or only a few realizations may be produced. A yield of less than 100 percent
may often be more economical than a 100 percent yield. In some instances, a
100 percent yield may be essential. Depending on such factors certain
statistical or worst-case design approaches may be employed.

Most previous work has involved some kind of tolerance investigation after
a nominal design has been specified. This work may be described as tolerance
analysis. Other work has been done in which a function of first-order sen-
sitivities has been minimized in order to improve the nominal design. Un-
sophisticated design "centering'' techniques usually taking two design para-
meters at a time have also been proposed.

The purpose of this paper is to review some recent results in the tolerance
assignment problem. The focus will be principally on worst-case design, but
a bibliopraphy of recent or relevant work in the area of circuit design subject
to tolerances is appended to put the present discussion into perspective.

——— — S SOOI,

The author acknowledges the support of this work by the National Rescarch Council
ot Coiada and by the Communications Research Laboratory of McMuaster University.



2. The Tolerance Optimization Problem

The tolerance optimization problem consists of finding a nominal design point
oA o 0 o,T
?L - [¢1 ¢2 e ¢k]

and a set of associated tolerances € 4 [el €y oo ek]T,
" : A
where k is the number of independent design parameters ¢ = [¢1 ¢2 oo ¢k]T, such

. A o Va .
that the tolerance region Rt’ where Rt = {?‘¢i—si4§ ¢i§¢i + g, i=1,2,...,k},

and Rc, the region of points ¢ such that all performance specifications and
Y

constraints are satisfied, intersect in such a way as to minimize the cost of

production., For 100 percent yield Rt< Rc.

The conventional problem of finding a single point ¢ which best fits per-
formance specifications and constraints is a difficult ¥nough optimization
problem, Moving an infinite number of possible designs around in a region is,
of course, impossible in general, This has led, for example, to algorithms
based on iterative use of the Monte Carlo approach, worst-case designs predicted
by local linearization of the functions concerned, and so on.

As an example of the difficulties involVed, R, has 2§0vertices. For k=10
and 10 constraint functions to be evaluated a totdal of 2° x10 = 10,240 con-
straint functions need to be evaluated, in general, to test all the vertices.

3. Previous Work

A classified bibliography is appended. The aim is to bring the microwave
engineer up to date with developments, mostly in the circuit theory and design
area, relevant to sensitivity and tolerance analysis and optimization and ‘to
briefly review the work of some authors.

Central to circuit design subject to tolerances is the efficient calculation
of first- and higher-order sensitivities [1-7] which may be used, for example,
in gradient minimization algorithms or in the approximation of the performance
function due to changes in parameter values.

Useful work in circuit and system theory related to changes in network
functions due to small or large changes in parameter values is available in the
literature [8-15]. The bilinear property of network functions [9,13,15], for
example, is an important concept.

Efficient computational schemes for the evaluation of large-change sen-
sitivities or the evaluation of tolerance effects [16-22] are useful in both
analysis and design.

Optimization *methods [23-27] which either have found application in this
area or should find use are referenced. Included are methods of linear pro-
gramming [27], nonlinear programming [23-25] and a highly efficient uncon-
strained optimization method [26].

Numerous references to work on the optimization of tolerances are cited
(24-46]. Most authors attempt to achieve minimum cost designs. Bandler and
Liu [29] as well as Pinel [43] have tried examples in which the nominal pcint
wis allowed to move subject only to the constraints of the given problem,

Finally, some applications or related work are referenced [47-40}. Of
pavticular interest is the work by Pinel [49]. 'The problems of designing
trunable circuits or circuits that are designed to permit tuning to facilitate
alignment or correction for parasitic effects not accounted for in the design



9

theory are obviously closely related to the tolerance problem.
4. Conclusions

Much useful work has been done in this area. A drawback is that extensive
use of intuitive or ad hoc techniques seems to be made. Badly needed are
automated, efficient, and reliable methods of design subject to tolerances.
The problem, in general, is formidable,
5. Acknowledgement

The assistance of P.C. Liu of McMaster University is gratefully acknowledged.
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Nonlinear Programming*
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Abstract. A possible mathematical formulation of the practical

_ problem of computer-aided design of electrical circuits (for example)
and systems and engineering designs in general, subject to tolerances
on k independent parameters, is proposed. An automated scheme is
suggested, starting from arbitrary initial acceptable or unacceptable
designs and culminating in designs which, under reasonable restric-
tions, are acceptable in the worst-case sense. It is proved, in par-
ticular, that, if the region of points in the parameter space for which
designs are both feasible and acceptable satisfies a certain condition
(less restrictive than convexity), then no more than 2% points, the
vertices of the tolerance region, need to be considered during
optimization.

Key Words. Engineering design, nonlinear programming, convex
programming, optimization theorems, approximation of functions.

1. Introduction

An extremely important practical problem is the problem of optimal
design subject to tolerances. Recently published work (Refs. 1 6) has
yielded some practical insight into the nature of the problem. Indeed, it
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suggests immediately the possibility of formulating the complete worst-
case design of circuits or systems as a nonlinear programming problem.

An automated scheme would start from an arbitrary acceptable or
unacceptable design and, under appropriate restrictions, stop at an
acceptable design which is optimum in the worst-case sense for specified
tolerances. The most suitable objective function to be minimized would
also seem to be one that best describes the cost of fabrication of the
circuit or system, as suggested by some authors (Refs. 1-6).

It is the purpose of this paper to propose possible formulations and
to discuss this problem generally. It is not claimed that a complete
solution has been obtained. However, a number of interesting objective
functions (more appropriately, perhaps, cost functions) have been
investigated.

Many types of objective functions can be formulated. A number of
variations on the sum of the inverses of the absolute tolerances or the sum
of the inverses of the tolerances relative to the respective nominal para-
meter values can be obtained. Furthermore, the nominal parameter
values may or may not be variable. The relative merits of these and other
functions which attempt in some way to maximize the size of the region
of possible designs (namely, the tolerance region) are discussed.

For the purposes of this paper, it is assumed that the parameter
tolerances can be specified independently. Furthermore, it is assumed
that the design parameters and tolerances can be varied continuously.
The tolerance region, in this case, will be defined by simple upper and
lower bounds on the parameters. Of course, the region will contain an
infinite number of acceptable designs, assuming that it is a subregion of
the intersection of regions of acceptable and feasible designs. It is proved
that, if this region satisfies a certain condition (less restrictive than
convexity), then only the (finite) number of vertices of the tolerance
region need, at most, to be investigated.

2. Feasible and Acceptable Designs

A wide range of design problems can be formulated as nonlinear
programming problems. One usually defines a scalar objective function
U(¢), where

%1
$5|% | (1)
b,
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represents the k independent design parameters. Design constraints can
be assembled into a column vector g(¢) and the problem can be stated as
finding ¢ such that

U(¢) = min U(), @
where
R, £ {¢|2(¢) =0} 3)

For the purposes of the present discussion, let us assume that two
kinds of constraint functions are present, those that determine the
feasibility of a design [designated g,(¢)] and those that determine the
acceptability of a design [designated g,(¢)]. Therefore, we will define a
feasible region of points R, as

R, & {¢|g =0} @
and an acceptable region of points R, as
R, £{¢ 8. =0} ©)

Thus, R, = R;N R, . It is assumed that all sets are nonempty. Note
that R, is not necessarily a subset of R, .

The objective function is usually set up so that a feasible solution
is obtained at an interior point of the acceptable region and as far as
possible (in some sense) from its boundary. The reasoning behind this is
the hope that, when the design is fabricated, inevitable errors in the
design parameters might yield, nevertheless, an acceptable design. Itis this
flexibility which can be exploited in the optimization of tolerances.
Often,

U¢) = —mingi(9), (6)

where the index set I, relates to constraints defining R, . It follows then
that

R, ={$ | U($) < O} ™

3. Tolerance Region

Given a nominal point ¢° and a set of nonnegative tolerances ¢, where

A 1% >0, (®)

17
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we can define a region of possible designs R, as

RA{pI¢L—e; < <P+ e, =12,k ®
or, equivalently,

R, A{p|ds = +tie;, —1 <t; <1,i=1,2,...,k} (10)

Obviously, depending on the location of ¢° and the value of ¢, R, may or
may not be a subset of R, .

The tolerance problem is beginning to take shape: R, should be
placed inside R, in some optimal manner by adjusting ¢° and « to optimal
values ¢° and ¢, A serious development, however, is that all points ¢ € R,
must satisfy g > 0. We have, effectively, to deal with an infinite number
of constraints.

For any given point #°, we can view the functions g(¢) with respect
to e as follows. We let the origin of the e-space correspond to ¢° (transla-

¢, b,

¢°°

| f

7,
7

7

7,

“, -—€ < -
4 ! s !

Fig. 1. Allowable tolerances corresponding to particular constraints and particular
nominal points.
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tion). Then, we consider all the possible linear parameter transformations

[from (10)]
¢ =T —4)

suggested by the transformation matrix (magnification and reflection)

1/ 0 =« 0
0 1/t = 0

~
>

cl S1<H<Y, i=120,k (11)
0 0 - 1y
Two-dimensional examples of allowable tolerances in the tolerance

space corresponding to particular constraints and particular nominal
points in the parameter space are shown in Figs. 1-2.

"F ¢

>E1

Z,
Z

Fig. 2. Allowable tolerances corresponding to particular constraints and particular
nominal points.
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4. Restrictions on R,

For obvious reasons, it is impractical to consider an infinite number
of constraints. In order to make the problem tractable, a number of
simplifying assumptions could be made to try to obtain a solution to the
problem with reasonable computational effort.

It can be shown that, if R, is convex, then from Refs. 7 or 8,

$eR, i=12..n (12)
implies that
¢ = él A¢'eR, (13)
for all A; satisfying
i AN=1 and A=0, i=12..n (14)

For example, given a finite number of points ¢* in a finite-dimensional
Euclidean space, it is easy to visualize that the ¢¢ are vertices of a polytope
(the intersection of a finite number of closed halfspaces) and that ¢ is
any interior or boundary point. If R, is itself a polytope (all constraints
linear), it is clearly convex.

The polytope R, has 2% vertices. Let the 7th vertex be denoted by
¢* and let

$ —¢0— et 2Bv, eR,, i=1,2.,2" (15)
where k
¢ 0 0
S 0 (16)

and where v, is a k-element vector whose elements reflect the subscript ¢
in binary notation, i.e.,

0 1 1
0 0 1 1
v, 2101, v 104, vy £ , 932 10 |,... (17)

=}
=
oo
=
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The vector v;_; can be formed as follows:

i = 3 i),
where
B s B yeees pr €0, 1}
must satisfy (see Table 1)
i=1+4 f i) 271,

Ju=1

and where the k-element vectors u; are given by

1 0 0
e é (:) ’ Uy é % yeeey U é (:)
0 0 1

Figure 3 illustrates an example in three dimensions. Observe that

k
Ev,y = Y pyli) ey .
Jml

Table 1. Numbering scheme for the vertices of R, .

105

(18)

(19)

(20)

@n

22)

E
t m(i) ma(F) M) () ,Zl i) €5y
1 0 0 0 0 0
2 1 0 0 0 N
3 0 1 0 0 €gliy
4 1 1 0 0 Gy + ety
5 0 0 1 0 &ty
6 1 0 1 0 €u; + ety
7 0 1 1 0 €ty + €Uy
8 1 1 1 0 €Uy + €guig + €Uy

N
L3
= eee
[,
[
LY
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5
¢ ¢’
¢6 e=¢°+€
o¢°
¢'=po_g
¢3
¢ ¢
3
%,
¢1
Fig. 3. Three-dimensional example of points defining the vertices of R, .
Using (12)—(14), we have
2" k
¢ = ¢0 —_— + 2 Z (A' Z Mj(l) E,'uj) € Rc ) (23)
=1 je=1

if R, is convex and the vertices of R, are elements of R,. Equation (23)
generates the set R, . Therefore, R, C R, . See Fig. 4.

It will now be shown that the assumption that R, is convex is
unnecessarily restrictive.

Theorem 4.1. If the vertices of R, are in R,, then R,C R, if,
for all j =1, 2,..,, &,

$° ¢* = 4% + ou,eR,, : (24)
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Fig. 4. Possible region R, .

where « is a scalar, implies that

¢ =¢° + 2" — g9 €eR, (25)
for all A satisfying
0<A< 1. (26)

See, for example, Fig. 5.

Proof. Let ¢, denote some point, in general, in an /-dimensional
linear manifold generated by the first 27 vertices as

hi=d—et2¥ (,,‘ S i) eju,), @)

$ml Jml \\\

! b2

7/

Fig. 5. Possible region R, .
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with p; satisfying
ip, =1 and p,>0, i=12,.,2 (28)
Note that, since max ¢ = 2}, we can deduce from (20) that
w=0 j=l (29)

in (22), so that the relevant summation need be taken only up to / and
not k.
Assume that ¢; € R, for all §¢ € R, given in (22). Now, consider

g+t =S
boa =9 =<2 (13wt ). (30)
{mal Je=1
with g, satisfying
2‘+1
Y g=1 and ¢; =0, i=1,2,..,2", (3D

fml

After some manipulation, we find that

Py 1 gt+l
b= ¢ —e+2 Z [(q‘ + Gg1py) Z ;Lj(i) e,u,] + 2( Z qt) €ty - (32)
{1 Fual Gml41
Let
22+l A
A=) & (33)
12l 41
and
Pi =4, + q2l+l ’ i= l) 27"-: 2 (34)
Hence, (32) becomes
br1 = ¢ + 2Aep gy - (35)

With A = 0,
b1 = €R,,

by assumption. If A = 1,
i1 = b1 + 2€19%141

which represents a translation of the /-dimensional manifold. Thus,
$1.1 € R,, by assumption. For 0 <A < 1, we note that ¢;,, € R, if
(24)—(26) hold for j = I + 1.
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ZZ

[¢)
LT
/7
-«
»

/ﬂ/-/ 7777,

Re ¢! —dp2 \
N N

Fig. 6. Possible region R, .

It is easy to verify that ¢, € R, and, furthermore, that ¢; € R, if
(24)—(26) hold for j = 1 and j = 2, respectively. It follows by the
foregoing inductive reasoning that ¢, = ¢, as defined by (23), is in R,
under the conditions of the theorem.

The theorem allows both Figs. 4-5, but not Fig. 6.

5. Some Objective Functions

A number of potentially useful and fairly well-behaved objective
functions which might be used to represent the cost of a design can be
formulated. In practice, of course, a suitable modelling problem would
first have to be solved to determine the significant parameters involved
partially or totally in the actual cost. Here, we will assume that either
absolute or relative tolerances are the main variables and, furthermore,
that the total cost C(¢°, €) of the design is just the sum of the cost of the
individual components.

It is intuitively reasonable to assume that

C(¢%e)—>c =0 as e— oo, (36)
C(¢%¢)— o  forany e — 0. 37

Two out of many possible functions which fulfil these requirements are,
for ¢ = 0,

C, = z (ci/ﬁ)v (38)

fml
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subject to € >> O as stated in (8), and

k
C, =} ciloge(¢/e), (39)
t=1
subject to
$°>e>0. (40)
In both cases,
=0, =12,k (41)

6. Examples

It is interesting to consider C, and C, for the different regions R,
sketched in Figs. 7-10. We will let ¢, = ¢, = 1. Figure 7 depicts a
situation where ¢° has relatively little variation in going from C, to C, .
Figure 8 has ,° > ¢ and §,° = ¢, ; for C,, ¢,° > O but, for C, , B2 =0
which (physics permitting) indicates that one parameter may be removed.
It can be shown (see Fig. 11) that min C, is given by ¢,% = 0, at $,0 =
2.5, & = 1.5. Figure 9 allows the possibility of removing ¢, if C, is
optimized. The minimum cost is then log, 9. However, it is easily shown
that, to minimize the cost, ¢, should not be removed (sce, for example,
Fig. 12). Using C, in Tig. 10 would wndicate that ¢, and ¢,? may be
zero. Using C, in all the cases of Figs. 7-10, we would find #° to be an
interior point of &, .

s L y’
|
|
|
| ] | 1 1__¢1
0 I 2 3 4 5

Fig. 7. Example used in the discussion of objective functions.
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2
5 ‘ﬁ—
4 -
3 -
2 -
I -

1 | | ¢

/s 1

0 77273 4 5

Fig. 8. Example used in the discussion of objective functions.

A number of corresponding observations to those made above can
be made if, for the cases sketched in Figs. 7-10, we take (for example)
¢, = 1/¢, and ¢' = ¢, as parameters.

7. Conclusions

If, as is usual in the design of circuits or systems, the optimal
design is obtained by solving an approximation problem, then a fairly

¢2
5 o
4 /
3

2

Z
ez
T /

1 ] | I l_¢1

(0] | 2 3 4 5

Fig. 9. Example used in the discussion of objective functions.
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=36

Fig. 10.

o define the acceplaiic

(S OIS

RN U I ES W RS LU B E PR Y

i
] i o
1 2L
G = /
/ 1
/ .

A
(0] | 2 3 4 5

Fig. 11. Example corresponding to Fig. 8 with $e® = & = 0.
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€o
5 r /3
4
3 r
2 -
3
|
Lo | Z 1 1 ¢°
YL 2
0 | 2 3 4 5

Fig. 12. Example corresponding to Fig. 9 with ¢,° = 1 and ¢ = 0.5. The best value
of C, is, in this case, loge 6.

point of view should yield more insight into the possible success or failure
of particular tolerance optimization algorithms that might suggest
themselves.
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Automated Network Design with Optimal
Tolerances

J. W. BANDLER, MEMBER, IEeg, aNp P. C. LIU

Abstract—A new approach to network design to obtain optimal pa-
rameter values simultaneously with an optimal set of component toler-
ances is proposed. An automated scheme could start from an arbitrary
initial acceptable or unacceptable design and under appropriate restric-
tions stop at an acceptable design which is optimum in the worst case
sense for the obtained tolerances.

I. INTRODUCTION

T IS the purpose of this paper to present a new concept in

the network design and tolerance selection problem. The
concept of a “floating and expanding polytope” suggests that
the two procedures of finding an acceptable nominal point and
an optimal set of tolerances be replaced by one automated
scheme. Using a suitable nonlinear programming technique,
any arbitrary initial acceptable or unacceptable design may be
used as a starting point. The scheme would stop at an accept-
able design which is optimal in the worst case sense of obtained
tolerances. The most suitable objective function to be mini-
mized would seem to be one that best describes the cost of
fabrication of the circuit, as suggested by some authors [1]-
[6]. Several objective functions have been investigated and the
results are discussed.

II. THEORETICAL CONSIDERATIONS
The Tolerance Region

A point ¢ 2 [¢; ¢, - - - #,]7 is a vector of k elements and
corresponds to the component values of the network. A nomi-
nal point ¢° & [¢? ¢3 - - - 9217 is a point associated with a set
of nonnegative tolerances € 2 [e; €; - - - €] 7 >0 such that
the tolerance region R, is given by

R A{old)-e<t; <) +e, i=1,2,---,k}. (1)

Obviously, R, is a polytope of k¥ dimensions with sides of
length 2¢;,i=1,2, -+, k, and centered at ¢°. The polytope
has 2% vertices. Each vertex will be indexed from an index set
HA {1,2,--+,2¥} such that

— — et —
0
b1 - € P +e
(1]
P - € #-e
1 2
o' 2 , ¢* 4 , ¢
O _ 0 _
| Pk -~ €x] [Pk~ €]
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A possible outcome of a circuit with a nominal design ¢® and
tolerance € falls somewhere in or on the polytope. Depending
on the location of ¢° and the size of ¢, a circuit with param-
eters ¢ may or may not be acceptable.

The Acceptable Region

The following discussion refers to the frequency-domain de-
sign of linear time-invariant circuits, but the results can be ap-
plied to the time domain as well. Let the set of frequency
points under consideration be = {wy, Wy, ", Wy, Wysy .,
<+, wy.t. Upper specifications S, (w;), i=1,2, ", u are
assigned to the first u frequency points and lower specifications
Si(w;),i=u+1, -+, u+lto the rest. Frequency points that
have both upper and lower specifications may appear twice in
the set. Let the response of the network at frequency w; be
F (¢, (01)-

An acceptable region R, is given by

R, A{el Sy (wy) - F(¢,wy) =0,
F(¢, 0)]') - S,(w,)> 0,

i=1,2,-,u
jEut 1, utl}
(3)

Obviously, a design {¢°, €} is an acceptable design only if
R,CR,.

A Theorem

It is impossible to test all the points in R, to see whether they
are in the acceptable region R,. In order to make the
problem tractable, a number of simplifying assumptions could
be made to obtain a solution to the problem with reasonable
computational effort. Obviously, if R, is convex and if ail the
vertices of R, are interior or boundary points of R,, then R, C
R, It can be shown that the assumption of convexity is un-
necessarily restrictive.

- =

pe -
M- e P +e,
) +e, # te
k ,
’...,¢2 é (2)
0 0
[P = €] | P ¥ €kl

Theorem [1]: If the vertices of R, are in R,, then R, C R,
if, forallj=1,2,---,k, the assumption that
¢, "D =¢f +ay €R, “)

where « is a scalar and
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implies that
p=¢ + A" - ¢")ER, )
for all X satisfying
0<AK. (6)

Under such assumptions, only the vertices of the polytope
need be tested to ensure that R, C R,. It is easy to verify that
the theorem holds for k =1 and 2. The proof of the theorem
follows by mathematical induction. A complete proof is pre-
sented by Bandler [1].

Other constraints such as parameter constraints can be con-
sidered. These constraints define a feasible region Ry. Then it
is required that R, C (R, NRy) =R,.

The Nonlinear Programming Problem
A function C; (¢°, €) to be minimized may be

_&Eadf

i=1 €

Gy Q)

where ¢; is a weighting factor. See, for example, Pinel and
Roberts [4].
Other possibilities are [1]

k ¢
G = 4 ®)
i=1 €
and
k O
C3=3 ¢ log, —. ©)
i=1 €;

In {9) we would be minimizing the ratio of the volume of the
polytope defined by the space diagonal ¢° and the volume of
the polytope defined by € if the ¢; = 1.

Let

Su(wy) - F(¢, wp),
F(¢,w)) - Si(w)),

forl <j<u
foru+l1<j<u+l

(10)

for i €H. That is, at each vertex ¢, there are / + u frequency
constraints. There are 2¥ vertices for a polytope of k¥ dimen-
sions. A total of 2% (I + u) constraints have to be considered.
Other constraints can be added.!

A suitable method for solving the nonlinear programming
problem is to define [7]

g, (#, w) 2 {

! Selecting, on physical or other grounds, constraints which are likely
to be active at the solution to a nonlinear programming problem and
discarding the rest can result in faster solution times, as is well known.
Ultimately, all the constraints have to be satisfied.
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B e =C, 0+ 55— an
€)= ,€) + —

j=1i=1 g[] (¢17 w])
and minimize B with respect to ¢° and e for appropriately de-
creasing values of 7. Another more recent and efficient method
of handling constrained minimization is by the least pth opti-
mization [8], [9] of

V(¢°,e,a) = nilalx [C(¢0 ,6), C(¢0,€) Q& (qy’ (1.)1)} >

For sufficiently large constant values a;;, the unconstrained
minimization of ¥V with respect to ¢° and e yields exactly the
constrained minimum of C. This nonlinear programming tech-
nique makes it possible to have any initial starting point, ac-
ceptable or otherwise, as shown by Bandler and Charalambous

(8], 9]

III. EXAMPLES
A Low-Pass Filter

A normalized 3-component LC low-pass ladder network,
terminated with equal load and source resistances of 1 §2, is
considered. An insertion loss of 0.53 dB in the passband 0-
1 rad/s and 26.0 dB in the stopband (band edge is 2.5 rad/s is
realized by a minimax design without taking tolerances into
account, The parameter values are ¢ = L; = 1.6280, ¢§ =C=
1.0897, and ¢3 =L, =1.6280. The chosen set of frequency
points is Q = {0.45, 0.50,0.55,1.0,2.5}. S, = 1.5 dB for the
passband and S, =25 dB for the stopband are assigned. Two
starting values ¢ =2, ¢3 =1, ¢3 =2,and ¢ =¢3 =¢$ =15
with 1-percent tolerances, have been studied. The first starting
point is inside the acceptable region.

The sequential unconstrained minimization techniques
(SUMT) method using C; of (7)and ¢;=1,i= 1,2, 3, yields
a solution of ¢? =1.9990, ¢3 = 0.9058, ¢3 = 1.9990, and the
corresponding tolerances are 9.89, 7.60, and 9.89 percent.
Initially, » = 1. It is reduced by a factor of ten after each cycle
of optimization. The adjoint network technique [10] and the
Fletcher method [11] are used in the optimization process. A
total of 185 function evaluations were performed to reduce C,
from 300 to 33.38 for 6 complete cycles. One-hundred thirty-
six function evaluations are needed to get the same results by
the new nonlinear programming technique. The constants ay,
i=1,--+ 8, j=1,-+-,5, are set uniformly to 100. p is in-
creased from a starting value of 10-1000 for 2 cycles of
optimization.

The SUMT method is not directly applicable with the second
starting point which is outside the acceptable region. The same
optimal point as before is reached with 105 function evalua-
tions for 1 optimization by the new method. pis 1000 and oy
is 100 for all i and j.

In contrast, if the nominal point is fixed, tolerances of 3.45,
3.18, and 3.45 percent are obtained for the three components.

A Bandpass Filter

The bandpass filter shown in Fig. 1 was studied by Butler
[2], Karafin [3], and Pinel and Roberts [4]. An upper speci-
fication of 3 dB for the passband and a lower specification of
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Fig. 1. Bandpass-filter example.
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Fig. 2. Bandpass-filter response.

35 dB for the stopband relative to O dB at a central frequency
at 420 Hz are assigned. See Fig. 2. Q = {360, 490, 170, 240,
700, 1000} in which the first 2 frequencies are assigned to the
upper specification and the last 4 to the lower specification.
The frequency point of 420 Hz is not included as it is kept at
zero. A constant Q is assumed for the four inductors and,
therefore, the four corresponding resistances are dependent
variables.

Nominal values used by Pinel and Roberts and a %-percent
tolerance for each component are used as a starting point. Pa-
rameter values are scaled by normalizing with respect to the
central frequency and the load resistance such that the induc-
tors and capacitors will have the same order of magnitude to
avoid ill-conditioning. Components ¢; and ¢4 are assumed
equal to ¢; and ¢,, respectively, for the objective function C,
and C3. Only 2% vertices are taken. Initially, the same as-
sumptions are made for the objective function C, , but because
of some violations a selection of the 2% vertices are subse-
quently taken.?

Using the SUMT method, initially, » = 1. r was reduced suc-
cessively by a factor of ten. The adjoint network technique
and the Fletcher method are again used in the optimization
process. See Table I and Fig. 2 for some results. No more than
10 min on a CDC 6400 are needed to obtain the results for 2°
vertices. Note that ¢;=1, #; 2 100¢;/¢?, and the cost is
Z3, 1/t;. There are no violations observed for both the

2The algorithm currently being used selects, for each vertex ¢j ata
particular frequency, another vertex ¢! such that the signs of the com-

ponents of ¢f - ¢® are all opposite to the corresponding signs of the
components of the gradient vector of the constraint evaluated at ¢/ and
that frequency. This usually leads to a substantially smaller number of
constraints to be considered at each frequency during optimization.
Periodic updating of the selected vertices and restarting of the optimi-
zation process is generally required.
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TABLE |
RESULTS FOR THE BANDPASS FILTER

Karafin (3]

Pinel and C1 C2 C3

Roberts [4]
Iy 1.824x10° 3.0142x10° 2.3206x10° 2.7632x10°
o 7.870x10°° 4.9750x10"%  6.3694x10°%  5.2611x207°
4 1.824x10° 2.9020x10° 2.3206x10° 2.7682x10°
o 7.870x10°8 5.0729x10"%  6.3694x10"%  5.2611x107%
o 4.272x107} s.2836x10"  6.0s17x10"!  7.789sx107
D4 9.880x10"7 5.5531x1077  7.7708x10°7  5.8726x10°’
o 1.437x107 s.0319x207  2.0677xa07) 2.5438x107)
o 3.400x10"7 1.6377x1077  2.2630x10°7  1.8981x1077
t 3, 5.32 6.99 _ 2.29 7.67
t, 5, 2.41 6.52 11.26 6.53
tg s, 3.30 6.97 2.29 7.67
t, 3, 2.4 6.55 11.26 6.53
t 2, 1.14 4.36 3.30 4.33
tg 2, 1.8 5.69 3.02 8.10
t, 3, 7.80 6.80 6.61 5.85
tg 5, 2,07 5.25 4.40 2.7
Cost 2.60 3.45 1.34 2.06 1.46

Monte Carlo and the worst case analyses at the specified test
frequencies assuming 2® vertices. The relative insertion loss,
however, becomes negative in some instances in the passband.
The same assumptions were made as Pinel and Roberts [4]
that the component distribution is uniformly concentrated
within 5 percent of the extremes of the relative tolerances and
1000 simulations were made for the Monte Carlo analysis.

IV. CONCLUSIONS

It has been shown that, by moving the nominal point, a set
of larger tolerances can usually be obtained, and that an arbi-
trary initial design may be used to start the automated scheme.
A drawback of this basic scheme is, of course, that a large
number of constraints are used. Future work should, it is felt,
be concentrated on methods of reducing them. Some prelimi-
nary ideas of reducing the number of constraints are currently
being tested.? A complete solution to the problem is not
claimed; however, it may be concluded that our approach is a
promising one in network design subject to tolerance
considerations.
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Some Implications of Biquadratic Functions
1in the Tolerance Problem

JOHN W. BANDLER, SENIOR MEMBER, IEEE, AND PETER C. LIU, MEMBER, IEEE

Abstract—The usual assumptions for the tolerance problem in the fre-
quency domain are that the worst cases occur at boundary points of a
tolerance region, and that the acceptable region is simply connected.
These assumptions are investigated and conditions for validity are given
for the class of networks which have bilinear dependence on the param-
eter of interest. This paper elaborates on an underlying assumption made
in a theorem proposed by Bandler.

I. INTRODUCTION

ARGE change sensitivities and worst-case tolerance
L problems dealing with linear networks in the frequency
domain have attracted much attention recently [1]-[5].
The workers in these areas usually assume that the worst
cases occur at the vertices or the surfaces of the tolerance
region and that the acceptable region is simply connected.
Although the assumptions may be true if the tolerances are
small certain conditions have to be met.

Manuscript received November 19, 1974; revised May 7, 1974. This
work was supported by the National Research Council of Canada
under Grant A7239. This paper was presented at the IEEE Inter-
national Symposium on Circuits and Systems, San Francisco, Calif.,
April 22-25, 1974.

The authors are with the Group on Simulation, Optimization, and
Control, and the Department of Electrical Engineering, McMaster
University, Hamilton, Ont., Canada.

The purpose of this paper is to justify these assumptions
and state the conditions for the assumptions to be valid.
We are interested in the effect of variation of a single
parameter on the overall network function. We shall be
concerned with the class of networks for which the net-
work function can be expressed as a bilinear function of

- the parameter of interest [6]-[8]. We use some mathematical

concepts [9] to elaborate on an underlying assumption
made in a theorem proposed by Bandier [10].

II. THE BIQUADRATIC FUNCTION
General Properties

Consider the biquadratic function
_N@) _ c¢? + 2dp + e

= = . I
F@) M(d) ¢* + 2ap + b M

The first derivative of F(¢) is
Fg) = 2@+ DM@ ~ 4 + NG

M*¢)

It may be noted that the numerator of (2) is a quadratic
function of ¢ which implies that the derivative has, at most,

Copyright ©1975 by The Institute of Electrical and Electronics Engineers, Inc.
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¢l

Fig. 1. A general biquadratic function.

L - L L P

Fig. 2. Illustration of pseudoconcavity on an interval.

two changes of sign for finite values of ¢. Furthermore,
the function value approaches the value of ¢ as ¢ — + 0.
Take any two points ¢" and ¢° and let A¢ = ¢° — ¢".

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, MAY 1975

given, using (5) with AF = 0, by

Fi@OM(@)
F(@') —¢
For the case F'(¢") = 0, the point ¢ is either at the max-
imum or at the minimum of the function. There is only one
finite point ¢° such that F(¢°) = c¢. The other points with

the same value can only be at infinity. See, for example,
Fig. 1.

¢t =¢" + ©)

Assumptions

In the following discussion, we shall assume that M (¢)
does not change sign on [¢",¢°]. We shall also exclude
points where M(¢) = 0 since the derivative of F(¢) is
not defined at such points.

. LeMMAS AND THEOREMS
Lemma 1: F(¢" + M¢* — ¢7) > min [F(¢"),F(¢")] for
all A satisfying 0 < A < 1 provided that
AF dF

= 0
v d¢¢=$> @)

where AF/A¢ is given in (4), ¢ is ¢" or ¢°, whichever cor-

responds to the lower function value. (Fig. 2 illustrates this
lemma.)

Proof: The case F(¢°) > F(¢") will be considered
first. From (5), we have

M(9) ﬂ@g—f@'—) = F@WM(@$) — IAYF@) - o)

F(¢®) may be expressed in terms of ¢", A¢, and the coef- 8)
ficients of N(¢) and M (@) as follows: where
F(¢*) = N(@) _ N(¢') + 2A¢(c¢” + d) + chbz. 3 ¢=¢ + A —¢)0 <A<l 9
M) M)+ 2Ap(¢" + a) + Ag? If (7) is satisfied, F'(¢") = dF/dl,-, > O then .
The large change sensitivity 1 [FeNM(@) — ASF(@) — )] > 0
AF | F(¢") — F(¢") @ M(¢)
Ap ~ - ¢ implies, since M (¢) must not change sign, that
may be related to the first differential sensitivity F'(¢"). 1 ' r v
Wil | sensitivity F'(¢") 3 [F @M@ — 8E@) - ] > 0
F@$") — F($") = 20¢{(c¢" + A)M(¢") — (¢" + a)N(¢")} —AP*{N(¢") — cM(¢")}
M(¢")M($)
wary M) 2 (F(9") — o)
= A¢F L AT
PEED M(¢%) ¢ M(¢°)
therefore,
M@) 5o = F@OM@) = 8@ = . (9 T
F(¢) — F(¢") > 0. (10)

Given a fixed value ¢’, we can find uniquely one other
point ¢* such that F(¢°) = F(¢"), except when the function
F(@") = ¢, F'(¢') =0, or M(¢") = 0. The point ¢° is

Similarly, for the case when F(¢") > F(¢°), it is required

from (7) that F'(¢°) = dF[dply-4 < 0. The equations
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corresponding to (5) and (8) are, respectively,
'S

M) f@z%&@ = FM@) + A(F@) — )
an
and
Fg) - F§) _ .
mie) T =
+ (1 = DAGF@) — o). (12)

Since AF /A¢ < 0,

M( ) —— [F (@M (@) + AP(F(¢") — 0)] < 0

implies. since M (¢) must not change sign, that

M_@ [F(@IM($") + (1 — DAG(F(¢") — )] <0

and hence that

F(¢) — F(¢*) > 0. (13)

Inequalities (10) and (13) are true for all 0 < A < 1, hence
the lemma is proved.
Corollary:

F(¢" + A¢° — ¢) < max [F(¢"),F(¢)],
where 0 < 1 < 1, provided that
AF dF|
Ap dply-5
where ¢ is ¢ or ¢° whichever corresponds to the higher
function value.

The corollary may be proved by defining a new function
G(¢) = —F(¢) and applying Lemma 1. See Fig. 3 for an
illustration. Fig. 4 shows an example where both the lemma
and its corollary apply.

Lemma 2: The function F(¢) is pseudoconcave [9] on
the interval [ ¢",¢°] except where M(¢) = 0 if the conditions
of Lemma 1 are satisfied.

Proof: Consider the case' F(¢°) > F(¢"). The other
case follows a similar argument. Let us assume that the
function has more than one turning point in the interval.
By the nature of the biquadratic function, there are at most
two turning points. If we assume that there are two turning
points on [¢",¢*], there exist two points ¢* = ¢" + aA¢d
and ¢# = ¢" + BA¢, where 0 < « < f < 1 such that
the following inequalities hold:

F(¢%) > F(¢")

(14)

(15)
and ,
F'(¢%) > 0. (16)

As a direct consequence of Lemma | and inequality (16),
the following inequalities can be made to hold:

F(¢") > F(¢") amn

and

F(¢") > F(¢). (18)
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Rewriting the function values in terms of F'(¢%), F(¢?),
and M (¢”) as in (5), we obtain

[F'(@")M@’) + (B — )A(F(¢F) — )] < 0

M(¢“)
(19)
and
7 8 By _
M( ol [F'(¢" )M (¢°) + BAG(F(¢) C)] >0 (20)
and
— _[F(¢* By _ (1 — py _
M(¢,)[F ¢)M(¢) (1 = PDAY(F(@") — c}] > O

@n

Multiply (19) by M(¢%), (20).by M(¢"), and (21) by M(¢°).
Subtracting appropriately, we have

>0forM >0
WBHF) — o) {< 0 for M Z 0

and

~(1 — DA(F($’) - ©) { g g?ﬁi % Z 8

The last two pairs of inequalities are inconsistent, therefore
the assumption that there are two turning points on the
interval is false. F(¢), ¢ € [¢",¢°], is unimodal with a
positive derivative at ¢".

Given any two points ¢° and ¢°, such that F(¢°) >
F(¢%), we will consider that 1) F'(¢%) > 0, then ¢* > ¢°
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because F is an increasing function between ¢” and ¢°, and

2) F'(¢") < 0, then ¢* < ¢° because F is a decreasing
function between ¢° and ¢°. Therefore, in both cases,
F(¢") > F(¢) implies F'(¢*)(¢® — ¢ > 0, which proves
the lemma.

Corollary: The function F(¢) is pseudoconvex on the

interval [@",¢°] except where M(¢) = 0 if the conditions

of the corollary to Lemma 1 are satisfied.

Theorem I: The minimum/maximum of F(¢), ¢ € [¢", ¢’]
lies on the boundary of the interval if one of the following
conditions is satisfied.

Fi($) 2 0 (222)
F($)s0 (220)
or . .
F'(¢") > 0, F'(¢°) > O and F(¢") < F(¢*) (23)
or
F'(¢") < 0, F'(¢*) < 0 and F(¢") > F(¢°). (24)

See, for example, Figs. 2-4.

Proof: We will prove the case for the minimum of
F(¢) to be on the boundary of an interval for the conditions
of (22a), (23), and (24).

1) Také ¢ = ¢, then F(¢°) > F(¢") and AF/A$ > 0.
Using Lemmal F(¢" + A¢° — ¢") > min [F(¢"),F(¢%)],
O < A < 1, will hold if F'(¢") > 0. This is satlsﬁed in

22a) and (23)

2) Take ¢ = ¢, then F (" > F(¢’) and AF/A¢ < 0.
Using Lemma 1 again, the requirement that F'(¢%) < 0
will be met in (22a) and (24).

3) Suppose F(¢") = F(¢°) and hence AF/A¢p = 0. We
can find one point ¢ such that F(¢%) > F(¢") = F(¢°).
Two subintervals are thus obtained, each of which may be
considered under cases 1) and 2).

It should be noted that, from Lemma 2, (22a), (23), and
(24) imply pseudoconcavity. From its corollary, (22b),
(23), and (24) imply pseudoconvexity.

Let us define the upper and lower specifications by S,
i€l, and S, iel, respectively, where I, and I, are
disjoint index sets. An acceptable interval I, may be defined
as
L {18, — F($) 20,iel, F(p) — S; = 0,je I}

(25)

Theorem 2: 1, is convex if the condition (22a), (23), or
(24) is satisfied by F(¢), for all i € J,, and condition (22b),
(23), or (24) is satisfied by Fi(¢), for all i e I,.

Proof: Consider the case i € I, and let

Iy & {p | Fi(p) — Si = 0}, (26)

Tuke two different points ¢", ¢° € I,. If the condition (22a),
(23), or (24) is satisfied, then, from Theorem 1,

Fi¢*) = Fi(@" + A* — ¢7) > min [F(¢"),F(4")]
0< i<l

iel,.
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Fig. 5. An LC low-pass example.
Thus
F(¢" - Sy > min [Fi(¢") — S, Fi(¢®) — Sl
0< A<l
Since
¢, P el
and
F(¢") — S >0 @n
therefore,
¢* = ¢" + AP* — ¢) el (28)

Hence I,, i € 1, is a convex interval by definition of a convex
set. Similarly, for the case i e [, if the condition (22b),
(23), or (24) is satisfied, using Theorem 1, we may prove
that [, i € 1, is convex.

The intersection of convex sets is.convex, and since, by
definition,

I =

‘ iel;
iely
1,1, is convex. If any F(¢) has both upper and lower specifi-
cations, the required conditions for a convex acceptable
interval are restricted to (23) and (24).

IV. THE NETWORK TOLERANCE PROBLEM
We consider a bilinear network function [6]-[8] of the
form (4 + ¢B)/(C + ¢D) where 4, B, C, and D are, in
general, complex and frequency dependent. Thus we
assume a function of the form

A+ ¢B
C + ¢D

P_NG)
M@)

F@) = j

In this case, N, M > 0. The coefficients of (1) are related
to the bilinear function as follows:

_Gb +CD_iC (B
7 Y, EARY, e

2

~ A8+ AB e = 140

|D|? |DJ?

where the subscripts i/ and 7 denote the imaginary and real
parts of the complex number.

We have studied the behavior of [p|®, the modulus
squared of the reflection coefficient p, for the LC low-pass
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Fig. 6. (a) |p|? vs. L for the example. (b) |p|? vs. C; for the example.
(c) |p|? vs. C; for the example.

filter (Fig. 5) with respect to the variations of L, C,, and
C,, respectively. Fig. 6 shows some of the curves for
different values of frequency. The three vertical lines on
each drawing represent the nominal values and the extreme
values of +25 percent relative tolerance. The nominal
values for L, C,, and Cy are 2, 0.125, and 1, respectively.
C, = C, for reasons of symmetry.

The curves for L and C, have two turning points each.
For example, at w = 1,

81LF — 144L + 64

L) = .
POl = S F oL 13

The turning points are at L = 0.889 and L = 8.0 cor-
responding to the minimum of |p|?> = 0 and the maximum
of |p|* = 1, respectively. Setting |p|> = 81/82 = ¢, we can

solve for one unique point L = 4.44 at which the curve is
divided into two parts: [p|> > 0.988 for L > 4.44 and
ip|* < 0.988 for L < 4.44. The maximum and minimum
function values occur separately in the two parts. The
derivatives at the boundary of the tolerance region are both
positive, indicating that the curve is monotonic in the region
(both pseudoconvex and pseudoconcave).
For parameter C, at w = |,

4C,% + 4C, + 1
8C,2 +2

lp(Cy)I* =

The maximum and minimum occur at values of 0.5 and
—0.5. At C, = 0, the curve is again divided into two parts
for |p|> = 0.5 and |p|?> < 0.5 for positive or negative C,
values, respectively.
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The curves for C; have only one turning point. The
biquadratic function is of the form

Ci? + 2aCy + e

Cy)? = .
]p( 3)I C32 + 20C3 + b

The minimum occurs at C; = —a. The curves are pseudo-
convex on (—o0,00) for frequencies in both the passband
and stopband. For the worst case at stopband frequencies
to occur at the boundary of an interval, it is required that
the curves corresponding to these frequencies also be
pseudoconcave on the interval, i.e., the curves should be
monotonic on the interval.

V. CONCLUSIONS

The present work deals with a one-dimensional case.
Conditions for the worst case to occur at the boundary of
an interval are given. The conditions may be used at least
to partially justify the usual assumptions for the tolerance
problem. The analysis presented here is exact unlike an
approximation procedure which makes use of the first- and
second-order sensitivities at the nominal point. Bandler
[10] has already related a one-dimensional convexity
assumption for the acceptable interval to that of the k-
dimensional case. It was proven [10] that only vertices of
the tolerance region need be tested for the worst case
problem if the one-dimensional assumption holds every-
where. Thus Theorem 1 in the present paper involves
necessary conditions for the vertices of a k-dimensional
region. That networks exist where the vertices do not-give
worst case results is seen, for example, by studying the
o = 2.0 curve of Fig. 6(a) for L between 0 and 1.
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Abstract—The theory and its implementation in a new user-
oriented computer program package is described for solving con-
tinuous or discrete worst case tolerance assignment problems
simultaneously with the selection of the most favorable nominal
design. Basically, the tolerance problem is to ensure that a design
subject to specified tolerances will meet performance or other
specifications. Our approach, which is believed to be new to the
microwave design area, can solve a variety of tolerance and related
problems. Dakin's tree search, a new quasi-Newton minimization
method, and least pth approximation are used. The program itself
is organized such that future additions and deletions of performance
specifications and constraints, and replacement of cost functions
and optimization methods are readily realized. Options and default
values are used to enhance flexibility. The full Fortran listing of the
program and documentation will be made available.
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I. INTRODUCTION

ANEW user-oriented computer program package called
TOLOPT (TOLerance oPTimization) is presented which
can solve continuous or discrete worst case tolerance
assignment problems simultaneously with the selection of
the most favorable nominal design, taking full advantage
of the most recent developments in optimization practice.
Our approach, it is believed, is new to the microwave
design area. Previous design work has usually been con-
centrated on obtaining a best nominal design, disregarding
the manufacturing tolerances and material uncertainties.
Basically, the tolerance assignment problem is to ensure
that a design, when fabricated, will meet performance or
other specifications.

The package is designed to handle the objective funec-
tions, performance specifications, and parameter con-
straints in a unified manner such that any of the nominal
values or tolerances (relative or absolute) can be fixed or
varied automatically at the user’s discretion. Time-saving
techniques for choosing constraints (vertices selection)
are incorporated. The routine involved also checks assump-
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tions and performs worst case analyses. The paper also
contains a brief discussion of network symmetry and how
it may be implemented to further reduce the number of
constraints.

The continuous and (optional) discrete optimization
methods are programmed in such a way that they may be
used as a separate unit. This part, called pisopr2 and in-
corporating several optional features, is an updated version
of pisopr, which has been applied successfully in many
different areas [11-[37]. Dakin’s tree search for discrete
problems {47, efficient gradient minimization of functions
of many variables by a recent quasi-Newton method [5],
and the latest developments in least pth approximation
by Bandler and Charalambous [6]-[9] are employed.
Ixtrapolation is also featured [107].

Another practical problem which is analogous to the
tolerance assignment problem is to determine the optimum
component values to a certain number of significant figures,
which can be done with prsor2.

The ToLOPT program is organized in such a way that
future additions and deletions of performance specifica-
tions and constraints, and replacement of cost functions
and optimization methods are readily realized. Any of the
two different vertices elimination schemes can be bypassed
or replaced by the user. It is felt that the program is par-
ticularly flexible in the way that the user may enter at any
stage of the problem’s solution. The user supplies the net~
work analysis subroutines. With an arbitrary initial accept-
able or unacceptable design as a starting point, the pro-
gram would output the set of nominal component param-
eters together with a set of optimal tolerances satisfying
all the specifications in the worst case sense. The user
decides on a continuous solution and/or discrete solutions.

The package, written in Fortran IV and run on & CDC
6400 digital computer, will be made available. Several
test examples are presented here to illustrate the theory
and practice of the approach.

II. THE TOLERANCE PROBLEM

Introduction [11-[15]

A design consists of design data of the nominal design
point &° & [é1%° < - ]7 and a set of associated toler-
ances ¢ £ [eies * - )7, where k is the number of network
parameters. Let I, & {1,2,-++,k} be the index set for
these parameters. We take the sth absolute tolerance as
¢; in the discussion in this section; however, the discussion
applies alsc to the relative tolerance ¢; & e/¢:° without
any conceptual difference. An outcome of a circuit is any
point & & [¢rges ¢ )T in the tolerance region R, &
(b — e <y < ¢d+ &, © €1}, The constraint re-
gion R, is the region of points ¢ such that all performance
specifications and constraints are satisfled by the circuit.
The worst case design requires that R; C R,. The optimal
worst case design can, therefore, be stated as: minimize
some cost funetion C subject to B, € R..

We need the following assumptions on E, in order to
make the problem tractable.
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Assumptions on &,

1) R, is not empty.

2) R, is bounded and simply connected.

3) R.is at least one-dimensionally convex.

Assumption 1) guarantees there is at least one feasible
solution, and assumption 2) is a computational safeguard
against infinite parameter values.

We say that R, is one-dimensionally convex if for all
j €I, [11]

$%9*? & ¢* + au; €K, (1)

where a is some constant and u; is the jth unit vector,
implies that

é = ¢+ A (P — ¢°) €R, (2)
forall0 <A < 1.
Let us also define the set of vertices B, £ {$',¢?,- - -,d%*},

and the corresponding index set 7,, where
¢ 2 ¢+ Ep(r) (3)
wi(r) € {—1,1} and satisfies the relation

N Z(u;'(r) + 1)2,._1

= 5 (4)

where E is a diagonal matrix with e; as the ith element.
Under the foregoing assumptions

R, & R,= R: S R.. (5)

See [11] for the proof, and Fig. 1 for an illustration of the
concepts.

Assumptions on the Constraints

R, may be defined specifically by a set of constraint
functions, namely,

R, o f{d]gi(d) 207 €L (6)

where I, is the index set for the functions. Concave con-
straint functions or, more generally, quasi-concave func-
tions will satisfy assumption 3). The function g(d)
(dropping the subseript %, ¢ € I,) is .said to be quasi-
concave in a region if, for all ¢%¢* in the region,

g(¢° + M¢* — ¢%)) = min [($°),9(¢*) ] )

for all 0 < A < 1. An immediate consequence of (7) is
that a region defined as {& | g(¢) > 0} is convex [16].
The intersection of convex regions is also convex, and the
multidimensional convexity implies the one-dimensional
convexity of assumption 3).

If the point &° in (7) is defined as in (1), then the
function g(¢) satisfying (7) will be called a one-dimen-
sional quasi-concave function. The region defined by these
functions is one-dimensionally convex. Assumption 3) is
satisfied [17]. Throughout the following discussions, we
will assume the functions to have this less restrictive
property.

Under the foregoing assumptions we have the nonlinear
programming problem: minimize C' subject to g:(¢") > 0
forall ¢ €R,, 7 € I,
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Fig. 1. Possible regions R.. (a) R, is a subset of R. implies that R

is a subset of R.. (b) R, is a subset of R, implies that R, is a sub-
set of R.. (¢) R, is a subset of R. does not imply that R, is a subset
of R..

Conditions for Monotonicity

Given a differentiable one-dimensional quasi-concave
function g(¢) (see, for example, Fig. 2), the function is
monotonic with respeet to ¢ on an interval [¢%¢*] if
sgn (¢ (o) = sgn (¢'(¢*)). Furthermore, the minimum
of g(¢) is at ¢ = 5[¢° + ¢* — sgn (¢'(¢%)) (¢* — ¢°) ].
This may be proved as follows.

Consider  the case sgn (¢’ (¢%)) = sgn (¢'(¢%)) > 0.
Suppose g(¢) is not monotonic. Then there exist two
points ¢4L,¢? € (¢%¢%),9* > ¢! such that ¢’(¢') < 0 and
g(¢)) > g(¢!). Thus g(¢* + N(¢? — ¢!)) for some 0 <
A < 1 is smaller than g(¢'), which contradicts (7). The
assumption that ¢g(¢) is not monotonic is wrong, hence
g(¢) is monotonic. Furthermore, it is nondecreasing on
[¢%9¢*]. The minimum is at ¢°.

Similarly, it may be proved that the casesgn (¢'(¢%)) =
sgn (¢’ (¢?)) < 0 implies monotonicity with ¢(¢) non-
increasing on [¢%,¢%]. The minimum is at ¢%.

Implications of Monotonicity

Suppose g; is monotonic in the same direction with
respeet to ¢, throughout R,. Then the minimum of g, is on
the hyperplane ¢; = ¢, — ¢; sgn (dg:/9¢,;). Hence only
those vertices which lie on that hyperplanc need to be
constrained. In general, if there are [ variables with respect
to which the function ¢; is monotonic in this way, the
2k=1 yertices lying on the intersection of the hyperplanes
are constrained. In the case where I = k, the vertex of
minimum ¢ oceurs at ¢ where
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Fig. 2. A one-dimensional quasi-concave function.

o = ,.0 — € 8gn <-::7g") for all ] E I¢- (8)

i
Let the set that contains the critical vertices be denoted
by R, () € R,. The modified problem is: minimize C
subject to g:(¢7) > 0, for all & € R, (2), v € I..

The Vertices Elimination Schemes

Various schemes may be developed to identify or to
predict the most critical vertices that are likely to give
rise to active constraints. Our proposed schemes will
eliminate all but one vertex for each constraint function
in the most favorable conditions. In this case, the subse-
quent computational effort for the optimization procedure
is comparable to the linearization technique commonly
used. When monotonicity assumptions arc not sufficient
to describe the function behavior, our scheme will increase
the number of vertices until, at worst, all the 2* vertices
are included. '

In principle, our schemes may be stated as follows:

Step 1) systematic generation, for positive e, of scts of
points

&9 = ¢° + au;

Step 2) evaluation of the function values and the par-
tial derivatives at these points.
¢_¢b<i))

Step 3) If
AWMELA
= sgn|—
=40 3¢
eliminate the vertices ¢" € R, on the hyperplane

(2
& O¢;

ag;
¢; = ¢° + ¢;j8gn (5%‘]) .

If

[ 99: i
sgn (__g_ ) <0 and sgn (9_9_ ) >0
90 | puspe 09; | gmipb ()

note that the quasi-concavity assumption is violated.

Comments

1) We have investigated and implemented two methods
for step 1), involving: a) ¢* = ¢° — ¢;u; and ¢* = ¢° +
eiuj, for all j € I4; b) all the vertices of R;. A special case
which we do not consider in this paper is for ¢* = ¢° in
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step 1), in which case the first part of step 3) is applicable.
R, (?) contains only one vertex.

2) It is possible to further eliminate some vertices by
considering the relative magnitudes of g;(¢").

3) For method b), a worst case check can be accom-
plished as a by-product of the vertices elimination scheme
since function values are computed at each vertex.

4) The schemes are based on local information. R,
should be updated at suitable intervals.

Symmetry

A circuit designer should exploit symmetry to reduce
computation time. The following is an example of how it
may be done in the tolerance problem.

A function is said to be symmetrical with respect to S
in a region if

g(S¢) = g(¢) 9)

where S is a matrix obtained by interchanging suitable
rows of a unit matrix [187. It has exactly one entry of 1
in each row and in each column, all other entries being 0.

A common physical symmetry configuration is a mirror-
image symmetry with respect to a center line. The S
matrix in this case is

(10)

Postmultiplication of a matrix 4 by any S simply
permutes the columns of 4, and premultiplication of 4
permutes the rows of 4. SST = 1, and S*DS = D,, where
D is a diagonal matrix and D, is also a diagonal matrix
with diagonal entries permuted.

Consider symmetrical S, ¢° and e. By this we imply

S(S4) = 4 (11)
S¢° = ¢° (12)

and
STES = E. (13)

Lot us premultiply the rth vertex from (3) by S, giving
S¢r = S¢° + S(Ep(r)), r €l
= ¢° + S(STESu(r))
~ ¢ + ESp(r).

Now Sp(r) is another vector with 41 and -1 entries.
Let it be denoted by u(s), s € I,. In some cases w(r) is
identical to p(s) if the vector is symmetrical. In other
cascs w(r) < p(s). In all cases

S¢ = ¢*.

Making use of the symmetrical property of ¢

(14)

(15)
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g(S¢7) = g(¢) = g(9°). (16)

Let the number of symmetrical vectors u(r) and the
number of pairs of nonsymmetrical w(r) and w(s) be
denoted by N(r = 8) and N(r # s), respectively. Then

N(r = s) = 2Fks, 2%, < k (17)
and
N(r #£s) = (2F — 2%) /2, (18)

where k, is the number of pairs of symmetrical components.
Therefore, there are N{(r = s) 4+ N(r # s) effective
vertices as compared to 2* topological vertices. Take, for
example, k = 6 and k, = 3; only 36 function evaluations
are required for all the 64 vertices.

The above discussion and results may be used to reduce
computation time. However, in general, it is not certain
that a nominal design without tolerances yielding a sym-
metrical solution will imply a symmetrical optimal solu-
tion with tolerances either in the continuous or in the
discrete cases.

2k, < k

1II. OPTIMIZATION METHODS

Nonlinear Programming Problem

After eliminating the inactive vertices and constraints
as discussed in Section II, the tolerance problem takes the
form

minimize f 2 f(x) (19)

subject to

gs'(x) = 0, 1= L2,«<om (20)

where f is the chosen objective function (see Section IV).
The vector x represents a set of up to 2k design variables
which include the nominal values, and the relative and/or
absolute tolerances of the network components. The con-
straint functions ¢.(x),g2(%),-+,gm(x) comprise the
selected response specifications, component bounds, and
any other constraints. The constraints are renumbered
from 1 to m for simplicity.

Constraint Transformation

Recently, Bandler and Charalambous have proposed a
minimax approach [8] to transform a nonlinear program-
ming problem into an unconstrained objective. The method
involves minimizing the function

Vix,e) = max [ f(x),/(x) — ag:(x)] where o> 0.
igigm
(21)

A sufficiently large value of o must be chosen to satisfy
the inequality
1 m
-2 us <1 (22)
& Gy
where the /s are the Kuhn-Tucker multipliers at the
optimum. This approach compares favorably with the
well-regarded Fiacco—MecCormick technique [197].
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Several least pth optimization algorithms are available
for solving the resulting minimax problem. The function
40 be minimized is computed in the present paper as

ei(x) — e\'\/*
v - mw -9 (S(E5=2)) " @
where

M (x) < max e;(x)
jeJ
0 for M(x) =0
€ &
small positive number for M (x) = 0

g psgn (M(x) —¢)
p>1
and if

>0,J — {j|e(x) >0}
M (x)
<0,J « {1,2,+c+-;m + 1}.

The definition of the e;, the appropriate value(s) of p, and
the convergence features of the algorithms are summarized
in Table I (algorithms 1-4).
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Another approach to nonlinear programming which
utilizes a least pth objective is also detailed in Table I
(algorithm 5). It is a modification of an existing non-
parametric exterior~point algorithm described by Lootsma

[20].
Ezistence of a Feastble Solution

The existence of a feasible solution can be detected by

minimizing (23) when

5"93'? .7 = 172)' °,m

€;

f— f .7 =m+1
where f is an upper bound on f. A nonpositive value of M
at the minimum, or even before the minimum is reached
indicates that a feasible solution exists. Otherwise, no
feasible solution satisfying the current set of constraints
and the upper bound on the objective function value is
perceivable. Only one single optimization with a small
value of p greater than unity is required.

Unconstrained Minimization Method

Gradient unconstrained minimization methods have
become very popular because of their reported efficiency.

TABLE I
THE OPTIONAL LEAST pTH ALGORITHMS
—_— =
Algorithm Definition of Convergence Value(s) of Number of
e feature P optimizations
1 °i" £ -ugi,i-;.Z,....l Large 1
£, i = mel
2 where Increment Increasing Implied by
a>0 of p the sequence
but superceded
3 Extrapolation Geometrically by the
increasing stopping
quantity
4 £ -agi-tr,i-l.z.. el Depend on
the stopping
e+ . Updating of Finite quantity
£-8,i=ml e
where
«a>0
r : lin[O,Mo +y], rel
£« .
Wlay, ro1
r indicates the optimization
number
vy is & small positive quantity
5
Updating of

{ -8y i=1,2,...,m
e «

£-1t7, iemel

r-1, “r-1

e T, > 1

r is defined as in 4

‘l'

optimistic estimate of £, v = 1
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One such program is the Fortran subroutine, which utilizes
first derivatives, implemented by Fletcher [5]. The
method used belongs to the class of quasi-Newton methods.
The direction of search s’ at the jth iteration is calculated
by solving the set of equations

Bisi = —vU (x7) (24)

where B/ is an approximation to the Hessian matrix G of
U7, U is the gradient vector, and x/ is the estimate of the
solution at the jth iteration.

As proposed by Gill and Murray [217], the matrix B7 is
factorized as

B/ = LiDSL" (25)

where L is a lower unit triangular matrix and D is a
diagonal matrix. It is important that B’ must always be
kept positive definite, and with the above factorization,
it is casy to guarantee this by ensuring d;; > 0 for all <.

A modification of the earlier switching strategy of
Fleteher [227] is used to determine the choice of the cor-
rection formula for the approximate Hessian matrix. The
Davidon-Fletcher-Powell (DFP) formula is used if

8TLDLTS < 87(VU (x) — vU(x%))

where
& = xitl — x4,

Otherwise, the complementary DFP formula is used.
The minimization will be terminated when | z;/#! — z,7 |
is less than a prescribed small quantity for all <.

Discrete Optimization

In practical design, a discrete solution may be more
realistic than a continuous solution. In network tolerance-
optinuzation problems, very often only components of
certain discrete values, or having certain discrete toler-
ances are available on the market. At present, a general
strategy for solving a nonlinear discrete programming
problem is the tree-search algorithm due to Dakin [4].

Dakin’s integer tree-search algorithm first finds a solu-
tion to the continuous problem. If this solution happens
to be integral, the integer problem is solved. If it is not,
then at least one of the integer variables, e.g., z;, is non-
integral and assumes a value z,*, say, in this solution. The
range

[Z(*] <z < [Jt;*] + 1

where [r*] is the largest integer value included in z.*,is
inadmissible, and consequently we may divide all solutions
to the given problem into two nonoverlapping groups,
namely, 1) solutions in which

z; < [a]
2) solutions in which
z 2 [zi*] + 1.

[Sach of the constraints is added to the continuous problem
sequentially, and the corresponding augmented problems
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are solved. The procedure is repeated for each of the two
solutions so obtained. Each resulting nonlinear program-
ming problem thus constitutes a node, and from each node
two branches may emanate. A node will be fathomed if the
following happen: 1) the solution is integral; 2) no feasible
solution for the current set of constraints is achievable;
3) the current optimum solution is worse than the best
integer solution obtained so far. The search stops when
all the nodes are fathomed.

It seems, then, that the most efficient way of searching
would be to branch, at each stage, from the node with the
lowest f(x) value. This would minimize the searching of
unlikely subtrees. To do this, all information about a node
has to be retained for comparison; this may require cum-
bersome housekeeping and excessive storage for computer
implementation. One way of compromising is to search
the tree in an orderly manner; each branch is followed
until it is fathomed.

The tree is not, in general, unigue for a given problem.
The tree structure depends on the order of partitioning
on the integer variables used. The amount of computation
may be vastly different for different trees.

For the case of discrete programming problems subject
to uniform quantization step sizes, the Dakin algorithm
is modified as follows: let z; be the discrete variable which
assumes a nondiscrete solution z*; and let ¢; be the
corresponding quantization step; then the two variable
constraints added sequentially after each node become

2 [2*/q)e + @

and
z; < [z*/q:0q-

The integer problem is thus a special case of the discrete
problem with ¢; = 1,7 = 1,2,- - -,n, where 7 is the number
of discrete variables.

If, however, a finite get of discrete values given by
D; = {di,digy« »* dijdiciyn, ooy, T = 1,2,0-0.m

is imposed upon each of the discrete variables, the variable
constraints are then added according to the following
rules.

1) If

di; < 2* < digiyn

then add the two constraints

z; < dyj
and
z; 2 dig+n
sequentially.
2) If
¥ < dy

only add the constraint
z; 2 di
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3) If
z* > d,,
only add the constraint
T _<_ diu-

The resulting nonlinear programming problem at each
node is solved by one of the algorithms described earlier.
The feasibility check is particularly useful here since the
additional variable constraints may conflict with the
original constraints on the continuous problem. An upper
hound f, on f(x), if not specified, may be taken as the
current best discrete solution. For a discrete problem, the
best solution among all the discrete solutions given by
letting variables assume combinations of the nearest
upper and lower discrete values (if they exist) may be
taken as the initial upper bound on f(x).

The new variable constraint added at each node excludes
the preceding optimum point from the current solution
space and the constraint is therefore active if the function
is locally unimodal. Thus the value of the variable under
the new constraint may be optionally fixed on the con-
straint boundary during the next optimization. See Fig. 3
for illustrations of the search procedure and a tree struc-
ture.

w4 .
)/

AL
Va2 NE
d" ‘l! dls d“ !

(a)

continuous
solution

no feasible
solution

upper bound discrete
sxceeded solution

“optimal discrete upper bound
solution exceeded

(b)

Fig. 3. An illustration of the search for discrete solutions. (a) Con-
tours of a function of two variables with grid and intermediate
solutions. (b) The tree structure.
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IV. IMPLEMENTATION OF THE
TOLERANCE PROBLEM

The Overall Structure of TOLOPT

Fig. 4 displays a block diagram of the principal sub-
programs comprising the ToLOPT program. A brief descrip-
tion of these subprograms is given in this section.

TOLOPT is the subroutine called by the user. It organizes
input data and coordinates other subprograms. Subroutine
DI80P2 is a general program for continuous and discrete
nonlinear programming problems. Subroutine VERTST
eliminates the inactive vertices of the tolerance region.
Subroutine CONSTR sets up the constraint functions based
on the response specifications, component hounds, and
other constraints supplied in the user subroutine vsercw.
Subroutine cosTFN computes the cost funetion. The user
has the option of supplying his own subroutine to define
other cost functions. The user-supplied subroutine NETwaK
returns the network responses and the partial derivatives.

Table II is a summary of the features and options cur-
rently incorporated in ToLoPT.

Some components of e and ¢° may be fixed which do not
enter into the optimization parameters x. The user supplies
the initial values of the tolerances (relative or absolute)
and the nominals with an appropriate vector to indicate
whether they are fixed or variable, relative or absolute.
The program will assign those variable components to
vector x.

The Objective Function

The objective function we have investigated and im-
plemented is [11]-[13]
c=x= (26)
-
where ; is either ¢; or ¢;, and the ¢; are some suitable
weighting factors supplied by the user. The default value

is one. To avoid negative tolerances we let z; = .2, where
z/ is taken as a new variable replacing z..

Vertices Selection and Constraints

Two schemes of increasing complexity are programmed
in the subroutine. The user decides on the maximum
allowable calls for each scheme, starting with the simple
one. He may, if he wishes, bypass either one or even bypass

oisopr2 COSTFN

TOLOPT CONSTR USERCH
]

l——- VERTST NETWRK

Fig. 4. The overall structure of ToLopr. The user is responsible for
NETWRK and USERCN.
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TABLE II

SuMMARY oF FEATURES, OPTIONS, PARAMETERS, AND SUBROUTINES REQUIRED

Features

Type

Options

Par&metetsf/subroutines

Design parameters

Nominal and tolerance

Variable or fixed
Relative or absolute
tolerances

Number of parameters

Starting values

Indication for fixed or variable
parameters and relative or absolute
tolerances

Objective Cost Reciprocal of Weighting factors
function relative and/or absol-
ute tolerances
Other Subroutine to define the objective
function and its partial derivatives
Vertices Gradient direction Maximum allowable number of calls
selection* strategy of the vertices selection subroutine
Constraints Specifications on Upper and/or lower Sample points (e.g., frequency)
functions of Specifications
network parameters Subroutine to calculate, for example,
the network response and its partial
derivatives (NETWRK)
Network parameter Upper and lower bounds
bounds
Other constraints As many as required Subroutine to define the comstraint
functions and their partial de-
rivatives (USERCN)
Nonlinear Bandler-Charalambous Least pth optimization Controlling parameter «
programming minimax algorithms Value(s) of p
See Table I Test quantities for termination

Exterior-point

Optimistic estimate of objective
function
Value of p

Solution feasibility
check*

Least pth

Discrete problem
Continuous and discrete
problem

Constraint violation tolerance
Value of p

Unconstrained
minimization
method

Quasi-Newton

Gradient checking at
starting point by
numerical perturbation

Number of function evaluations
allowed

Estimate of lower bound on least pth
objective

Test quantities for termination

Discrete
optimization®*

Dakin tree-search

Reduction of dimen-
sionality

User supplied or program
determined initial upper
bound on cbjective func-
tion

Single or multiple
optimum discrete solu-
tion

Uniform or nonuniform
quantization step sizes

Upper bound on objective function
Maximum permissible number of nodes
Discrete values on step sizes
Number of discrete variables
Discrete value tolerance

Order of partitioning

Indication for discrete variablas

t Parameters associated with the options are not explicitly listed.
* These features are optional and may be bypassed.
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the whole routine by supplying his own vertices, or set up
his own strategy of vertices selection routine.

The user supplies three sets of numbers, the elements of
which correspond to the controlling parameter y;, the
specification 8;, and the weighting factor w;. ¥, is an inde-
pendent parameter, e.g., frequency, or any number to
identify a particular function. w; is given by

+1 if S;is an upper specification
Wi =
—1 if 8, is a lower specification.

If both upper and lower specifications are assigned to one
point, the user can treat it as two points, one with an upper

specification and the other with a lower specification. The
theory presented earlier will apply in this case under the
monotonicity restrictions.

The scheme will, for each 7, select & set of appropriate *
. Corresponding to each p, the values ¥, S;, and w; are
stored. This information is outputted and used for forming
the constraint functions.

The constraints associated with response specifications
are of the form

g=w(8—F) 20 (27)

with appropriate subscripts, where F is the circuit response
function of ¢ and ¥, and w and § are as before.
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The parameter constraints are
60— e — ;20 (28)
and
bui — 3" — ¢ 20 (29)

where ¢.; and ¢y;, j € I, are the user-supplied upper and

" lower bounds.

Updaiing Procedure

Once the constraints have been selected, optimization
is started with a small value of pand o (p = a = 10 as
default values). We have decided to call the routine for
updating constraints whenever the o value is updated or
the optimization with the initial value of p is completed,
until the maximum number of calls is exceeded, or when
there is no change of values for consecutive calls. For up-
dating the values, we add new values of i to the existing
ones without any eliminations. This may not be the most
efficient way, but it will be stable.

- V. EXAMPLES

Erample 1

To illustrate the basic ideas of different cost functions,
vartable nominal point, and continuous and discrete solu-
tions, a two-section 10:1 quarter-wave transformer is
considered [237. Table III shows the specifications of the
design and the result of a minimax solution without toler-
ances. Fig. 5 shows the contours of max; | p; | over the
range of sample points. The region R, satisfies all the
assumptions. Two cost functions, namely, €, = 1/tz, +
L'tz, and Cy = 1/ez, + 1/ez, are optimized for the con-
tinuous case. The optimal solution with a fixed nominal
point at a yields a continuous tolerance set of 8.3 percent
and 7.7 percent for Ci. For the same function with s
variable nominal point, the set is {12.8,12.8} percent with
nominal solution at b. The tolerance set for C; is {15.0,9.1}
percent with nominal solution at ¢. d and e correspond to
the two discrete solutions with tolerance 10 percent and
15 pereent. This example depicts an important fact that
an optimal discrete solution cannot always be obtained
by rounding or truncating the continuous tolerances to
the discrete values. The nominal points must be allowed
to move,

Erample 2

To illustrate the branch and bound strategy, a 3-com-
ponent LC low-pass filter is studied [127]. The circuit is
shown in Fig. 6. Table IV summarizes the specifications
and Table V lists the results for both the continuous and
the discrete solutions. Two different tree structures are

hown in Figs. 7 and 8. This example illustrates that the
tree structure, and hence the computational effort, is
dependent upon the order of partitioning on the discrete
variables. An asterisk attached to the node denotes an
optimum diserete solution. It may be noted that one of the
discrete solutions, as well as the continuous solution,
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TABLE III
Two-SEcTION 10:1 QUARTER-WAVE TRANSFORMER
Relative Sample Reflection Coefficient Type
Bandwidth Points Specification
(GHz)
100% 0.5, 0.6, ..., 1.5 0.55 upper
Minimex solution (no tolerances) |[p| = 0.4286
6
|
|
I
i
I
7 I
1
+
cofizs,iz8}%
8 —
Z;

/ >4, {i0,18} %

Y a

4

N
7 6 £ 58 5
AN
T

3
9

T
| 2

Fig. 5. Contours of max | p; | with respect to Zy and Z, for example
1 indicating a number of relevant solution points (see text).

L, Le

-
it
L1}
(e}

-

Fig. 6. The circuit for example 2.

yields symmetrical results, although symmetry is not
assumed in the formulation of the problem.

Ezample 3

Consider a five-section cascaded transmission-line low-
pass filter with characteristic impedances fixed at the
values ’

20 =20 = 79 =02
2 =20 =50

and terminated in unity resistances [17], [6]. Sec Table
VI for the specifications. The length units are normalized
with respect to I, = c/4f,, where f, = 1 GHz. Two prob-
lems are presented here.

1) A uniform l-percent relative tolerance is allowed for
each impedance. Maximize the absolute tolerances on the
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TABLE IV
LC Low-Pass FILTER
Frequency Sample Insertion Loss Type

Range Points Specification
(rad/s) (rad/s) (dB)

0-1 0.5, 0.55,0.6, 1.0 1.5 upper (passband)

2.5 2.5 25 lower (stopband)

Minimax solution (no tolerances)

passband 0.53 dB
stopband 26 dB

TABLE V
LC Low-Pass FiLter ToLeraNce OpriMizaTioN (C1)
Parameters Continuous Solution Discrete Solution
Fixed Nominal Variable Nominal From {1,2,5,10,15}%
1 2 3
x, = tLl 3.5 % 9.9 % 5% 10%  10%
xo= ot 3.2% 7.6 % 10% 5% 10%
Xy = sz 3.5% 9.9 % 10 % 0% 5%
x = 10 1.628 1.999
s 1 .62 .
xg= & 1.090 0.906
o
X ® L, 1.628 1.999

OOOOEOE
B e

Yig. 7. Tree structure for example 2, partitioning on z first (see
Table V). Asterisk denotes optimal discrete solutions.

Fig. 8. Tree structure for example 2, partitioning on zs first (see
section lengths and find the corresponding nominal lengths. Table V). Asterisk denotes optimal discrete solutions.

Let the cost function be

3 i 5 i
Cz = Z R Cl = Z ;— .
gl €14 =1 YZ; )
2} A uniform length tolerance of 0.001 is given. Maxi- The filter has 10 circuit parameters which may b?z

mize the relative tolerances on the impedances and obtain  arranged in the order Z1,Zs,++ +, 25,1k, » * 5. To simplify
the corresponding nominal lengths. Let the cost function be the problem, symmetry with respect to a center line
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TABLE VI
Five-Sgcrion TRanNsMIss1ON-LINE Low-Pass FiLTER
W—W

Frequency Sample Insertion Loss Type
Range Points Specification
(GHz) (GHz) (dB)
0 -1 .35,.4,.45,.75,.8,.85,1.0 .02 upper (passband)
2.5 - 10 2.5, 10 25 lower (stopband)

through the circuit is assumed. The matrix S is given by

~

1
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TABLE VII

Five-SectioN TrRaNsMIssiON-LINE Low-Pass Fivrer TOLERANCE
OpriMizaTION (C))

Discrete Sclution

Parameters Continuous Sclution From {.5, 1, 1.5, 2, 3, 5}%
tzli tzs 3.56 % 3%
tzz- tz‘4 2.27 % 2%
tzs 1.98 % 2%
29 = o A 0.0786
£ - 0.1415
25 0.1736

0 0 (-] 0 ]
Zyaly=Z =02, Z,=Z, =5
€, = 0.001, i=1,2,...,5
i
TABLE VIII

FIVE-SECTION TRrANsMISSION-LINE Low-Pass FIuter TOLERANCE
OpriMizaTION (Ch)

Discrete Solution

L

0

1

which also implies that [,° =

i and &° = [0 The same

kind of equalities is applied to the tolerances.

The first vertices elimination scheme is applied with
values at the optimal nominal values without tolerances,
and the relative impedance tolerance and the absolute
length tolerances at 2 percent and 0.002, respectively. A
total of 46 vertices corresponding to all the frequency
points were selected from a possible set of 9 X 21°, Fourteen
were further eliminated by symmetry. A final total of 15
constraints were chosen after comparing relative magni-
tudes. These 15 constraints were used throughout the
optimization. The continuous and discrete solutions to the
two problems are shown in Tables VII and VIII.

VI. DISCUSSION AND CONCLUSIONS

We have described an efficient user-oriented program
for circuit design with worst case tolerance considerations
embodying & number of new ideas and recent algorithms.
The automated scheme could start from #@n arbitrary
initial acceptable or unacceptable design %o obtain con-
tinuous and/or discrete optimal nominal parameter values
and tolerances simultaneously. However, optimization of
the nominal values without tolerances should preferably
be done first to obtain a suitable starting point. The effort
is’small compared with the complete tolerance problem
when a small value of p greater than unity, e.g., p = 2, is

Parameters Continuous Solution .000S Step Size
€ me, 0.0033 0.0030
1 5
€ =« 0.0028 0.0030
2 4
3 0.0027 0.0025
43
9= 0.0788
5= 0.1414
tg 0.1738
9o (]
zl-z‘;-z‘s’-o.z, 1322 =5

t, = 1%, 1= 1,2,,..,5

%

used. An exact minimax solution is not needed. This also
serves as a feasibility check. If R, is indicated to be empty,
the designer has to relax some specifications or change his
circuit. The solution process may also provide valuable
information to the designer, e.g., parameter or frequency
symmetry.

The problem without tolerances may be solved easily

*. by available programs such as caxopr [24]. The user may

alternatively utilize the optimization part, namely p1sop2,
of the present package.

It is good practice first to obtain a continuous solution
before attempting the discrete problem. A useful feature
of the program is that, for example, depending on informa-
tion obtained from prior runs, the user can reenter at a
number of different stages of the solution process.

The assumptions on the constraints may be difficult to
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test. For this reason, a Monte Carlo simulation of the
final solution is usually carried out.

We have presented results for two basic types of cost
function. A more realistic cost-tolerance model should be
established from known component cost data, if these are
unsuitable in particular cases.

The complete Fortran listing and documentation for
ToLopr will be made available [25]. It is very important
that the user-provided routine for network function com-
putation and the respective sensitivities be efficient. Typi-
cal running time for a small and medium size problem (less
than 10 network parameters or 20 optimization param-
eters) will be from 2 to 20 min. The execution time on a
CDC 6400, taking the LC low-pass filter as an example,
was less than 10 s for the continuous case, and a total of
80-100 s for the entire problem, depending on the order
of partitioning. The five-section transmission-line example
needed about 300-400 s.
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ABSTRACT

This paper presents a user-oriented computer program package called
TOLOPT (TOLerance OPTimization), which can solve continuous and/or discrete
worst-case tolerance assignment problems. Worst-case vertices can be auto-
matically selected and optimization will lead to the most favorable nominal
design simultaneously with the largest possible tolerances on specified
toleranced components. The program, which is available, contains recent
techniques and algorithms for nonlinear programming.

INTRODUCTION

TOLOPT is a package of subroutines which can solve continuous and dis-
crete worst-case tolerance assignment probicas simultaneously with the se-
lection of the most favorable nominal design {1-3]. The package is designed
to handle the objective function, performance specifications, and parameter
constraints in a unified manner sucih that any of the nominal values or tol-
erances (relative or absolute) can be fixed or varied automatically at the
uscr's discretion. Time-saving techniques for choosing constraints (verti-
ces sclection) are incorporated. The routine involved also checks assump-
tions and performs worst-case analyses,

The continuous and (optional) discrete optimization methods are pro-
grammed in such a way that they may be used as a scparate unit. This part,
called DISOP2 and incorporating several optional features, is an updated
version of DISOPT, which has been successfully applied in many different
areas [3 - 6]. Dakin's tree search for discrete problems [7], efficient
gradient minimization of functions of many variables by a recent quasi-
Newton method [8] and recent developments in least pth approximation by
Bandler and Charalambous [9 - 12] are employed. Extrapolation is also
featured [13]. The Fortran IV package typically requires 64000 octal words
on the CDC 6400.

FEATURES OF TOLOPT

TOLOPT organizes input data and coordinates other subprograms such

This work was supported by the National Research Council of Canadn
under Grant A7239 and by the Danish Council for Scientific and Industrial
Research through support to P. Dalsgaard.
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as DISOP2, VERTST, CONSTR, USERCN, COSTFN and NETWRK. Subroutine DISOP2 is
a general program for continuous and discrete non-linear programming pro-
blems. Subroutine VERTST eliminates the inactive vertices of the tolerance
region. Subroutine CONSTR sets up the constraint functions based on the
response specifications, component bounds and other constraints supplied in
the user subroutine USERCN. Subroutine COSTFN computes the cost function.
The user has the option of supplying his own subroutine to define other
cost functions. The user supplied subroutine NETWRK returns the network
responses and the partial derivatives. In the user supplied subroutine
USERCN the user has to define whatever extra constraints he neads and thz
corvasponding parcial derivatives. It should be noted that the constraints
given in USERCN are not checked against the worst-case vertices.

Table I is a summary of the features and options currently incorporated
in TOLOPT. .

The objective function we have investigated and implemented [1 - 3] is
the weighted summation of the inverses of the relative or-the absolute tol-
erances. The weighting factors may (as default values) be taken as one, but
the user can specify his own set of weighting factors.

Various schemes have been developed to identify or to predict the most
critical vertices that are likely to give rise to active constraints. Our
proposed schemes will eliminate all but one vertex for each constraint
function in the most favourable conditions. When monotonicity assumptions
[2, 14] are not sufficient to describe the function behaviour, our scheme
will increase the number of vertices until, at worst, all vertices are in-
cluded.

Two major schemes of increasing complexity age programmed %n the sub-
routine VERTST [3]. One involves vertices ¢ = ¢ - Ejaj and p° = 42"+ ejﬂj'

Here, %0 is the nominal point and €. the to]cragce on the jth component.
Rj is the jth unit vector and j € 1¢, wherc T¢ = {1,2,...,k} is the index

set for the network components. Anoﬁher involves all vertices. Also, the
special case which occurs for = , has been programmed. In this case
only one vertex is considered for each sample point.

The user decides on which vertices selcction scheme he wants to use as
well as the maximum number of allowable calls for the scheme sclected for
the updating procedure. He may, if he wishes, bypass the whole subroutine
by supplying his own vertices or set up his own strategy of vertices selec-
tion. Furthermore, the user decides on the maximum number of vertices al-
lowable at each sample point. If more than the maximum allowable numbers
are detected, the subroutine selects the ones corresponding to the lowest
constraint value arranged in ascending order.

After printing out the detected vertices and the value of the corresp-
onding constraints, the user has the possibility of eliminating further
vertices by considering the relative magnitude of the constraints.

As an option the TOLOPT program can be used for vertices detection
only. The program will print out the detected vertices and the value of the
corresponding constraints such that the user has the possibility manually
to eliminate vertices using his own judgement. The user has the possibility
of supplying his own set of active vertices in two different ways.

Before using the automated vertex selection an initial feasibility check
is performed to check the feasibility of the nominal design. The outcone
from this feasibility check is used as a starting point in the tolerance
assignment problem. If a feasible nominal point is not attainable, the user
has to relax some specifications or change his design.

The different optimization methods incorporated [9 - 13] employ the
least pth approach. Once the constraints have been selected, optimization
is started with a small value of p and « (a parameter associated with the
minimax approach to nonlinear programming [11]). The routine for upditing
constraints is called whenever the o value is updated and/or cach time new

L]
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constraints have been added. We add new values of y (a vector identifying a
vertex) to existing ones without any eliminations, for stability. When the
maximum number of calls is exceeded or when there is no change of values for
consecutive calls the program goes to the final optimization with the set of
vertices chosen.

Using all the detected vertices could, depending on the problem under
investigation,easily involve so many constraints that the optimization would
be very time consuming. This could, however, for some prohlems, be over-
come by specifying a sufficieatly large but reausonable limit. In snch cases
the updating and optimization procedure will converge if the vertices, which
are active at the solution, are not discarded during updating. The same con-
vergence should occur if manual elimination by the user is performed without
discarding vertices which are active at the solution. .

It should be pointed out that vertices which are detected at an early
stage of the updating procedure need not be active at the solution and vice-
versa. The final solution is worst-case only at the chosen sample points.

The solution process may provide valuable information to the user, e.g.,
parameter or frequency symmetry, which could be useful in order to reduce
the number of active vertices.

EXAMPLE

We consider a simple voltage divider [4, 15] with resistances of 6. and
¢2, a transfer function of ¢,/(¢,+¢,) and input resistance ¢1+¢ . The éesign
specifications are 0.46 < ¢2;(¢1}¢2 <0.53 and 1.85 < $;+d,< 2.15. In the

case of the discrete problem the set of obtainable discrete values for the
tolerances of ¢, and ¢, are 1,3,5,10,15 percent.

A typical main prGgram to supply the values and proper dimensioning for
the parameters in the argument list of subroutine TOLOPT and the common
statements /TOL/ and /DEFAULT/ is displayed in Fig. 1. Fig. 2 shows the sub-
routine NETWRK and Fig. 3 illustrates USERCN for a constraint inactive at
the solution. Typical printouts of data and the gradient check are shown in
Figs. 4 and 5, respectively. Results of continuous and discrete optimiza-
tions are shown in Fig. 6.

In this example all four known vertices are supplied and TOLOPT goes
directly to the final optimization.

CONCLUSIONS

We have presented an efficient user-oriented program for worst-case
tolerance optimization, particularly suited to circuit design. It is based
on work carried out by Chen [5], Liu [2] and Bandler, Liu and Chen [3].

The package has been under continuous development to make it sufficiently
user-oriented. This has been to some extent at the expense of the greater
efficiency which can be realized by a more specialized program. Running
times of the package can vary significantly according to the various term-
ination and error criteria used as data. This is particularly true in the
generation of the tree structure in a discrete optimization and the inter-
pretation of the solutions as being feasible, discrete, etc.

A detailed report with a complete documented listing is available from
the first author at a nominal charge [16].
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*

PROGRAM TESTVOL(INPUT, QUTPUT, TAPES=INPUT, TAPE6=OUTPUT)
DIMENSION X(4), EPS(4), G(4), PS(1), XB(4), IX(4), X1(4), X2(4), W(16),
H(10), XE(4,1,1), INDX(4), GF(4)

DIMENSION IAA(50), IBB(S0), A(50), T1(50), T1P(50)

DIMENSION NSTEP(2), QSTEP(2), DISCR(2,5), XU(2), XL(2), ID(25), IB(2,25)
JICHECK(25), IVAR(25), P1(25), P2(25), ESTD(25), AL(25)

DIMENSION Z(4), T1(4), 12(4), AZ(2), AX(2), MU(Z,10), NV(10), SAMPT(3,10)
JGRAD(2), PL(2), PU(2), W1(4), CW(2), IB1(Z), SG(10)

DIMENSION GPHI(4,24), PHI(24), I3(10), I4(10)

COMMON /TOL/ IUPD, ISCEME, IWORST, IPRINT, IDATA, IOPT1, IOPT2, IOPT3,
IOPT4, IOPTS, IOPT6, IOPT7, NDZ, ND3, ND4, NDS, MAX, MAXNOD, ICON, NDIM,
NSP, MAXVN, NVSUM, NEC, ND1, ND6

COMMON /DEFAULT/ EST, EST1, AO, AI, XMAL, ZERO, ETA; INSOLN, BSOLN

KP=2*KT

READ 3, ((SAMPT(I,J), I=1,3), J=1,NVSUM)

FORMAT (3F5.2)

READ 4, ((MU(I,J), J=1,NVSUM), I=1, KT)

READ 4, (NV(I), I=1,NVSUM)

FORMAT (413)

CALL TOLOPT (NR,KT,KR,KD,KP,NP,Z,11,12,AZ,AX,MU,NV,SAMPT,
GRAD,PL,PU,W1,CW, IB1,SG,13,14,X,EPS,G,PS,XB, IX,X1,X2,
W,H,XE, INDX,GF, IAA, IBB,A, T1,T1P,NSTEP,QSTEP,DISCR, XU, XL, ID,
1B, ICHECK, IVAR,P1,P2,ESTD, AL, GPHI, PHI)

STOP

END

Fig. 1. Main program for the example.

SUBROUTINE NETWRK (AX,OM,RSP,GR, IG)
DIMENSION AX(1), GR(1)

A=AX(1) + AX(2)

A2=A%*2

T=AX(2) /A

KV=TFIX (OM)

GO TO (1,2,2,1), KV

RSP=A

IF (IG.EQ.0) RETURN

GR(1)=1.

GR(2)=1.

RETURN

RSP=T

IF(IG.EQ.0) RETURN

ggg;;;&ﬁ%g?}ﬁ;z Fig. 2. Subroutine NETWRK .
RETURN

END

SUBROUTINE USERCN (Z,G,GG,NR,KP)
DIMENSION Z(1), G(l), GG(KP,1)
G(1)=Z(3)+Z(4)
GG(1,1)=0.
GG(2,1)=0.
GG(3,1)=1.
GG(A,1)=1.
Rt i'ﬂ,.l RN
END
Fig. 3. Subroutinc USERCN.
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RESULTS OF THE FEASIBILITY CHECK

NODE NUMBER = 0

INEQUALITY CONSTRAINTS

G( 1)
G( 2)
G( 3)
G( 4)
G( 5)
G( 6)
G(7)
G( 8)
G( 9)

L L S | T B N T 1]

.13000000E+00 SAMPLE POINT 1
.350000008-01 SAMPLE POINT 2
.25000000E-01 SAMPLE POINT 3
.13000000E+00 SAMPLE POINT 4
.19000000E+00 LOWER BOUND 1
.19000000E+00 UPPER BOUND 1
.19000000E+00 LOWER BOUND 2
.19000000E+00 UPPER BOUND 2
.20000000E+01 EXTRA CONST 1

NUMBER OF CONSTRAINTS USED = 9

NUMBER OF VIOLATED CONSTRAINTS = 0

NUMBER OF FUNCTION EVALUATIONS = 1

FOLLOWING IS RESULT OF OPTIMIZATION

NODE NUMBER 0
ARTIFICIAL UNCONSTRAINED FUNCTION U -.11592424E-01
ACTUAL OBJECTIVE FUNCTION F .28569099E+02

OCCURRING AT

nuw o nnon

X( 1) = .26458592E+00 GU( 1)
X( 2) = .26458592E+00 GU( 2)
X( 3) = .10139413E+01 GU( 3)
X( 4) = .99376532E+00 GU( 4)
INEQUALITY CONSTRAINTS
G( 1) = .17155658E-01
G( 2) = .66321421E-06
G( 3) = .66395748E-06
G( 4) = .17425017E-02
G( 5) = .1429595SE+00
G( 6) = .11507707E+00
G( 7) = .12419608E+00
G( 8) = .13666543E+00
G( 9) = .20077066E+01

NUMBER OF CONSTRAINTS USED

NUMBER OF VIOLATED CONSTRAINTS
NUMBER OF FUNCTION EVALUATIONS
FINAL VALUE OF THE PARAMETER ALPHA

.15487643E-03

.16120715E-03

.10367310E-03
-.10577793E-03
OCCURRING AT
SAMPLE POINT 1
SAMPLE POINT 2
SAMPLE POINT 3
SAMPLE POINT 4
LOWER BOUND
UPPER BOUND
LOWER BOUND
UPPER BOUND
EXTRA CONST

9

0
192

.10000000E+05

NN e

FOLLOWING IS THE OPTIMUM SOLUTION

Z( 1) = .70005708E-01
Z( 2) = .70005708E-0L
Z( 3) = .10139413E+01
Z( 4) = .99376532E+00
EXECUTION TIME IN SECONDS =
Fig. 6.

641

4.20300

Results of the continuous optimization.
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BEST DISCRETE SOLUTION FOUND SO FAR

F

.40000000E+02

X( 1) = .50000000E-01
X( 2) = .50000000E-01
X( 3) = .10139413E+01
X( 4) = .99376532E+00
INEQUALITY CONSTRAINTS OCCURRING AT
G( 1) = .57321249E-01 SAMPLE POINT "1
G( 2) = .99904561E-02 SAMPLE POINT 2
G( 3) = .10014581E-01 SAMPLE POINT 3
G( 4) = .41908093E-01 SAMPLE POINT 4
G( 5) = .16324419E+00 LOWER BOUND 1
G( 6) = .13536168E+00 UPPER BOUND 1
G( 7) = .14407706E+00 LOWER BOUND 2
G( 8) = .15654641E+00 UPPER BOUND 2
G( 9) = .20077066E+01 EXTRA CONST 1
NUMBER OF FUNCTION EVALUATIONS = 198
RESULTS OF THE FEASIBILITY CHECK
NODE NUMBER = 8
TNEQUALITY CONSTRAINTS OCCURRING AT
G( 1) = .94253713E-02 SAMPLE POINT 1
G( 2) = -.34594404E-02 SAMPLE POINT 2
G( 3) = .68230156E-02 SAMPLE POINT 3
G( 4) = .26401155E-01 SAMPLE POINT 4
G( 5) = .16418646E+00 LOWER BOUND 1
G( 6) = .13432023E+00 UPPER BOUND 1
G( 7) = .95238913E-01 LOWER BOUND 2
G( 8) = .14208092E+00 UPPER BOUND 2
G( 9) = .19915121E+01 EXTRA CONST 1
NUMBER OF CONSTRAINTS USED = 10
NUMBER OF VIOLATED CONSTRAINTS = 2
NUMBER OF FUNCTION EVALUATIONS = 10
EXECUTION TIME IN SECONDS = .27500
OPTIMUM DISCRETE SOLUTION FOUND
MINIMUM F = .40000000E+02
X( 1) = .50000000E-01
X( 2) = .50000000E-01
X( 3) = .10139413E+01
X( 4) = .99376532E+00
INEQUALITY CONSTRAINTS OCCURRING AT
G( 1) = ,57321249E-01 SAMPLE POINT 1
G( 2) = .99904561E-02 SAMPLE POINT 2
G( 3) = .10014581E-01 SAMPLE POINT 3
G( 4) = .41908093E-01 SAMPLE POINT 4
G( S) = .16324419E+00 LOWER BOUND 1
G( 0) = .13536168E+00 UPPER BOUND |
G( 7) = .14407706E+00 LOWER BOUND 2
G( 8) = .15654641E+00 UPPER BOUND 2
G( 9) = .20077066E+01 EXTRA CONST 1
NUMBER OF FUNCTION EVALUATIONS = 620

FOLLOWING IS THE OPTIMUM SOLUTTON

Z( 1)
z( 2)
Z( 3)
Z( 4)

ooy

Fig. 6 [continued].

.50000000E-01
.50000000E-01
.10139413E+01
.99376532E+00

642

Results of the discrete optimization,



PART III: CENTERING, TOLERANCING AND TUNING

This paper combines the material contained in Report S0C-62,
October 1974, with that of Report SOC-65, November 1974. The
latter paper was presented at the 1975 IEEE International Symposium
on Circuits and Systems, Newton, MA, April 21-23, 1975 (see
Proceedings, pp. 206-209) and the former was presented at the 12th
Allerton Conference on Circuit and System Theory, Urbana, IL,
"October 2-4, 1974 (see Proceedings, pp- 925-931). Erratum: page

k
66, above equation (11), ¢2 should read-¢2 .

Integrated Approach to Microwave Design 7
(Report SOC-111, November 1975, Revised: March 1976)

The conference version of this paper appears in the 1975 IEEE
International Microwave Symposium Digest, Palo Alto, CA, May 12-14,

1975, pp. 204-206.
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A Nonlinear Programming Approach to Optimal
Design Centering, Tolerancing, and Tuning

JOHN W. BANDLER, SENIOR MEMBER, IEEE, PETER C. LIU, MEMBER, IEEE, AND HERMAN TROMP

Abstraci—A theory of optimal worst-case design embodying centering,
tolerancing, and tuning is presented. Some simplified problems and speciai
cases are discussed. Projections and siack variables are used to explain
some of the concepts. The worst-case tolerance assignment and design
centering problem falls out as a special case. Practical implementation
requires a reasonable and relevant number of parameters and constraints
to be identified to make the problem tractable. Two circuits, a simple
LC low-pass fllter and a realistic high-pass filter, are studied under a
variety of different problem situations to illustrate both the benefits to
be derived from our approach and the difficulties encountered in its
implementstion.

I. INTRODUCTION

OMPONENT TOLERANCE ASSIGNMENT is now

considered to be an integral part of the design process
{1]-[7]. The optimal worst-case tolerance problem with
variable nominal point has benefitted in terms of increased
tolerances [S]-[7]. Tuning [7], [8], on the other hand,
does not seem to have been given its proper place in the
design process. This work, therefore, brings in tuning of
one or more components basically to further increase
tolerances to reduce cost or to make unrealistically toleranced
solutions more attractive. The mathematical formulation of
an approach which embodies centering, tolerancing, and
tuning in a unified manner is presented. Simplified problems
and appropriate geometric interpretations are discussed.
The worst-case purely toleranced problem and purely tuned
problem fall out as special cases, as is to be expected.
Numerical examples involving simple functions and a
realistic as well as a simple circuit, illustrate the concepts.

II. FUNDAMENTAL CONCEPTS AND DEFINITIONS

A design consists of design data of the nominal point ¢°,
the tolerance vector 8 and the tuning vector t where, for k

Manuscript received November 15, 1974; revised October 30, 1975.
This work was supported in part by the National Research Council
of Canada under Grant A7239 and in part by a Graduate Fellowship
of the Rotary Foundation to H. Tromp. This paper is based on material
presented at the 12th Annual Allerton Conference on Circuit and
System Theory, Urbana, IL, October 2-4, 1974, and at the 1975 I[EEE
International Symposium on Circuits and Systems, Newton, Mass.,
April 21-23, 1975,
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parameters,
¢,° & 41
¢° A ¢?° ,ed |%2 |, andr & tf €))
¢.k° 7" I

We assume that the parameters can be varied continuously
and chosen independently. Extra conditions such as dis-
cretization and imposed parameter bounds may be treated
as constraints [6]. Some of the parameters can be set to
zero or held constant.

An outcome {¢°,e,u} of a design {¢°,e,t} implies a point

¢ = ¢° + Ep 2)
where
€y
€

E & 3)

&,
and pe R,. R, is a set of multipliers determined from
realistic situations of the tolerance spread. For example,
RoA{ul~1su< —qorq<pysliel) ()
where
0<ag; <1 (5)
and .
I¢ é {192s. : .:k}' (6)

The most commonly used continuous range is obtained by
setting a, to zero. A commercial stock may have the better
toleranced components taken out, thus 0 < g; < 1. Unless
otherwise stated, we consider

The tolerance region R, is a set of points described by (2)
forallpe R,. Inthecase of —1 < yu; < 1,iel,,

R A{D|ld=0"+ep, -1 <p < l,iel,} (8)

which is a convex regular polytope of k dimensions with sides
of length 2e,, i € I, and centered at ¢°. The extreme points
of R, are obtained by setting u; = +1. Thus, the set of
vertices may be defined as

Rv é {¢ I ¢i = ¢io + Eily, Uy € {—'lsl}s i€I¢}. (9)

The number of points in R, is 2. Let each of these points
be indexed by ¢', i € I,, where

I, & {1,2,--- 2%, (10)
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Fig. 1. [Iliustration of regions R,R;, anu ... If g = 0 then R, is
centered at ¢°.

Thus
R, = {¢l,¢2’, ' '1¢2k}-
The tuning region R(p) is defined as the set of points

¢ =¢°+ Ep+ Ip (63))
for all p € R, where
4
Tal © 12

4

The components of p will be called slack variables since
they do not directly contribute to the objective function.
Some of the common examples of R, are

R, 2{pl—-1<p <l iely} (13)
or in the case of one-way tuning or irreversible trimming,

R,={pl0<p <1,iel} (14)
or

R,={p|l-1<p <0,icl} (15)

Unless otherwise indicated, the case given by (13) is
considered.
The constraint region R, is given by

R, A{Plgi#) 20, foralliel)

(16)
where

I & {1’2""!"’:} an

is the index set for the performance specifications and
parameter constraints. R, is assumed to be not empty. Other
conditions and assumptions will be imposed on R, as the
theory is developed further.

The definitions are illustrated in Fig. 1 by a two-dimen-
sional example.

A tunable constraint region is denoted by R (), where ¥
represents other independent variables. Fig. 2 depicts three
different regions of an example of R (¥). Overlapping of
these regions is aliowable. The value of ¥ may be continuous
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Fig. 2. Example of three different settings of tunable constraint
regions.

or discrete. R.(¥) = R, in the ordinary sense if ¢ is a
constant.
III. THE ORIGINAL PROBLEM P,

The problem may be stated as follows: obtain a set of
optimal design values {¢°s,¢} such that any outcome
{¢°¢,u4}, g € R, may be tuned into R, for some g R,

It is formulated as the nonlinear programming probiem:

P,: minimize C(¢°s,2)

subject to ¢ € R,
where
¢ =¢°+ Eu+ Tp (18)
and constraints ¢%g,¢ > 0, forall g e R,and some p e R,
C is an appropriate function chosen to represent a reason-
able approximation to known component cost data.

Stated in an abstract sense, the worst-case solution of the
problem must satisfy

RWn R+

for all g e R,, where J denotes a nulf set.

(19)

IV. THE REDUCED PROBLEM P,

The original problem P, of the preceding section can be
reduced by separating the components into effectively
tuned and effectively toleranced parameters. Let

I, A {ile; >t ie L} 20y
Lo {il = e iely) o3
e Le — t,iel, (22)
and
' Lty —e,iel, (23)

It is obvious that /, and 7, are disjoint and 1, u [, = I,.
Now, consider the problem
P, : minimize C(¢°,3,2)
subject to ¢ € R,
where

foriel,
foriel,

_— 0 g"#b
$i=¢r + 4,0 (24)



BANDLER é? al.: DESIGN CENTERING, TOLERANCING, AND TUNING

forall =1 < u; < 1,iel, and for some —~1 < p/ < |,
iel,.
Theorem 1

A feasible solution to the reduced problem P is a feasible
solution to the original problem Py,

Proof: Given ¢°,¢,¢ we will show that
e'u, iel, (25)

(26)

e + tipy =

2) ey + tpy = t'p/ i€l

under the restrictions on y;, p;, and p;'.
1) Since p; can be freely chosen from —1 < p; < 1, we
can let p; = —y; giving

(& = tow = &'u;. 27

2) Forany —1 < p;/ < landall -1 < y; < 1, wecan
choose

pi = {t: — 8.‘)5’1' — & o 1,

1< 1, #0. (28)

Thus any point with components represented by (24) of
the reduced problem can be represented by (18) of the
original problem.

Intuitively, this theorem states the fact that a feasible
solution to a restrictive problem is also a feasible solution
to an appropriate less restrictive problem. The variable
transformation (22) and (23) may be considered as ex-
traneous constraints to be satisfied.

Theorem 2

A feasible solution to the original problem P, implies a
feasible solution to the reduced problem P, if R, is one-
dimensionally convex [3].

Proof: 1) We note, for i € I,, that
6L — g+ tp(—D) <L — 6+ 1, <90 + (6 — D

<@l +e—6<0° + &+ 1p(l)
(29)

where p;(— 1) corresponds to u; = —1and p,(1) corresponds
to u; = 1. If R, is one-dimensionally convex, the following
assumption

[‘1’10 - & + ’1Pi("‘1)} ) [‘I’:o + el:+ ’ipt(])] eR. (30)
implies that
{4510 + (3:1 - ft)lh:l € R, (31)

where we consider changes in the ith component only and
impose the required restrictions on y; and p;.

157

2) On the other hand, for i € ],, given feasible p,(—1) and
p(1) such that

¢L — &+ 1p(—1) < @0 + e+ tpl)  (32)
there exists a feasible p,” such that
¢ — & + tip(—1) < ¢° + (; — &)p)
< ¢ + e+ tpl). (33)

This is true for ¢; = ¢; and can be seen for f; > ¢; by
rewriting this inequality as

—&; + p—1)
b — &

g + tip(1)
t‘ - 8i .

< P." < (34)

Hence, if R, is one-dimensionally convex, the assumption
implies that

[4’10 + (’: - Ei)Pt':l € R.. (35)

Thus, a feasible solution to the original problem can be
transformed to a feasible solution of the reduced problem
P,.

A Geometric Interpretation

Let us define a projection matrix P as a diagonal matrix
such that

by
Pa Pz (36)
Pid
where
_ 10, foriel,
Pr=1\1, foriel,’ 37)

The projection of a point ¢ may be denoted as ¢, = P¢.
It may be noted that the projections of two points ¢°, 0" =
¢° + ae;, where e; is the jth unit vector, for j € I, and some
constant «, coincide. The projection concept and the
introduction of slack variables provide a key to under-
standing the tuning concept.

Let

R,L{¢pld°—e/ <¢;<¢° +¢/,iel} (3B)
and
R,L{p|ld -t/ <¢;<d°+ 1/ iel}

denote the regions defined by the effectively toleranced and
effectively tuned parameters. Then consider the following
regions

(39

Ry £{¢,1 ¢, =P, pecR,} 40

R, & R. N Ry, (41)
and

Rewp £ {0,106, = PP, d € R,,}. 42)
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Fig. 4. Example of Re,, & Regp. Ri(u) for 4 = 0 is indicated, for

convenience.

Fig. 3 illustrates the definition of the regions. Any point
whose components are given by (24) lies in the intersection
of R,, and R,,. Suppose the projection of R, onto the
subspace spanned by the effectively toleranced parameters
includes the projection of that point. Then it may be tuned
into R_,, by adjusting the value of p;/, i € /,.

The reduced problem P; may be stated as: solve a pure
tolerance problem (i.e., no tuning) in the subspace spanned
by the toleranced variables with R,,, as the tolerance region
and R,,, as the constraint region. In other words, the
regions defined by a feasible solution must satisfy the
condition that

Ry € Reyy (43)

Fig. 4 illustrates a case where R,,, ¢ R_,,,. An outcome,
for example, at ¢° cannot be tuned to R, within the effective
tuning range. However, there exists a solution to the original
formulation by tuning both components. R, is not one-
dimensionally convex in this case.

Special Cases
Case [: I, = &, the Pure Tuning Problem: In this case,
R,, is the entire space and F is a zero matrix. R,,, is a single
point at the origin. The problem has a solution if
R # &. (44)
Case 2: 1, = (&, the Pure Tolerance Problem: In this case,
R,, is the entire space and P is a unit matrix:

Rup = Rat and Rctap = Rcte = Rc-
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The problem has a solution if

R, < R,. (45)

&t

From a tolerance-tuning point of view, the first case is
trivial theoretically. Except when there is only one single
point R, the pure tuning problem is equivalent to an
optimization of the nominal parameter values. On the
other hand, the pure tolerance problem is very important
from a practical point of view.

Extension of P, for Tunable Constraint Region

Three types of components can be identified when the
constraint region is considered to be tunable. They are
a) toleranced components, b) components tuned by the
manufacturer, and ¢) components tunable by the customer.
In this case,

¢ € R.(y)
where
g/ u;, foriel,
b = ¢° + {t/p/, foriel, (46)
tilpi,('//), forie Irc
where [, identifies components b) and 7, identifies com-
ponents c).

Setting the ¢ to a particular value will control the setting
of p/, i € 1,,, such that ¢ will be in that particular constraint

region R ().

V. THE REDUCED PROBLEM P,

It is impossible to test all the points in R, to be in R,
In order to make the problem tractable a number of simpli-
fying assumptions could be made to obtain an acceptable
solution to the problem with reasonable effort. To this end
we replace the continuous range —1 < u; <1 by a
discrete set u; € {—1,1}, i € J,. Now, consider the problem

P,: minimize C(¢°,e,2)
subject to ¢ € R,

where

foriel,
foriel,

!
ei luis
t'pis

¢i = d’io + (47)

forall y,e {—1,1},ief,andsome —1 < p;/ < l,iel,.
Let us define the set of projected vertices (or the vertices
of the projected region) by

Rvp é{¢p'¢,: P¢’¢6Ru}-

The condition may be now stated as

(48)

R, € R,y

Theorem 3

A feasible solution to reduced problem P, implies a
feasible solution to reduced problem P, if R, is one-
dimensionally convex.
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This is a pure tolerance problem in the subspace spanned
by the effectively toleranced parameters. For a proof in the
tolerance parameter space, see Bandler [3].

VI. THE OBJECTIVE FUNCTIONS

Several objective functions (or cost functions) have been
proposed [1]-[5]. In practice, a suitable modeling problem
would have to be solved to determine the cost-tolerance
relationship. Here, it is assumed that the tolerances and
tuning ranges (either absolute or relative) are the main
variables and that the total cost of the design is the sum of
the cost of the individual components.

The objective function should have the following
properties

C(p%et) - <, asg — o
C(¢%8,t) > o, for any g; » 0 @)
C(¢%et) - C(¢°%8), ast—0

C(¢°et) > o,

Suitable objective functions will be, for example, of the
form

for any t; » 0.

F (50)

M=
[Ks)

C =

i

!
Ci Vi

g

]

1

Ry

1

where x; and y; denote the tolerances and tuning ranges,
respectively. In the case of relative tolerances or relative
tuning ranges x; = ¢,/¢,° x 100, y; = t;/¢,° x 100. We
may set the appropriate ¢, to zero if tuning is ¢onsidered
cither free, or fixed or is not required. ¢; may be set to zero
if the corresponding tolerance is fixed.

VII. MATHEMATICAL EXAMPLE

Consider the constraints

$2— ¢, —-220 51
—¢,2 + 16¢, > 0. (52)

A convex region R, is defined by these constraints.

We will take R, as an infinite set of discrete points pu(i),
i=12,---, where —1 < (i) < 1and —1 < u,(i) < 1.
Thus a relevant problem may be formulated as follows.
Minimize

1\

1 1

C=—+— (53)
€ &
with respect to ¢, €,, ¢,°, and ¢,°, and subject to
gl = El > 0 .
g2 = &3 2> 0
g3 =¢,"20
9a=¢"20 (54
gs(i) = (65° + eau2()) — (¢,° + e,y (i) — 2 = 0,
‘ i= 12+ (55
g6(i) = —(9:° + ea13())* + 16(¢,° + &;,0,(1)) = 0,
i=12--- (56)

where —1 < (1) < land —1 < (i) < 1.
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Optimality requires that

- : _ _ .
- 1—2 ’41-I =y (7)
&y
~ Ll = |w| + S um | wo
€, T
0 u3 ”'1
L 0 | L “a L 1 i
16p,(1)
+ Y ug(i) | —20,0)($2° + &) | (57)
16
"‘2(‘/’20 + &15(1))
Uigy = = tggs = us(i)gs(i) = ug(i)ge(i) = 0,
i=12,--- (58)
Uy, Uy Us(D),ue(i) = 0, i=1,2-- (59)

where u denotes a multiplier. To solve the above equations,
assume that ¢,, &,, ¢,° and ¢,° are not zero, therefore, set
Uy, Uy, U, and u, to zero. Minimize gs(7) of (55) and g¢ (i)
of (56) with respect to u(i). This leads, respectively, to

@ —e) — (@ +¢e)—220 (60)
using u(i) = [1 —1]" and
—(¢:° + &))" + 16(6,° — &) 2 0 (61)

using p(i) = [—1 1]7. The optimality conditions (57)-(59)
are correspondingly reduced yielding the solution

g, = 0.5
&y = 0.5
$,° =45
¢20 = 7.5.
Consider next the problem of minimizing
=1L (62)
€

with respect to ¢/, €, ¢,°, ¢,°, and p,(i), and subject to

g1=1"20
g:=¢620
3=¢."20
gs =920 (63)
gs=01-2>0 (64)

1

96(i) = (62° + e3p2(0)) — (9,° + t,/9,/()) — 2 20,

i=12,-- (65
g1(0) = —(@° + ea1t,(D)* + 16(9,° + 1,'p,'()) = O,

i= 12+ (66)
gli) =1 — p,/() = 0, i=1.2-- (67)
go(i) =1 + p,'(i) = 0, i=1,2"-". (68)
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Here, ¢, is considered fixed at 0.5 and there is a maximum
effective tuning range of 10 percent. Hence, the first com-
ponent does not contribute to the cost. The effective tuning
range ;" = t; — 0.5 is used as a variable.

The optimality conditions require that

i 1 1.1 1] i

0 LY - Ex—o =py'(9)
——é—i u, 0 1y(0)
o | |u +us | g +i2u6(i) 1
$10%
0 U, 0 1
0 | 0 | | 0 | | —te; |
16p/G) ]
~202° + exp2(Nua0)
+ “; uy (i) 16
~2(2° + 2112()
i 16t,’e, ]
0] {O'
0 0
+ Tugl)| O | + Tus(@) |0 (69)
i 0 i
| €] &)
upgy =0 = usgs = ug(i)ge(i) = = = ug(i)gy(i) = 0,
i= 12, (70)
Wy, s, Ug(),r * o ug(7) = 0, i=12,---. (71)

Minimize g¢(i) of (65) and g,(i) of (66) with respect to
ua(i). We use py(i) = —11in (65) and u,(/) = 1 in (66) for
this purpose. The corresponding p,'({) = —1and p,'(i) = 1,
respectively, are obtained by maximizing g4(/) and g,(i) with
respect to p,’(f). This yields the solution

1 = 0.5432
&, = 1.444
¢,° = 5.4321
¢,° = 8.3333,

As expected, the inclusion of tunable elements can in-
crease the tolerance on the components. The tolerance of
the second parameter increases frome, = 0.5toe, = 1.444
when the first component is allowed to have a maximum
effective tuning range of 10 percent. This means that an
actual absolute tuning of 1.0432 and a tolerance of 0.5 are
designed for ¢,;. The result can only be accomplished by
allowing the nominal point to move. For example, the first
component moved from 4.5 to 5.4321, a shift of 20 percent.
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VIII. FREQUENCY DOMAIN IMPLEMENTATION

Data for a specific problem is contained in a data vector
@' which has the form

(72)

a-n
li>
ThEw
il

where ¥ is an independent parameter denoting frequency
or any number to identify a particular function for which
the vertex ¢ is chosen. g is the vector associated with ¢’,
in particular, :

k #.r + 1 1
r=1+Y [-1—5——] 27 pre{-11}. (73)
j=1

m, is the total number of distinct vectors a'. S is a specifica-
tion and w a weighting factor associated with each . In our
present work,

w = +1,
=0

if §'is an upper specification
if S is a lower specification.

The performance constraints may now be formulated in
the form of

g=wS-—-F) =20 (74)

with appropriate subscripts. F is the circuit response func-
tion evaluated at sample point ¥ and point ¢ which is given
by

¢ =Pp + ¥ (¢,°+ t'pi'(r)e;. (75)

jel,

The projection matrix P and the index sets J, and I, are
fixed for a particular problem. They are determined before
optimization takes place.

Let the n optimization variables be denoted by x in-
cluding the variable nominal values, tolerances, tuning
variables and all the appropriate slack variables p;(r),
jel, rel, Let m be the total number of constraints which
include the performance specifications, slack variable
bounds, parameter bounds, and any other extra constraints
not considered above. In general, for linear network design
in the frequency domain

n=ky+ k, + k(1 + n,) (76)
and
oy
m = [Z n,,(i)] + 2kn, + -+ a7
i=1

where k,, k,, and k, are the number of variable nominal
parameters, toleranced and tuned parameters, respectively;
n, < 2* is the number of distinct vertices chosen; »V is the
number of frequency points considered; n,(i) is the number
of vertices chosen at the /th frequency point and 2k,n, is
the number of slack variable bounds.
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Fig. 5. Circuit for LC low-pass filter example.

TABLE 1
SPECIFICATIONS FOR LC Low-Pass FILTER
Frequency Sample Insertion lLoss Type Weight
Range Points Specification w
(rad/s) (rad/s) (dB)
0 -1 .45, 0.50, 0.55, 1.0 1.5 upper (passband) +1

2.8 2.5 25 lower (stopband) -1

TABLE II
DATA FOR Low-Pass FILTER

a I N 3 1

Low-Pass Filter

The LC low-pass filter shown in Fig. S is considered
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