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OPTuMIZATLON OF ELECTRICAL CIkCULTS

J.W. BANDLER and M.R.M. R1lZk
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and Department of Electrical Engineering
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Abstract This paper reviews applications of optimization methods in the
area of electrical circuit design. It is addressed to engineers in
general as well as mathematical programmers. As a consequence, a brief
introduction to electrical circuits is presented, including analog,
digital and power concepts. Network analysis tecnniques along with
response evaluation and the determination of partial derivatives (useful
in gradient methods of optimization) provide the nonelectrical reader
with some necessary background. Objective functions aimed at;improving
network performance are presented, including least pth and .minimax
criteria. The approaches by many contributors to optimal circuit design
are outlined, concentrating on general methods witnin the domain of
nonlinear programming, nonlinear approximation and nonlinear discrete
optimization techniques. A complete section is devoted to recent work
in design centering, optimal assignment of'manufacturing tolerances and
postproduction tuning. The inclusion of model and environmental

uncertainties is discussed. Practical examples illustrate the current

This work was supported by tne National Kesearch Council of Canada
under Grant A723Y.
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state of the art. Difficulties facing the design optimizer as well as
directions of possible future research are elaborated on. A long but by

no means exhaustive list of references is appended.



1. Introduction

This paper reviews applications of optimization methods in the area
of electrical circuit design. The discussion is focussed on general
methods within the domain of nonlinear programming, nonlinear approxi-
mation and noniinear discrete optimization techniques. in some ten
years of serious attention given by circuit designers to such general
methods, implementations have ranged from the relatively unsophisticated
application of 1least squares approximation to specified frequency or
time responses of a single circuit to optimal assignment of component
tolerances, optimal design centering and tne consideration of post-
production tuning with respect to a large number of circuits
simultaneously.

Tne paper highlights work in optimization formulations and
algorithms developed by electrical engineers which may not be widely
known to mathematical programmers in general. 1t is shown how the
circuit design problem may be reformulated as a nonlinear programming
problem (minimizing an objective function subject to inequality
constraints) where the objective and constraints embody the design
criteria. The objective (error) function itself is usually of the least
squares, least pth or minimax form.

Section 2 discusses the basic formulation of suitable objective
functions to force the response (performance) of the circuit to meet
some desired specifications. The circuit to be optimized is of a Known
topology (configuration) and contains Kknown component types. The
variables are usually some or all of the independently adjustable
parameters of this circuit. For some circuits performance

specifications are easily defined as, for example, in filter design,
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while for others such as switching circuits defining the specifications
explicitly and in advance may not be easy. In Section 2 we are
interested in finding an optimum solution represented by one point in
the feasible region, if such a point exists.

Section 3 sketches briefly, bearing in mind that the reader of tnis
paper might not be an electrical engineer, the methods of analysis, and
hence obtaining the response, of different»circuits in different
domains. it also discusses the sensitivity evaluation of these
responses with respect to design variables.

Lumped and distributed, active and passive, linear and nonlinear,
analog and digital, frequency domain and time domain, transient and
steady state concepts are presented to encompass the analysis of
filters, amplifiers, switching circuits, microwave circuits, power
systems, etc.

Section U4 reviews the optimization approaches which have been used
in the design of electronic analog, digital and power networks. The
approaches discussed are those which the authors feel have contributed
directly to the development of optimization formulations and techniques
applied to electrical circuits. They include penalty and barrier
function methods, reduced gradient methods, least pth and minimax
approaches, methods based on linear programming and extensions of least
squares, as well as discrete optimization.

Section 5 deals with optimal design when certain additional
practical englineering problems are considered. The centering problem,
whicn involves finding the center of a constraint region in the
parameter space in order to maximize the parameter tolerances or

production yield, formulated in a nonlinear programming form is

- 4 -



presented. further practical considerations such as tuning, tolerance
assignment under model and environmental uncertainties and discrete
optimization in tolerance assignment are considered. Tne discussion
includes worst-case design and also cases when the constraints are
relaxed to obtain a yield less than 100%.

Thé difficulties facing the designer wishing to avail himself of
efficient nonlinear programming aids are elaborated on. Section 6, in
particular, reviews some practical examples which have been solved using
techniques and algorithms discussed in the paper. Future directions of
researcn, and further development of available algorithms and problem
formulations which can, in our opinion, improve the state of the art are
suggested in the last section. Finally, a 1list of references is
appended to lead the reader to further details. This 1list is by no
means exhaustive but should provide a balanced and accurate reflection

of the current state of the art.
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2. The classical design problem

The classical circuit design problem can be stated as follows:
given a circuit with a fixed topology, find a single set of designable
parameter values which let the circuit response or performance optimally
meet some given specifications.

The circuit response F(?, ?) is a function of the network parameters
¢ (resistors, capacitors, node voltages of power circuits, ete.) and of
other independent variables ¢ (frequency, time, temperature, tunable
network elements, ete.). The function F(¢, ¥) is usually assumed to be
vcontinuous in the ranges of ¢ and Y of interest. Performance
specifications are usually functions of Y only, whereas design
constraints are generally functions of ¢. This distinction, however, is
sometimes blurred.

The design problem considered here 1is basically an approximation
problem, where the method of approximation depends heavily on what the
designed circuit has to achieve, the nature of the specifications, the
existence of constraints in general and parameter pbounds in particular.
1t is necessary in practice (on a digital computer) to consider a

discrete set of samples of §, such that satisfying the specifications at

these sample points implies satistying them almost everywhere.

2.1 Single specification
Consider the problem where the response function has to meet a

single specification function 3(y), in the interval [wl, wu] along a y

axis. Let us define the error function as

oo, o) 2 wv) (o) -5()), (1)

where w(y) is a positive weighting function. Figure 1(a) depicts the



functions involved in evaluating the error function shown in Fig. 1(b).

Since we are considering discrete approximation we define

e (0) Se(o, ¥y), iel, (2)

where

¥ is the value of ¥ at the ith sample point,

i
ei(?) is the error function evaluated at ¥y,
I is a given index set of sample points.
The number of sample points and their distribution along the y axis
require the experience of the designer. They might be equally spaced or
nonuniform, being dense on some subintervals and well-scattered on
others.
The single specification problem can be solved by least pth or
minimax approximation. In the least pth approximation, a simple
objective for real functions e; suggested by Temes and Zal [162] takes

the form
U= 3 [ei(¢)]p ’ (3)
iel ~
where p > 2 is any even number. For large values of p accuracy and
convergence problems arise due to very large and very small numbers
involved in the calculations.
Bandler and Charalambous [19] alleviated tnis ill-conditioning by

considering the objective

p \1/p

c,(g)
, for 1 < p <= , (4)

1
1i(¢)

U = M(¢) | ¢
P ~ iel



where

M(o) Smax lej(o)| . (5)
h iel -

The error functions, in general, can be real or complex functions.
Hebden [108] employed this type of scaling in some related work.

The minimax approximation might be appropriate for solving the
single specification problem. The objective function in this case will
be of the form of (5) which is commonly known as the Chebyshev type of
objective. This objective might lead to difficulties because
discontinuous derivatives are generated when the maximum error function
is suddenly switched from one sample point to another [36].

The design of an amplifier can serve as an example of the single
specification problem. Consider Fig. 2(a), in which V1(jw) is the input
voltage (voltage of the source) to the amplifier at frequency w and
V2(jw) is the output voltage at the same frequency. The gain of the

amplifier, which is a linear circuit, is usually given by

Vz(jw)

v,Go)| ©

A
F($, ¥) = G(¢, @) = 20 logqq

The problem is to obtain ¢ which results in a gain as close as possible,
in some sense, to a desired gain, for example, such as the one shown in

Fig. 2(b).

2.2 Upper and lower specifications

Another situation which is frequently encountered in practice is the
problem defined by upper and lower specifications. In filter design,
for example, we are generally interested in two band types (consisting

of intervals of frequency w), namely the stopband and the passband. In
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the stopband the signal is to be prevented from passing through the
filter by making the losses as high as possible. This can be expressed
by a lower specification (or bound) of large value. In the passband the
situation is reversed and it is expressed by an upper specification (or
pound) of a small value. Figure 3(a) shows the upper and lower
specifications of a bandpass filter and a response function violating
these specifications on the interval [V, wu]. Figure 3(b) depicts a
response function satisfying arbitrary upper and lower specifications.

in such a case the error functions are defined as L8]

ne>

Wy (B) (K(, ) = 5,(9), (1)

A
el(?’ \D) = wl(w) (F(?, 11)) - Sz(\b)), (8)

where
W, (V) is a weighting function for S, (V),
wl(w) is a weighting function for SQ(W)’

and, for the discrete set of ¥, the error functions are

eyi($) 2oy, ¥5) = wyy(Fi(®) = 8y5), 1€ Iy (9)
eg'i(‘i’) = ez(dh Wi) = wzi(Fi("’) - Szi), ie Ig, ’ (10)

where the subscript i denotes the ith sample point, wi the value of V¥ at
this point, Wyi, Wgis F;(¢), Syi and Sg; are the appropriate functions
evaluated at ¥,. 1 and 1, are index sets, not necessarily disjoint,

which contain the values of i. The subscripts u and % are for upper and

lower specifications, respectively.



Bandler and Charalambous [21,22] introduced a general and practical
least pth objective for the approximation problem of this type. This

objective is given by

U =
p(«1») 11)

0 for M = O,
where
M(¢) 4 max [e 500, elj(g)] , i€ Ly, jelIp, (12)
1,3
A . .
Ju = {} !eui(f) >0, ic€ Ié}, (13)
A .
J, = {} | ezi(f) > 0, i e Ié}, (14)
J_if M(¢) > 0,
A .
K, = “ - (15)
lu if M(?) <0,
J if M(¢) > 0,
K, 4 { g ) (16)
t Im if M(?) <0,
and
A M(¢) 1 <p <= for M > 0,
a-= | M) ] P 1<p <<= for M < 0 . an
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A minimax objective for a problem with wupper and lower
specifications can be of the form of (12). This objective will tend to
minimize the maximum amount by which the actual response fails to meet
the specifications, or to maximize the minimum amount by which the

circuit response exceeds the specifications.

2.3 Inequality constraints
The problem with upper and lower specifications can be expressed in

terms of inequality constraints given by

Fi(®) < Syj, 1€ Iy, (18)

By defining an additional independent variable ®y1y Where k is the
number of variables, Waren et al. [167] formulated the problem as the

nonlinear program

minimize LI

subject to
i1 2 Cui o iel,, (20)
¢k+1 > -€g4? ie ll ’ (21)

plus all other constraints. At least one of the constraints has to be
active at the optimum, otherwise ¢k+1 could be further minimized without
violating any of the constraints. If the optimum ¢k+1 is negative then
the specifications are satisfied, while if it is positive the
specifications are violated.

1lshizaki and Watanabe [116] used essentially tne same formulation

but for the case of the single specification.
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2.4 Multiple objectives

In electrical circuit design more than one response function might
nave to meet given specifications. As an example, a circuit can be
designed to meet desired specifications in both frequency and time
domains. In this case we have more than one independent variable ¥,
namely w1, ¢2, ey wn, where n is the number of these independent
variables. Accordingly, we have n response functions F1(?, ¢1), FZ(?,

%)

y ooy FB(¢, y7) and n specifications steh), s2v?), ..., sPG™.
The corresponding error functions are given by
ed(e, v = wied) (Fe, I - 83N, 5212, ooy n (2D

and, for the discrete case, taking Ij as the index set for the Jjth

functions,

ed(0) 2 e3Ce, ¥y = wi(rf(®) -5, 1 e 1d (23)

is the jth error function evaluated at the ith sample point along the wj
axis.

In general, we can have upper and lower specifications for each ¢j.
In the design of a lowpass filter, for example, we can have upper and
lower specifications in the frequency domain, and a single specification

in the time domain. Tne error functions will be of the form

elco, v = wlewh (', oh - sl , (214)
er(o, v = w0 e, ¥ -5, (25)
2o, v2) = w2(¥?) (F2(s, ¥3) - 52067 (26)
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where ¥! is the frequency w and V2 is the time t. Figures 4(a) and 4(b)
show the specifications in the frequency and time domains, respectively.
An objective function can be evaluated for each error function, and
a combined objective consisting of n objectives is obtained, namely,
U=0"+02 4+ ... 400, 27)
A more general objective is of the form
n
U= I o Uk, (28)
k=1
where the o parameters are factors serving to emphasize the important
objectives. These objectives do not necessarily have to be of the same

type; one might be a minimax objective and the others can be least pth

objectives [8].

2.5 Multidimensional specifications

In the discussion of multiple objectives we considered that each
response function and each specification is a function of one
independent variable wj. In some cases we are confronted with response
functions and specifications which are functions of the n independent
variables. These variables can for instance, be time and temperature;
frequency and a tunable circuit parameter; or frequencies in a
two-dimensional frequency response of a two-dimensional digital filter
[131,144]. The response function and the specifications will be F(g, y)
and S(?), respectively, where

r o1

v

e
ne>

¢2 . (29)
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The frequency response function of a two-dimensional lowpass digital
filter, for example, of a symmetrically constrained finite impulse
response (zero phase) is given by [144]

. . . ny n

Ju, Ju, -J(n1w1+n2m2) 1 2

He ', e “)=e t 1 a(k, ) cos ke, cOS fu, , (30)
k=0 =0

where a(k, &) are the filter coefficients, and the specifications are

ot
€
3
+
€
o
Ty

w2
S wp

S(w,‘, w2) = : (51)

where wp and wy are the edges of passband and stopband, respectively.

In the discrete case the response function evaluated at the ith sampie

point is denoted by

) A
Fi(9) = F(o, ¥3) (32)
for
17
Vi
2
vy
?i = . ’ iel, (33)
n
L._\pi
where w;, W%, ceoy w? are the values of the independent variables at the

ith sample point in the index set L.
In general, where we have upper and lower specifications, tne error

functions are generalized to

cui(®) £ ey, ¥5) = wyy (Fy(9) = Sy3), e Iy (34)
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¢ ile) 4 eg'(?’ Pi) = Weg (Fi(?) -5;4), 11, (35)

which can be used in a suitable objective for the approximation problem.

Figures 5(a) and 5(pb) show two possible cases in two dimensions.
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3. Evaluation of the response function and its derivatives

The evaluation of any of the objective functions mentioned in
Section 2 involves the evaluation of the response function at a certain
point 9. The response function is obtained by numerically analyzing the
circuit, where the method of analysis depends on several criteria,
namely,

a) the size of the circuit,

b) the equations describing the circuit (linear, nonlinear,

algebraic, differential, etec.).

Thnis section of the paper is concerned very briefly with the evaluation

of the response function of different types of electrical circuits in

the D.C. (direct current), frequency and time domains.

3.1 Introductory concepts and definitions
Consider a linear network (consisting of linear elements, i.e., the
relation between the voltage across an element and the current passing
through it is linear) which has a single input u(t) and a single output
y(t), where u(t) and y(t) are continuous functions of time €. The two
functions are related by the convolution integral
t
y(t) :In(t - 1) u(t) dt, t 2 0, (36)

0

where h(t) is designated as the network function.
This relation can be converted for lumped, linear, time-invariant
circuits to the frequency domain by the Laplace transform, giving
Y(s) = H(s) U(s) , (37)

where H(s) is a rational function of the complex frequency variable s.
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The poles of H(s) will be the natural frequencies of the circuit, which
have to lie in the left half of the complex s-plane for the circuit to
be stable (to have a bounded output for a bounded input). As an example
the linear, time-invariant RLU circuit shown in Fig. 6 has the transfer

function (voltage across C)

H(s) = 15 1 . (38)
s + (R/L)s + 1/LC

The dependence of the network function on K, L and C elements can be
in the form of a ratio of linear polynomials, i.e., a bilinear relation

[103]

. _ A(s) + ¢ B(s)
F(¢, 8) = C(s) + ¢ D(s) (39)

This bilinear property of linear network functions w.r.t. each variable
¢ is very important in relating differential and large change network
sensitivities [Y6], which are potentially useful in design optimization.

Bandler and Liu [31] investigated the validity of certain
assumptions considered in tolerance optimization problems for networks
which possess bilinear dependence on each parameter. These assumptions
are that the worst cases (certain extreme points) occur at the
boundaries of tne constraint region, if the region is one-dimensionally
convex [10]. In their investigation they studied the behavior of the
modulus squared of the bilinear network function, which is a biquadratic

function given by

2 .
umz + 2dp + € (40)
¢ + 2a¢ + b

and they proved that the worst case assumptions they considered are

often valid in the frequency domain case.
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Brayton et al. [57] proved, for linear D.C. networks, that if each
parameter is at its extreme value the currents and voltages of the
network will be at their local or optimal extrema. The investigation of
this kind of problem in nonlinear networks or in the time domain has not
yet been reported.

The network function, or transfer function, is only obtained in an
analytical form for very small circuits. For a medium or large network
the output is necessarily obtained by numerically analyzing the network.
Methods for circuit analysis are quite numerous and in this section some
of the important methods are briefly discussed. In all methods the
network equations are formulated, which are basically Kirchoff's current
and/or voltage laws [84], and then solved appropriately [54].

For certain circuits special methods may be more efficient than
general methods of analysis. As an example, cascaded networks, such as
the one shown in Fig. 7, are analyzed by the transmission or chain
matrix, where each element is considered as a two-port subnetwork

described by a 2 x 2 matrix of the fornm
= ’ (u1)

which relates the input to tne output of each two-port subnetwork [ 38,
105, 136].

Table 1 summarizes different types of electrical networks and
indicates the nature of the equations describing these networks along

with common methods of solution.
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3.2 Linear networks in the frequency domain (the A.C. case)
A linear network is described by a set of linear equations of the

form

(42)

(3 d
]
"
to

where g is the matrix describing the circuit and can be the nodal

admittance matrix g, the mesh impedance matrix % or the tableau matrix
[106]. X is the unknown vector which can be voltages, currents or both,
p is a Known vector consisting essentially of sources exciting the
circuit. A three node linear circuit and its network equations at a
frequency w are shown in Fig. 8. Note that the equations

£Ve1 o, (43)

where

=

is the vector of node voltages (with ground node as
reference),

} is the current excitation vector,
have complex coefficients.

An importanc feature of the matrix é is that it is sparse for 1large
networks. The sparsity of the matrix increases with the size of the
network. Sparse matrix techniques [46,53,91,145,148,163,164], for
storing the matrix é and for the near-optimum ordering of the equations,
are usually used. The reordering of the equations is performed so as to
preserve the sparsity and to reduce the number of fill-ins (created
nonzero elements which were formerly zeros) during the LU decomposition,
which is often used to solve these equations. At each frequency point
of interest the matrix § is rebuilt and the set of equations resolved.

Only the numerical values of the entries of the L and U matrices, where
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A = LU, are changing but their structures remain fixed.
As a special case of the linear A.C. analysis is the D.C. analysis
of resistive networks (independent of frequency). The equations, which

are real in this case, are set up in the same way as in the A.C. case

and then solved once.

5.3 Linear networks in the time domain

In some problems we are interested in the transients of the circuit
and the analysis has to be carried out in the time domain. The network
equations describing the linear network (using the state variable

approach [79] which is commonly used) are

x = Ax + Bu , (44)

-~ ~ ~ ~ o~

y = Cx + Du , (45)

where A is a coefficient matrix relating the state vector x (capacitor

voltages and inductor currents, for example) to its time derivative %,
and b is a coefficient matrix coupling the effects of the independent
source vector u. Equation (45) gives the output vector y, where C and D

are coefficient matrices. Equation (44) is a set of first-order

differential equations whose solution is given by

t A(Ct-t )
At -A ~
x(t) = er” S & Bu(r) dr + e O x(t) (46)
to
and the output vector 1is
ACt-t ) t
- A -A
y(t) = C e ° x(to) +4{C e~t ;e =t B u(tr) dt + D u(t) }. u7)
~ ~ ~ -~ t ~ ~
o
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Different approaches to evaluating oAt and the integrals in (46) and

(47) exist [61,79,83].

3.4 Nonlinear networks: the D.C. case
In the nonlinear D.C. case the network equations are expressed in
the form

f(x) =0 . (48)

~

 rigure 9 [79] is an example of a small nonlinear circuit composed of
diodes and linear resistances where the relation between the voltage Vv
across a diode and the current 1 passing through it is given by the
nonlinear relation
i=1eM -1, (49)
where 1s and A are constants. The nonlinear netyork equations are shown
in Fig. 9 where Vis Vo and v3 are the unknowns. These equations are
usually solved by the Newton-Raphson algorithm (see Table 1).
Another method is to linearize the equations describing the

nonlinear eiements of the circuit, for example, (49) is linearized as

.r+1 . i
i B AL (50)
wnere r+1 is the present iteration step. The linearized formulas are

then represented by linear elements, called the discrete or the
companion elements [61,79] and the resulting linear circuit is analyzed
successively until convergence is reached.

Piecewise-linear analysis is also used in solving nonlinear networks
L7771, Other approaches dealing with circuits with multiple solutions

are described in [55,75,781].



3.5 Nonlinear networks in the time domain
Nonlinear transient networks may be analyzed by different methods.
One method is to formulate the state equations of the network, which are

ordinary differential equations in the normal form
x = f(x, t), (51)

where Xx is the vector of state variables. Equation (51) is then solved
by a numerical integration scheme. Stability of the integration and its
ability to deal with stiff equations [100,101] are some criteria for
choosing the integration scheme for the analysis. The tableau approach
[106] is another method for solving nonlinear networks. The method
discretizes, at the circuit component (branch) level, the derivative
operator d/dt, obtaining nonlinear algebraic difference equations solved
by the Newton-Raphson algorithm. The process proceeds in two loops, one
for solving the nonlinear algebraic difference equations and the next
for the time iteration. In the Newton-Raphson iteration a set of linear
equations are repeatedly solved and the sparsity of the coefficient
matrix of these equations should be taken into consideration.

Another method for solving nonlinear networks in the time domain, is
to reduce the problem to a sequence of D.C. analyses. This is achieved
by discretizing the time derivative operator, then replacing the
nonlinear elements by their corresponding companion (linearized)
elements and solve a D.C. network. The difference between the tableau
method and this method is that the latter solves a linear system
. iteratively (until convergence is reached) while the former solves a

nonlinear system.
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5.6 Response function derivatives

It is well known that optimization techniques which use derivatives
are superior to nongradient techniques if first-order sensitivities are
readily available. In order to get the derivatives of the response
function F(?, ?), which is a function of certain voltages and/or
currents of the circuit, sensitivities of these voltages and/or currents
with respect to the variable parameters have to be evaluated. One of
the most commonly used approaches to evaluate these sensitivities is the
adjoint-network approach [88]. In this approach an adjoint network is
constructed, having the same topology as the original network, and
analyzed. The results of both analyses are used to evaluate the
required sensitivities.

As an example, in the frequency domain, if the network is
represented by its admittance matrix X at a frequency point and the
equations are (43), then the equations representing the adjoint network
are

YTy = (52)

~ ~

[ ]
-

where

T denotes transpose,

is the vector of node voltages of the adjoint network,

Y <)

is the current excitation vector of the adjoint network.

V and ?, for example, are substituted into some derived formulas to
evaluate the sensitivities [39,891].

Branin [56] demonstrated that the sensitivities, in general, can be
obtained by matrix manipulation without the need of defining what is

termed the adjoint network. Note also that at each frequency two sets
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of equations are solved. Using the LU decomposition we can achieve some
saving by avoiding the decomposition of the matrix transpose [85]. 1In
the linear D.C. case the adjoint network is linear and both original and
adjoint networks are analyzed once to calculate the sensitivities. A
nonlinear D.C. network will have an associated linear adjoint network
which has to be analyzed.

In the time-domain case sensitivities are much more difficult to
evaluate because the equations are in the form of ordinary differential
equations. Hachtel and Rohrer [107] used variational techniques to get
an adjoint set of equations which, when solved along with the original
set, allow sensitivities to be evaluated. In the adjoint-network
approach, if the original network is analyzed in the interval t = [O,
tf], the adjoint network is analyzed in the interval t = [0, tf], where
T= tp - t . The integration involving the adjoint network is backward
on the time axis. The formulas for the sensitivities are integral
formulas, i.e., in evaluating the sensitivities with respect to k
variables, k integrations have to be performed after analyzing the
original and adjoint networks. Other methods can be used to evaluate
the sensitivities [135] but they do not appear easier or more efficient
than the adjoint-network approach.

An approach developed by Bandler and Abdel-Malek [12,13] avoids the
evaluation of the exact response function derivatives. Multidimensional
polynomial approximations of the response functions are performed using
a minimal number of evaluations of the actual functions within an
interpolation region. The approximations are used in the optimization
process instead of the actual functions. The derivatives of the

approximations are efficiently and rapidly obtained. During
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optimization the approximation is updated in different regions in the
space or in smaller interpolation regions as indicated by the

optimization or to obtain higher accuracy, respectively.

3.7 Digital filters

Digital filters [104,134,137] differ from analog circuits in that
the inputs and outputs are sequences of numbers having a finite number
of digits. A special-purpose computer or general-purpose computer along
with a stored program can serve as a digital filter. There are two
types of digital filters, namely the infinite impulse response (IIR)
filter which needs a recursive computational algorithm for its
realization and the finite impulse response (FIR) filter which needs a
nonrecursive computational algorithm.

In the design procedure of digital filters by optimization, the
transfer function H(z) is given, where z is the complex variable of the
z transform [118]. The transfer function H(z) of the IIR filter is a

rational function in z of the form

s a, + b, z"1
i

H(z) =g+ I — = (53)
i=1 1+ciz +diz

when the s elementary sections, Fig. 10, are connected in parallel (Fig.

11), and

H(z) = g u > (54)
i=1 1 + ¢, 2z +d., 2z

when the s sections are connected in cascade. The transfer function of

a FIR filter is a polynomial in z of the form
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H(z) = 1 n(n) z=B . (55)

In optimization problems, the coefficients of the transfer function
are to be found so that the function best meets the given
specifications. Usually, for stability reasons the values of these
coefficientts are constrained. Practical considerations usually
constrain the coefficients of the digital filter to a certain numﬁer of
bits since they are stored in a binary format with finite-length
registers. Quantization of the coefficients might violate the stability
criteria or deteriorate the response unacceptably. Discrete optimiza-
tion is then more reliable [5,18,73,158,160]. In this case, the
coefficients multiplied by Z‘Q, where Q+1 is the number of bits used,
have to be integers.

Since the transfer function is known analytically in terms of the
coefficients, the derivatives with respect to these coefficients are

easily obtained [17,157].

3.8 Network equations of power systems

Power systems are basically composed of generating plants,

transmission 1lines and loads. Figure 12 [52] depicts a small power
network. The network equations or the load flow equations are solved
for power system planning, operation, security and control. The

solution of the load flow equations [156,159] determines the voltages
and powers in each branch of tne network under steady-state operating
conditions.

The power system network, like any electrical network obeys

Kirchoff's laws and hence its nodal admittance equations are of the form
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of (43). The ith element of the vector I, corresponding to the ith node
is
- % #*
I, o= 8;/v; (56)
where Si is the total power at the busbar node, and ¥ denotes the
complex conjugate. This Si is given by

—

S; = (Pg; - Pgy) + Qg - Qi) (57)
where
PGi and QGi are the active and reactive powers, respectively,
generated at node i,
PCi and QCi are the active and reactive powers, respectively,

consumed at node 1i.

Substituting (56) in the nodal equations we get for node i
n
. , #
S, =V, I Y.. V. , (58)

where n is the number of nodes. This equation can be rewritten in a

more detailed form

Poi - Py = 2 Vi1Vl 1Y, sin(8y = 8, = 85,)
keK.
1
- & |V.|%|Y,, |sin 8., = O (59)
il Mg ik = ’
KeK.
1
Qi - Qy + 2 |V IV 1Y lcos(e; - 8, - 85))
keK.
1
- 3 |V.|%|t. |cos P AREL (60)
, i jglCos 4 + 1Lj31iVil = ¥
keKi

for i =1, 2, ..., n, and i & Ki , where

K. is the set of nodes directly connected to node i,

- 27 -



85, IViI are the phase angle and magnitude, respectively, of
the voltage at node i,

1Yl is the admittance magnitude of line ik,

64k is the loss angle of line ik,

IYiil is the admittance magnitude with respect to ground at

node i.

For each node two variables out of the four, namely, P, Q, |V| and o
are given. P and Q are given for load nodes, P and |V| for generation
nodes. In one of the generation nodes |V| and ¢ are given, where this ¢
is set to zero as a reference. This node is called the slack node. The
unknown variables in the equations include the voltage variables, also
called the state variables of the system.

Equations (59) and (60) are in the form of f(¢) = O and thney are
usually solved by the Newton-Raphson algorithm [159]. Once the voltages
are obtained all other unkncwns can be obtained. The power networks are
very large, with thousands of nodes and the ¥ matrix is very sparse.
The Jacobian matrix set up in the Newton iteration is, accordingly, very
sparse. Sparse matrix techniques are consequently essential in solving

the large set of load-flow equations.
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4, Optimization approaches in circuit design

The work discussed in this section has been performed by a variety
of principal contributors to the field of optimization of electrical
circuits. A brief review of different optimization methods and

approaches applied to circuit design problems is given.

4.1 General review

Lasdon and Waren [122] formulated the filter design problem as a
nonlinear program and, by means of an interior penalty function
formulation, obtained filters optimal in a minimax sense. Nonlinear
programming has been applied by Lasdon, Waren and their colleagues to
the computer design of cascade crystal-realizable lattice filters,
optical filters and antenna arrays [121,123,166,1671].

Temes and Calahan [161] have reviewed the application of
optimization to filter design and to the modelling of active devices.
Temes and Zai [162] considered least pth approximation in the design of
active equalizers. Their objective formulation limited them to p not
much greater than 10, as was the work of Deczky [81] on digital filters.
Bandler and Charalambous [21,22] introduced the generalized least pth
approximation, where any value of p can be used, and several minimax
problems were subsequently solved either by using a large value of p or
by a sequence of least pth approximations [17-21,25-29,38-41,68-72].

Ishizaki and Watanabe [116] treated the nonlinear programming
problem by successively solving linear programming problems, which are
derived by locally linearizing the original nonlinear programming
problem. Madsen et al. [127,129] developed two minimax network

optimization algorithms, one of them not requiring derivatives. They
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are based on successive linear approximation to the nonlinear functions
defining the problem. The method has been used for transmission-line
transformers, microwave filter design and a practical
transferred-electron reflection-type amplifier. Charalambous and Conn
[74] developed a minimax algorithm where the discontinuities in the
first derivatives can be characterized by projections.

In the field of digital filter design optimization techniques have
been used extensively [5,17,18,65,68,73,81,82,109, 144,15¢,158,160].
Helms [109] reviewed the techniques used to get equiripple or minimax
errors in the design of nonrecursive filters. These techniques included
the simplex method of Llinear programming, nonlinear programming and
integer programning. Steiglitz [157] described some practical methods
used in the design of recursive digital filters with arbitrary
prescribed magnitude characteristics. Rabiner et al. [144] discussed
various approaches to designing finite impulse response digital filters
using the theory of weighted Chebyshev approximation. Charalambous and
Best |75] applied the branch and bound technique for nonlinear discrete
optimization of recursive digital filters with finite word length.
Bandler et al. [18] studied optimum word length problems in a similar
vein.

Optimization techniques%are essential in the design and operation of
power networks [3,4,50-52,62,90,99,112,117,133,138,146,149-152,154].
They have been applied, for example, to the economic dispatch, which is
the problem of minimizing the cost of fuel of thermal plants. With
modern technology, economic dispatch should be solved on-line every few
minutes and the results used to continually adjust the power outputs of

generating stations. Another problem where optimization has been



applied is the hydrothermal dispatch which is much larger than the
economic dispaten [99]. In this case the hydro generation is not
defined and the solution of the problem decides on the generators to be
connected to the system and their level of operation for a certain
period of time. Heuck [112] discussed the nonlinear programming
formulation of this problem.

Existing power plants have to be expanded in order to satisfy the
increasing demand. The generation expansion planning determines, up to
a certain time, if new generating plants have to be built, which of the
existing ones have to increase their generating capacity and when this
can be performed. The objective is to expand the plant with minimum

cost such that the demands are satisfied, while the generating capacity

serves as constraints. Several other propblems have been solved by
optimization. These problems are very large, with large numbers of
variables, the system equations being nonlinear and sparse. The

techniques involved are linear, nonlinear, quadratic, integer and
dynamic programming. Sasson and Merrill [151] reviewed some of these

tecnniques and their applications.

4.2 Approach due to Lasdon and Waren

Optimal design of filters has been treated as a nonlinear
programming problem by Lasdon and Waren [122]. The problem is defined
by the inequalities (18), (19) and lower and upper bounds on the
variable parameters. The problem is reformulated essentially as the
problem given by (20) and (21). Lasdon and Waren applied the interior
penalty sequential unconstrained minimization technique by Fiacco and

McCormick [95] along with the Fletcher-Powell variable metric method
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[98] to solve this type of problem. This technique has been applied to
the design of cascade crystal-realizable lattice filters, linear arrays
[121], planar arrays [167] and acoustic sonar transducer arrays [123].
An excellent example of the results achieved by Lasdon and Waren
[{122] is shown in Figure 13. The specifications they employed are of

the form of Fig. 3(a).

4.3 The GRG method
Waren et al. [166] developed a generalized reduced gradient (GRG)
algorithm for solving the nonlinear program

minimize 0(¢)

subject to

hi(9) =0, 1=1,2, «ooy mp, (61)

(62)

v
@)
P
]
-—
N
(=]

85 (9)

by converting it to
minimize U(g)

subject to

N, (9) = b5 = 0, i=1,2, «vup, ny , (63)
g;(9) - "’x+nh+i =0, i=1,2, «uop ng, (64)
%1 L b4 L 0y iz 1, vy k+ 1y, (65)
dgi = Pyi = O izk+ 1, cooy k+ng o - (66)
¢K+nh+i,g 0, i=1,2, ..., n, , (67)

where



n, is the number of equality constraints,
ng is the number of inequality constraints,
k is the number of variables,

¢k+1’ ey ¢K+nh+ng are nonnegative slack variables.

At each stage of the optimization process the variables are
separated into dependent and independent variables. The number of
natural dependent variables is the number of active constraints n,. The
slack variables of the nonactive constraints are the additional
dependent variables. All the remaining ones are taken as independent
variables. The active constraints are then solved for the natural
dependent variables n, in terms of the natural independent ones Kk - n,.
This reduces the objective function to a function of k - n, variables
only. The generalized reduced gradient algorithm solves the original
problem as a sequence of reduced problems. The reduced problems are
solved using a variable metric gradient method.

Waren et al. used the GRG method in the design of dielectric
interference filters. The problem, defined by inequalities, 1is
reformulated as a nonlinear program (as in Section 4.2). The numbers of
variables and constraints are considerable. The GRG method apparently

nandles this large problem efficiently and yields satisfactory results.

4.4 Sasson's approaches

Sasson [149] used the Fiacco-McCormick and Lootsma methods [126] and
the Zangﬁill transformation [169] along with the Fletcher-Powell method
to solve nonlinear programs associated with power system optimization.

The Zangwill penality function



m

P(O, ) = UQ) + 1/r = [X,(C;(6N 1%, (68)
- - i=1 ~
where
X, (C4(¢)) = [min(0, C;(8))], if Ci(8) = gz () , (69)
and
Xi(ci(?)) = Ci(?)’ if Ci(?) = hi(?) ] (70)

(r1)

m =Dy o+ ng
has the advantage of not requiring an initial feasible point and the
ability to handle equality constraints. The thfee methods are sensitive
to the initial choice of r, and ill-conditioning arises when r
approaches zero.

Sasson [150] also used the Powell extension [142] to the Zangwill

transformation

m (Xi(Ci(cg))+si)2
P(¢, r, 8) = U(9) + I
~ - - i=1 ry

(72)

where Si and ry are constants during each sequential optimization and
xi(ci(?)) is as defined by (69) and (70).

The value of s; is updated by [142]

s+l o gd
i

where j is the present iteration number, and the values of ry form a
decreasing set approaching zero.

(Tne ill-conditioning problem which arises in penalty function
methods when r tends to zero has been studied by Charalambous (671,
where he extended the work by Powell. The approach is based on the
simple idea of perturbing the constraints outwards for the interior
penalty function, and inwards for the exterior penalty function by a

certain amount so that the r parameter does not have to tend to zero at
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the optimum. The factor by which the constraints are perturbed and the
updating formula are similar to the 55 factor and its updating formula
in Powell's transformation.)

In power system problems the Hessian matrix can be obtained from the
Jacobian and is sparse enough so that sparse matrix techniques can be
used. Sasson et al. [152] calculated the correction vector A¢, of the
Newton step, using Gaussian elimination taking sparsity into account.
We have to note that in these problems the vector of unknowns ¢

represents the state variables of the whole system.

4.5 Decomposition and reduction in power systems

Billinton and Sachdeva [51] solved the real and reactive power
optimization problem by decomposing the problem to two parts. After a
load flow solution, an optimum voltage evaluation is obtained by
minimizing the system losses considering the reactive powers as equality
constraints and the voltage magnitudes as variables. Then the real
power optimization is carried out Wwith the obtained system voltages Kkept
fixed and voltage angles as variables. The process iterates between the
two suboptimizations until the final solution is reached. The penalty
functions discussed earlier in Section 4.4 were used to solve the two
problems.

Another approach which attempts to reduce the problem was used by
Dommel and Tinney [90], where they solved the optimal power flow problem
by separating the variables into two sets: the vector x of all unknown
variables (state variables) and y the vector of all specified variables.

The vector y is further partitioned into the vector u of control

variables and vector p of fixed parameters. The problem in its simplest



form is set up as

min U(x, u)
u - (74)

subject to the equality constraints

n(x, u, p) = 0. (75)
The Lagrangian function
Np
L(x, u, py, A) = U(x, u) + £ Ay hy(x, u, P) (76)
T -7 i=1 -

and the necessary conditions for an optimum

T
Yy L=V U+ dy 2 =0, (1)
LT Uedgt=0, (18)
v, L = n(x, u, p) = 0, (79)

where J_ and fu are the Jacobians w.r.t. the x and u variables,
respectively. The basic steps of the algorithm used to solve this
problem are
1) assume a set of control variables U,
2) find a feasible power flow solution, i.e., solve (79)
3) solve (77) to get A
4) substitute A in (78) and use ¥V L to determine Bu.

Practically, the control variables are bounded. This introduces
inequality constraints into the previously mentioned problenm. If a

correction step Au lets one of the variables go outside its bounds, the

value of this variable is set to the allowable limit and the process is



continued. The problem, in general, will have inequality constraint
functions of x and u and bounds on the state variables X. These
inequalities are handled as penalties. Alsac and Stott [4] used the
same technique for solving the problem considering the security
constraints to obtain a secure optimal load flow.

The general problem with equality constraints and inequality
constraints on u and X has been solved [138] by the generalized reduced
gradient method discussed in Section 4.3. When a state variable reaches
one of its bounds it is changed to an independent variable, and one of
tne independent variables far from its bounds becomes a dependent
variable. Carpentier |b62] used the generalized reduced gradient to
solve a reduced problem which is equivalent to but much smaller than the
original one. After solving the network equations a set of violated and
nearly-active constraints are chosen to form the constraints of the
reduced problem. These constraints are expressed in terms of the
control variables. At the solution of the reduced problem the complete
problem is examined and if any constraint violation exists, new
constraints are added and the process is repeated. Adielson [3] applied
the generalized reduced gradient method to solve a decomposed problem
similar to the one in [90].

Snyder and Sasson [154] recently developed the modified decoupled
Hessian technique which concentrates on minimizing the constraint
violations. The method seemed appropriate for security load flow
problems. The objective function is

g

UG, W)+ 3 W (g (xy W) (80)

P(u)
- i=1

subject to h(x, u) = 0, which are the network equality constraints. All

- k7 -



the inequality constraints are considered in (80) where the wy are
weighting factors which are proportional to the constraint violation.
They established an incremental relation between P and u which becomes
the new objective to be minimzed. The correction vector Ag is
calculated tnrough a Newton step. The weighting factors are changed
throughout the iteration process to emphasize the violating constraints.
The problem was set up so as to take advantage of the existing decoupled

relationships which exist among the load flow variables [4].

4.6 Quadratic programming in power system optimization

Reid and Hasdorff [146] used quadratic programming for solving the
economic dispatch. The problem: is reformulatéd to suit the Wolfe
simplex method for quadratic programming [168]. 4 quadratic objective
function is set up, containing some new variables representing the real
power component at each generating bus. This increases the number of
variaples and leads to some new equality constraints. The constraints
are linearized using a Taylor series expansion and slack variables are
introduced to the inequality constraints to transform them to equality
contraints. Transformation of variables is also applied to restrict the
variables to be positive, which is one the requirements of the Wolfe
algorithm. Nicholson and Sterling [133] decomposed the problem where
one of the subproblems has a quadratic objective and linear constraints.
This subproblem is solved by the method of Beale [44] while the other is
solved by a steepest descent gradient technique.

Biggs and Laughton developed the REQP (Recursive Equality Quadratic
Programming) algorithm for solving the economic dispateh [50]. The

minimum point ¢ + d of a penalty function of the form of (68) is



estimated by cglculating the search direction d. This search direction
is obtained by solving a quadratic programming problem. The calculation
of g involves the solution of an & x & system of equations (2 is usually
less than the number of variables k) and an approximation to the inverse
of the Lagrangian's Hessian by the Broyden-Fletcher-Shanno formula.

More details on the algorithm are given in [49,50].

4.7 Least pth optimization

Temes and Zai [162] generalized the least squares method of
marquardt [130] with appropriate damping in the spirit of Levenberg
[124] to a least pth method, where p is any positive even integer. The
method was applied to the optimization of a four-variable RC active
equalizer, where p was equal to 10. The maximum deviation from the
desired specification for p = 2 was found to be 33 percent higher. They
also demonstrated the nonuniqueness of the optimum in that particular
problem. They obtained different solutions with different starting
points.

Deczky [81] used least pth error criteria in the synthesis of
recursive digital filters along with the Fletcher-Powell method. In his

problems p did not exceed the value of 10.

4.8 Generalized least pth objective
Bandler and Charalambous generalized the least pth objective
[21,22], as given in (11), for the design problem with upper and lower

specifications described in Section 2.2. In general, we have



Qi q 1/q
M( z ( e ) ) for M #£ 0,

U = (81)
0 for M = 0,

where the Qi are n real, nonlinear functions (assumed differentiable)

identified by an index set I,

M = max ¢, , (82)
iel
and
if M > 0 then K = Jand q =p ,
if M< 0 then K = I and q = =p ,
where
Jd={i] e, >0} . (83)
The gradient vector of the function is given by
Qi q 1/q - 1 Qi q-1
VU =z (7)) : (7)) Ve, , for M #0 . (84)
~ P . M . M ~ 1
iekK ieK

Minimization algorithms which require derivatives can thus be used.
We have to note that for p > 1 the first-order partial derivatives of
tne objective function are continuous if the functions °i are continuous
with continuous first-order partial derivatives. In the case when M = O
and two or more maxima are equal the objective's first-order derivatives
are discontinuous. (The obvious consequences in gradient algorithms can
be alleviated, as shown later.)

This generalized least pth form leads to the development of

algorithms for solving minimax and nonlinear programming problems

[24-27,29,40].
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4,9 Near minimax optimization

Consider for example,

(=
1

=£i(8) , 1eI, (85)

and let
Mp = M (86)
in (82). One simple approach attempts to reach a point close to the
solution § of the minimax problem by minimizing Up of (81) w.r.t. ¢
using a single large value of p. Typically this value is larger than
100. The solution reached is denoted ép‘
Bandler and Charalambous considered necessary and sufficient
conditions for optimality in generalized least pth optimization for p +

© [20,23] and related them to the conditions for minimax optimality

[9]. The multipliers obtained from the necessary conditions are

(£, (5 )/M (8 )19
u = lim (2 £=p 9 (87)
p+e ifL[fi(gp)/Mf(gp)]
where
A . ¢ v
L2 (1] £08) = M9 (88)

Discontinuity of the objective function's first partial derivatives,
for the reason we mentioned earlier, suggests the introduction of an
artificial margin &, so that the M to be minimized is

M = max (£5(¢) - &) = Mg(¢) - € - (89)

iel

The corresponding functions ¢; in this case are
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°; = £,(9) - E iel. (90)

Up is minimized with sufficiently large p and constant £, The true
minimax optimum Mf(f), of course, is not affected by the margin §.
This approach has been used by Bandler et al. in the design of

microwave circuits [22,38,64] and digital filters [17].

4.10 Sequential least pth algorithms

Two algorithms have been presented [72] in which a sequence of least
pth optimization problems is constructed. While they can be used with
large p they are designed for a moderate value.

The objective function to be minimized w.r.t. ¢ is

~

_ r
Up = Up(?, £) , (91)
where
r .
o, = f; () - €7, 1el, (92)
M o= M(¢, EF) = Mo(9) - EF (93)

where r is the optimization number and g’ is the margin at the rth
optimization. The margin is updated at the end of each optimization to

be

g7+ = Mo (0T) w e, (94)

where ¥ is the optimum at the rth optimization and g is a small number.
The second algorithm updates the margin as in the first algorithm if
Mf($r, gr) is negative, otherwise

er+l o (1 < AT)ER 4 AT Mf(§F) , (95)
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where

0<aAfF <. (96)

In both algorithms, for the first optimization the margin g1 is min
[o, Mf(fo) + ¢], where ?0 is the starting point. For r > 1 the first
algorithm' will 1let all the Qi be negative and considered in the
objective function and the maximum is to be moved away from the margin.
in the second algorithm, & starts with zero and increases approaching
Mf(§). The small number € is introduced to avoid M = 0. It is well
known that the minimax solution will not change if a constant is added
to all the functions f;. If this constant is greater than IMf(§)| the
second algorithm will be used throughout the whole optimization even if
Me(8) < 0.

Useful design information can be extracted from tnese algorithms.
Suppose that we are considering a design problem with upper and lower

specifications, so that

euj,

u?’ _
fj = ) l € I ) (9‘)
-eﬂ,k’ k € ll’
wnere
I, =101, 2, ..oy ny}, (98)
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