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Abstract This paper generalizes certain analytical formulas for yield
and yield sensitivities so that design centering and yield optimization
can be effectively carried out employing given statistical parameter
distributions. The tolerance region of possible outcomes is discretized
into a set of orthotopic cells. A suitable weight is assigned to each
cell in conjunction with an assumed uniform distribution on the cell.
Explicit formulas for yield and its sensitivities w.r.t. nominal
parameter values and component tolerances are presented'for linear cuts
and sensitivities of these cuts based upon approximations of the
boundary of the constraint region. To avoid unnecessary evaluations of
circuit responses, e.g., integrations for nonlinear circuits,
multidimensional quadratic .interpolation is performed. Sparsity is
exploited in the determination of these quadratic models leading to

reduced computation as well as increased accuracy.
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I. INTRODUCTION

The aim of this paper (see also Part II [1]) is to present some
theoretical concepts leading to the most general approach currently
available for automatic optimization of production yield which avoids
the use of the Monté Carlo method. Thus, the design centering and/or
optimal tolerance assignment which is to be performed takes explicitly
into account statistical distributions and possible parameter
correlations.

The approach is based on the work of Bandler, Liu and Tromp [2]
and represents a generalization of the work of Bandler and Abdel-Malek
[3,4]. The presentation is directed to a nonlinear programming method
of solution, and can be associated with original ideas suggested by a
number of other researchers [5-9].

Following a brief review of the centering and tolerancing
problem, the multidimensional modeling approach adopted by Bandler and
Abdel=Malek [3] is outlined in Section II. Section III organizes the
determination of suitable quadratic approximations to the constraints of
the problem. Sparsity associated with the selection of the reduired
base points is exploited to reduce computation and incrgase accuracy.
This 1is partigularly opportune for a large number of variables.
Furthermore, an approach is suggested aimed at reusing available
function values when the interpolation region is relocated according,
e.g., to required updating of the approximations as forced by the
optimization process and accuracy.

Section IV derives exact formulas for production yield and its

sensitivities for arbitrary discretized distributions implied by linear



cuts of the tolerance region. It is shown how these cuts may be
obtained from the quadratic constraint approximations. It is further
shown how they are involved in dynamic updating for yield recalculation

as required by optimization.
Simple illustrative examples validate the formulas presented.
Part II of this paper applies this material to the optimization of yield

for a current switch emitter follower [1].

II. FUNDAMENTAL CONCEPTS AND DEFINITIONS

A design can be described by a nominal parameter vector 4>0 and a
tolerance vector g where
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and k is the number of designable parameters [2]. The tolerance vector
€ may be used to define the extremes of the tolerance region or the
standard deviation, etc. It is assumed that the parameters can be
varied continuously. Some of these vector elements may be set to zero

or held constant.

An outcome {¢° y € u of a design {¢°, €} implies a point in the

~

parameter space given by
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and where yp is a random vector distributed according to the _Jjoint
probability distribution function (PDF) . The PDF might extend as far as
(-, =), however, for all practical cases it is possible to consider a
finite tolerance region R_ such that

f F(¢) do, do, ... do, = 1, ()

R
€

where F(¢) is the PDF.

For the sake of simplicity as well as the implications of
independent design parameters, there is no 1loss of generality to
consider Re to be an orthotope (multidimensional generalization of

rectangle) defined by
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where

ROB{u 1w <1, 4=1,2, ..o, k. (6)
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This orthotope is centered at ¢0 and has edges of length Z2e,, i=1, 2,
.., k. The extreme points of Re are called vertices and the set of

vertices is defined by [2]
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The number of these vertices is 2K and the following enumeration scheme

used by Bandler [10] will be considered. For a vertex
F=@+EF, £ e (-1,1 (8)

we have

K C41
ﬁz—> 2i-1, (9)

The constraint region (or feasible region) itself is given by
Ry £ {0 lgg(920,1=1,2 ..., m} > (10)

where m, jis the number of constraints gj. The production or

manufacturing yield is simply defined by

y 2

N/M , (1)
where M is the total number of outcomes and N is the number of outcomes

¢ which satisfy the specifications, i.e., for which ¢ e Rc-

Interpolation by Multidimensional Polynomials

An approximate representation of a constraint g(¢) by using its

values at a finite set of points is possible [11,12]. These points are

called nodes or base points, and denoted by



where Nb is the number of base points.
Interpolation can be done by means of a linear combination of the

set of all possible monomials. Hence,

N v
s(g) = -E1 ay oj(g) (12)
J=
where aj, j=1,2, ..., N, are unknown coefficients,
o a a k
A -~ 1 -y 2 -, k
LI (¢1-¢1) (¢2-¢2) coe (0p=0) 7 i§1 o <m, (13)
or
a o o k
A 1 2 k
<1>J. z (¢1) (¢2) (¢k) , i§1 @, < m, (14)

m is the degree of the interpolating polynomial, k the number of

independent variables, i.e., number of components of ¢, ao;, 1 = 1, 2,

$ may be any reference point. The

-~

., k, are nonnegative integers and

number of such monomials is given by

_ (mek) ! '
N = olk! - (15)

If the number of base points Nb is such that

Nb=N, . (16)
exact evaluation of the cbefficients aJ, j=1,2, ..., N, to force the
approximation to coincide with the actual function at the base points,
i.e.,

P(¢™) = g(¢™) , n an

i
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where

P(Q) =

n~s

1 by ®5(8) (18)

J
is possible.

The following system of simultaneous linear equations results.

-¢1(21) 02(21) .. QN($1)' ’b1“ -8(21)-
0, () 0 () .. (P by g(42)

‘ . = . . (19)
_¢1($N) o () ... °N($N)J by | _g(QN)-

The solution of (19) exists if the system of equations is 1linearly

independent. This is satisfied if the set of base points is degree-m

independent [13].

III. EXPLOITING SPARSITY IN QUADRATIC INTERPOLATION

Lot lation by Quadratic Pol {a]

In order to minimize the computational effort to obtain a
quadratic polynomial approximation, the number of base points required
will be chosen to be equal to the number of unknown coefficients, i.e.,
interpolation will be adopted. Replacing m by 2 in (15) the number of

base points is

N = (k+1)(k+2)/2 . (20)



Let Ri be the interpolation region defined by

o] 8,21 65-051 ,i=1,2, ...,k , (21)

where § is the center of the interpolation region and 89 i=1,2, ...,
k, are parameters defining the size of the interpolation region. The
quadratic polynomial approximation can be expressed in terms of the

monomials (13) or (14) as

T - 1 - T -
P(8) = ag + & (9=0) + 5 ($-8) H($-9) (22)
or
P(¢) = b. (6)%+ b, (6.)%+ +b (6 +b, . 6.6
<~ T 1 2 2 tor k k k+1 172
+ bN-k 0q + bN-k+1 by + .o+ bN—T o + bN’ (23)

where H is the Hessian mafrix of the quadratic approximation and is

given by

v vl P(e) , (24)
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The relations between the coefficients in (22) and (23) are given by

bi = hii/z ) i = 1, 2’ seey k ] (26)
i

by =By, 2= 3-1+ p§1 (k=p+1), 1 < § , (27)
k -

DNk-14i = 81 - jf‘l hj j ¢j ,i=12, ..., k, (28)

k - 1 k k —_ -
by =ag- 2 a I op,. 600 (29)
N=2 - S a2, Myt Ty

where N is given by (20).

Sparsity and Choice of Base Points

If we have freedom in choosing the base points, we can save
computational effort, particularly if the number of variables k is
large. In general, the matrix of monomials in (19) is full, however it
is' possible to make it gsparse by using the following choice of base

points. Let

[o! ¢ ... QN] =D [k "lkB.Qk] + [EE 0l , (30)

~ ~

where

Disakxk diagonal matrix with diagonal elements 61,

1, is a k-dimensional identity matrix,

Of is a zero vector of dimension k,

Q is a k x L matrix having the structure
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where Pj is a column vector of dimension j and having components uij
such that

| £1,4i=1,2, ..., 3, (32)

T, is a diagonal matrix of dimension j with diagonal elements Ti'

~ J
satisfying
O< l le I.S"i: 1’ 2’ "'!j k) (33)
and
L = k(k=-1)/72 . (3%)

BAccording to this choice of base points
ay = (8 (35)

and the system of simultaneous linear equations given in (36) is solved

for the vector a and the symmetric matrix H.
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We have taken

i i : o
85 T Uyog ked 8 i Tj-i,k-i 6j , 1<3. (37)
The structure of the coefficient matrix of (36) emphasizing its sparsity

is shown in Fig. 1. Hence, solving (36) reduces to the following

hy, = [e(eh) + (e - 2841765 , (38)
a, = (o) - g1z, , 121, 2, .k, (39)

2h 2h

= = . N Jy d _ iy L

hyy = hyy = [&(¢ ) - 8(e) - Gy —m - )

- cg a; - ;? aj]/ci c§ ) (40)
where
i

L =k+j-1i+ Z (k=-p+1),3>1. (41)

p=1

Subsequently, the number of multiplications or divisions required to
obtain the approximation is reduced to 5k2 - 2k instead of (N3 + 3N2 -
N)/3 for Gauss elimination, where N is defined in (20).

Fig. 2 shows the choice of base points in two dimensions and
three dimensions [3].

If we are not completely free in choosing the base points, for
example, if the function evéluation is expensive and some evaluations
for parameter values inside the interpolation region are known, the
matrix of monomials can approbriately be arranged. Assuming that the
resulting matrix of monomials will not be singular, we replace the
bottom rows of the matrix of monomials by the monomials of these known,

- 12 -



n say, base points. No singularity will result, for example, if the
rows introduced are independeﬁt and full. This arrangement in the
matrix of monomials is shown in Fig. 3. In solving the resulting system
.of simultaneous equations, we proceed with finding the polynomial
coefficients using (38), (39) and (40) until we come to the full part of
the matrix, i.e., the last n equations. The unknown coefficients beyond
this point should be found by solving n simultaneous linear equations,

for example, by Gauss elimination.

Example

Consider the approximation of the function

2
s(f) z (¢3) + 5¢2¢3 +0q+ 20, + b3 + 3.,
where
y
2
3 =
¢3 ’

The execution time using a CDC 6400 computer to evaluate the
approximation using equations (38), (39) and (40) is 0.005 s compared
with 0.066 s using Gauss elimination. Using equal step size § for the
interpolation region, ‘the Euclidean norm of the errors in the
coefficients of the approximating polynomial is plotted against 6 in

Fig. 4.

- 13 -



IV. EVALUATION OF YIELD AND ITS SENSITIVITIES

The Linear Cut [31

In order to obtain the linear cuts required for yield evaluation
[3], consider linearizing the quadratic constraints at a point ¢ which
may, for example, be the nominal point ¢° or a vertex ¢r. Hence, the

linear cut based upon the &th constraint is given by

Sz(ga) + (g - Qa)T v Sz(ga) 20. (42)

Define a reference vertex ¢' by

-~

o" = o0 +E i, (43)

~

where

a
ag (%)

ug = -sign_[ a¢j ] , J=1,2, ...y, k. (44)

The distance from the reference vertex to the point of intersection with

the ath cut along the orthotope edge in the jth direction is

2 r a r a T a as (¢a)
=] (g, « @6 I8, >]/“§;j’ : (15)

Accordingly, we have

A a a
oy n g, (97) (W - & T . 3g ($7)
0 = Mj a0, * (¢ - e) Hi )\

30y i J
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( T g (¢ )]2
r a r a a 2~
- ¥ [gz(¢ ) + (90 - ¢7) Vg (¢7)| Hy; / T (46)
where
- 2 2 2 ,
3
g (g) 3 g (g) 3 g (¢)
205 301267 80190y
2 2 2
3 gi(g) g ; (3) 3 g!(g)
36,30 2 36,90
2°% 20, ‘2 k
Ij = ‘ . . ] ("l?)
2%, (¢) 228, (9) 2%g, ()
36,96, 3¢, 30, .- a¢i

is the Hessian matrix which is a constant matrix for a quadratic

function g,(¢), H

Y is the ith column of H and Hji is an element of §.

In deriving (46) it is assumed that (gr - ¢a) is independent of ¢g, i

~

=1, 2, ..., k.

As described in Section II, we can assume that all outcomes will
lie within the tolerance orthotope Re. This orthotope is now
partitioned into a set of orthocells R(i,, 12, ceny ik) as shown in Fig.

5, where iJ = 1, 2, «..y nj, n, is the number of intervals in the jth

J
direction and j = 1, 2, ..., k. A ﬂgigh&igg_{gg&gg.W(il, 12, vy ik)

is assigned to each orthocell and is given by

W(i) = w(i)/V(R(1)) , (18)

- 15 -



where

L= (g g ceey 3, | (49)
wii) = [ F(¢) av , (50)
R(i) 7 '

~

V(R(1)) = [ dvs= €510 (51)
R(1) =1 2%
dv = dé, do, ... de, , (52)

€4 1 €p 4 1 -+e1 § 4 are the dimensions of the orthocell and F(¢) is
7 172 7k ~

the joint probability distribution function (PDF). W(g) is seen to be
fhe'probability per unit volume that an outcome falls within the ith
cell, whereas w(i) is simply the corresponding probability. The
weighting factors W(g) can be obtained by sampling the parameters or
from a histogram if the PDF is not available.

In principle, the problem of finding the yield is now reduced to
finding the contribution to the yield given by all of these orthocells.

A formula for the weighted nonfeasible hypervolume with respect to the

2th constraint is constructed and is given by [4]

. n 1+1 n2+ 1 nk+‘| K
v - ( ﬁ; aj ] I I oo aW(1) (&%) R (53)
j=1 121 d,=1 1,.=1 - -

where, for indexing with respect to gp, i.e., numbering starts at this

vertex (see Fig. 5), ag is the distance from the reference vertex to the

- 16 -



point of intersection of the &th linear cut with the orthotope edge in

the jth direction,

k J
s4(1) = max [o, - L or e ] , (54)
~ _ =1 j’p-1
j=1 5 P
ej’on,j=1, 2, «..y k, (55)
k k-1 k '
M(1) = W(i) - = W(i-e, bA I W(i- es- - ..
~ R )+ j=1 p=j+1 (4 25~ &)
DR WL - e - gp - vl - g) (56)
gj = (0, 0, ..., O, 1, 0, «euy 0) (57)
h|
and where
Ww(i) = 0 if ij =0 orij =nj+1 for any j. (58)

Assuming no overlapping of nonfeasible regions defined by

different cuts inside the orthotope Re , i.e,

R l R; =@ (59)
i 143 J
where
R, = {g | B(g) <O} N R, (60)

- 17 -



the yield can be expressed as
m
Y=1- 3 V&, (61)

where m is the number of linear cuts.

In the case of independent parameters, (53) can be written as [4]

n1+1 n2+1
2 1 [} .
vV® = [k! i aj] z AW1(11) I sz(iz) .
J=1 l1=1 ir=
nk+1
DM (1) (84K } , (62)
ik=1

where i and §*(1) are as defined in (49) and (54), respectively, and

where
Ms(15) = Wi(ig) = Wy(ig=1) , 3 =1, 2, ..y Ky (63)
Wj(o) = Wj(n3+1) =0, j=1, 2 s Ky (64)
wj(ij) = wj(ij)/ej,ij , ij =1, 2, .o, njy, (65)
wj(ij) = J fJ(¢J) d¢j ’ ij =1, 2, ’ nJ, (66)

Rj(ij)

fj(¢3) is the PDF of the jth parameter and Ry(ij) is the ith interval

- 18 -



for that parameter; Similarly the yield will be given by (61).

Yield Sensitivities

Formulas for yield sensitivities can be derived assuming that the

probabilities w(;) are independent of ?O as long as the ratios between

ej,i ' ij =1, 2,
|

ceey nj, are fixed for each parameter j = 1, 2,

k. This is true, for example, if the sizes of the orthocells are fixed.

Let

hence,

n
z s s =
2y S

The yield sensitivities are

) o

0

3¢,

a
aei
where
L k 3a£

¥\ = ['L!‘ z —d ﬁ o
3¢? k j=1 34)? p=1
p#J

2,3=1,2, ..., k.

now given by

- 19 -
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(68)

(69)

(70)



(stfankt—= | . (71)
8¢i
) . ur K aaz . n1+1 n2+1 nk+1
3%- = {'E% px —-g o) [B+A| I z . L |k AW(Y)
i J=1 3¢i p=1 =1 1= i=1
p£J
L k-1 862(1) L k BAW(E)
(67(4)) se. * (67(4)) ac ] ’ (72)
i i
3AW(1) .
where ‘3;““‘ is obtained by replacing W(°) by A%%‘l in (56) and where
i i ‘
aW(4) i1,
e, = - W) T, (73)
i,iy
p= ot | (74)
k! . J
J=1
n1+1 n2+1 nk+1 . .
B= = I ... I aW(i) (8 (i)) (75)
11=1 12=1 1k=1
and where
F 0 if &§%(i) = 0,
st (i)
b4
L i,
k da J
l; ——-— ey py 1f 8HR) >0,
J=1 (aj) 3¢y p=1 !
as (1) 26%(1) Kk '3
""ae - = u;‘ 0:"‘ - I 'li z Kj p-1 Yo
i 8¢i J=1 aj p=1 !
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The formulas for aag/a¢g and for uz are given by (46) and (44),

respectively.

The case of independent parameters is obtained by substituting

k

aW(i) = ] | AW 5 (4 4) (78)
S

in (71), (72) and (75).

X le for Yield
In order to illustrate the calculation of the weighted hyper-
volume, consider the two-dimensional example shown in Table 1I. The

weighted volume is given by

<3
]

1y 12x 3 2 b W(i,, i,) (é(i,, i ))2
2 ; AWl 1p 1 12
1

1813/3600 .

The same example can be considered as if the parameters are
independent as shown in Table 1I and Table III. Here, the weighted

volume is given by

1 4 3 . 2
] ;[ 5 X 12 x 3} iz=1 AW(i1) iz=1AW(12) (6(11, 12)) ,

1 2

- 21 -



where the § are as given in Table I. Hence,
V = 1813/3600

xample for Yiel ensitivities

Assuming that the sizes of the orthocells are fixed, the
sensitivities of the weighted hypervolume with respect to the nominal
parameter vector ?0 can be evaluated. The location of 90 itself is not
important. It is the relative location of the constraint with respect

to the orthotope that matters. The constraint can be considered as
¢1/12 - ¢2/3 2 0.

According to (U46) we have

2y
0 = - 1 9
34)1
'c)oz1
""‘_5 = (-1) (-1/3)/(1/12) = 4 9
8¢2

da
—2 = (1) (1/12)/(=1/3) = =1/} ,

0:
8¢1
and
e,
0=
a¢2

Using (76), the values of as“(g)/e¢g are given in Table IV and Table

V. Substituting in (71) we get

- 22 -



ﬂo- = -U3/720 ,
3¢1

116 = 43/180 .
3¢2

These sensitivities were verified using the central difference
approach with A¢g = 10_3, i= 1, 2. An agreement of 6 digits was

obtained.
V. CONCLUSIONS

The exploitation of sparsity in choosing the base points reduces
the computational effort required for interpolation significantly.

The yield estimation technique presented provides an inexpensive
yield determination without the need for the multitude of circuit
simulations required in the Monte Carlo method. The method approximates
the integration of the PDF over the feasible region. In addition, the
availability of yield sensitivities permit the use of efficient gradient
optimization techniques (see Part Il 1.

The better the description of the boundary of the constraint
region by linear cuts the more accurate is the yield estimate. It is
possible to describe a constraint defining the boundary of the feasible
region by a different cut in each orthocell, however, the computational

effort will increase.
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TABLE I

EXAMPLE TO ILLUSTRATE CALCULATION OF WEIGHTED
HYPERVOLUME BY THE GENERAL FORMULA

Orthocell i1 0 1 2 3 y
dimensions €424 0 3.0 3.0 2.0 -
M
i €_ .
2 2,12
0 0 w,W 0 0 0 0 0
W 0 18/100 12/100 3710 0
1 5.0 W 0 3/100 1/50 3/40 0
’ AW - 3/100 -1/100 11/200 -3/40
s - 1 3/4 1/2 1/3
w 0 12/100 8/100 2/10 0
> 3.0 1) 0 1775 2/225 1/30 0
: AW . -1/60 1/180 -11/360 1/24
8 - 1/3 1712 0 0
. w,W 0 0 0 0 0
3 - AW - -1/75 1/225 -11/450 1/30
S - 0 0 0 0
ro_. r r
Reference vertex ¢ given by Wy = -1, My = 1

Intersections of the linear constraint are e, = 12, o, = 3

Weighted volume V = 1813/3600
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TABLE II

LENGTHS AND WEIGHTS OF FIRST PARAMETER INTERVALS

i, e1’i1 w(i1) W(i1) AW(i1)

0 0.0 0 0 -

1 3.0 ©3/10 1/10 1/10

2 3.0 2/10 1715 -1/30

3 2.0 - 5/10 1/4 11/60

4 - 0 0 -1/4
TABLE III

LENGTHS AND WEIGHTS OF SECOND PARAMETER INTERVALS

i, 62'12 w(iz) w(iz) Aw(iz)
0 0.0 0 0 -
1 2.0 6/10 3/10 3/10
2 3.0 4/10 2/15 -1/6
3 - 0 0 -2/15

- 27 -



TABLE IV

VALUES OF 352(11,12)/a¢? '

i 1 2 3 y
i,
1 0o -1/48 -1/24 -1/18
2 -1/18  -11/144 0 0
3 0 0 0 0
TABLE V
VALUES OF 36%(4.,1.)/362
12127/99,
iy 1 2 3 4
2
1 0 1/12 1/6 2/9
2 2/9 11/36 0 0
3 0 0 0 0
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Fig. 1
Fig. 2
Fig. 3
Fig. U
Fig. 5

FIGURE CAPTIONS
The structure of the coefficient matrix of (36).
Arrangement of the base points w.r.t. the centers of inter-

polation regions in (a) two dimensions (¢5 is a random base

point) and (b) three dimensions (¢7, ¢8 and ¢9 are random base
points). To exploit sparsity ¢7, ¢8 and ?9 should be,
respectively, placed in the planes containing {o, ¢1, ¢2}, {o,

~ ~

¢1y ?3} and {gs 921 ¢3}-

~ ~

The arrangement of the matrix of monomials for a restricted
selection of base points.

Errors in computing the coefficients of the quadratic
approximation using dense and sparse matrix approaches.

Two-dimensional illustration of the partitioning of the
tolerance region into cells indicating the dimensions and
weighting of those cells relevant to the calculation of the

weighted nonfeasible hypervolume.
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