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IMPORTANT NOTE

The contents of this work, or parts thereof, are intended solely
for use by students in the Department of FElectrical Engineering in
conjunction with courses taught by the author. They may not be
reproduced in any form for any other purpose without permission in

writing from the author.
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no

What 1is the companion network method of solving nonlinear
networks? How does it take advantage of existing linear network
simulation methods? Draw an example of a three node
resistor-diode network to illustrate the steps involved in the

computations,

Comment on the following concepts.

(a) The minimum of (¢ - a)2 and the maximum of b - (¢ - a)z,
where a and b are constants.

(b) The minimum of U, where

=2¢ + 2, ¢ <1

and the minimum of U subject to 0 < ¢ £ 3.

(¢) The minimum of a¢2 + b and the minimum of a¢2 + b subject to
¢ 2 0, where a, b are constants.

(d) The number of equality constraints in a nonlinear program
will generally be less than the number of independent

variables.

(b) ax ¢1/¢i+1'i b, i=1, 2, , k=1
(0) 1< 06,<0,< .o £ 0y <3
(d) n.(¢) =0, i=1, 2, , S



Sixty Problems in Computational Methods J.W. Bandler

7.

Sketch curves of |x - x”ip against x for p = 0.5, 1, 2, 4 and .

Discuss the differentiability and convexity of these curves.

Sketch in two dimensions the unit spheres centered at x° defined
by

b]

[1x - xP)] <

p =
for p= 1, 2, 4 and ». Comment on the convexity of these regions

and the corresponding one for p = 0.5.

Suppose that the following table has been derived from impedance

measurements.
frequency - real part imaginary part
(rad/s) €2)) — () —
1 1.9 1.6
2 2.1 2.9
3 4.5 2.0
4 2.0 6.0

Obtain a uniformly weighted least pth approximation based on real
approximating functions with (a) p=1, (b) p=2, (c) p==, to this
data for a proposed series RL circuit model with resistance R and

inductance L as unknowns. Comment on the data in the table.

Set up as a nonlinear program the problem of least pth

optimization with p = 1 given by
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%

n
min £ | ei(¢)|,
¢ i=1 -

where the e; are real functions of ¢. State necessary conditions

for optimality of the problem and discuss them. Apply these ideas
to
(a) mwin ¢ - 1] + |6] ,

)

(b) min ]¢1 + ¢2 - 1] + l¢1| + |

.
2
o100

Consider the resistive network shown.

® g @ g ©®

G, =G, = G_ =1 mho

R2 = R4 = 0.5 ohm

Apply an efficient method, making use of the L and U factors
obtained by LU factorization of the nodal admittance matrix to

find the change in voltage across G5 due to an increase in G3 from

1 mho to 2 mho. [Hint: obtain the Thevenin equivalent across G3
from one analysis of the adjoint circuit. Find a current source

across G, representing the change in G, and proceed accordingly.]

3
Check your result by a direct method.

3
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10.

1.

Derive from first principles an approach to calculating ayi/ag,
where & y = b is a linear system in y, A is a square matrix whose
coefficients are nonlinear functions of %, the term vy is the ith
component of the column vector Y and ayi/af represents a column
vector containing partial derivatives of ' w.r.t. corresponding
elements of the column vector x. Discuss the computational effort

involved.

Derive from first principles an approach to finding aVi/aw, where
»w is frequency, Vi is an ith nodal voltage in the nodal equation
of a linear, time—invarignt circuit in the frequency domain,
namely,

YV=1,

assuming I is independent of w,

Derive an approach to calculating By/axi, where A y = b 1is a

linear system in y, A is a square matrix whose coefficients are

nonlinear functions of x and Xy iz the 1ith component of x.

Discuss the computational effort involved.

Derive from first principles an approach to calculating

2
2

axjaxki

for the system described in Question 9, where xj and X, are

elements of the vector x.
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13.

4.

15.

Derive from first principles an approach to calculating aA/ex,
where )\ is an eigenvalue of the square matrix @ whose coefficients
are nonlinear functions of X. The expression ax/a§ is a column
vector containing all first partial derivatives of A w.r.t.
corresponding elements of the column vector x. Discuss the

computational effort involved.

Derive an approach to calculating

%

axjaxk

for the system described in Question 13, where Xj and X, are

elements of the vector x.

Consider the quadratic approximation to a response function given

by

A b b
£(o,0) =5 Lol {~T : ;} s Lot ||+

job)

a b !
< )

where A is a symmetric square matrix of the dimensions of the

column vector ¢; a and b are column vectors of constants of the

same dimension as 4; and a, b and c¢ are constants. Develop a

compact expression for f(¢,¢) subjected to the condition

af _ g
Y

Consider the iterative scheme

i+ = Alyl, i=1,2, ..., n

= ~
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7.

18.

19.

where the y vectors are of dimension 2 and the A matrices are 2 x

2 with known values. Given the terminating conditions

= C
vy Yo
1, . . .
where ¢ is known, derive an analogous iterative schene

culminating in the evaluation of y1,

Consider the iterative scheme described in Question 16, Given the

terminating condition

1
Y, =9,

1. .
where ¢ is known, develop a computational scheme to evaluate

n n
¢’ o= y1/y2.

. i . . . . .

Assume that each matrix A in Question 16 is a function of a
single variable Xy Derive from first principles an approach to
. 1 . -
calculating 8y1/ax, where x 1s a column vector containing the X,

i=1,2, ..., n.

Consider the system described by the iterative schemes

i+1 i i, . .
X+=QY:1:1;21--~7'“’1£37

i+1 i i
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20.

21.

the equation

J J
Y4 RE
J+¥1 J+1
c b = v )
Zm+1 _Zm+1
1 2

T
z1 = 22 ,
T 1
Yy = Y55
n+1

y =1,

where the y and z vectors are of dimension 2 and the A and B

matrices are 2 x 2 with known values and C is a given 3 x 3

matrix.

Carefully describe and explain an algorithm for evaluating

n+1

5 efficiently.

y
Write a simple program to implement steepest descent in the
minimization of a scalar differentiable function of many variables

and test it on suitable examples.

Write a simple program to implement the one-at-a-time method of
direct search for the minimization without derivatives of a

function of many variables and test it on suitable examples.
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22.

23.

24,

Describe the pattern search algorithm. Illustrate 1t on two-
dimensional sketches of contours of a function to be minimized,
noting exploratory moves, pattern moves and base points. Discuss

any advantages enjoyed by this search method.

Apply the Fletcher-Powell-Davidon updating formula to the
minimization of

2 2

¢1 + 2¢2 + ¢1¢2 + 2¢1 + 1

w.r.t. ¢1 and ¢2 starting at ¢1 = 0, = 0, showing all steps

P

explicitly and commenting on the results obtained.

Apply the cohjugate gradient algorithm for minimizing a
differentiable function of many variables to the minimization of
2 2
] 1
¢1 + 2¢2 + ¢1¢2 + 2¢1 +
w.r.t. ¢1 and ¢? starting at ¢1 = 0, ¢p = 0, showing all steps

explicitly and commenting on the results obtained.

Apply the conjugate gradient algorithm for minimizing a
differentiable function of many variables to the following data.

0 i 8) (8.4
Point: , , y

Gradient: y ’ s 3
0 -2 -2 -0.5

Sketch contours of a reasonable function that might have produced

these numbers and plot the path taken by the algorithm.

- 10 -
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26. Consider the linear programming problem
minimize g * 0.5 o5 = 1

subject to

by 20,
0,20,
bq + 0y 2.0
Starting al the point ¢1 = 2, ¢? = 0, aolve it by nateepest descont
(analytically). Show how by two one-dimensional searches the

exact solution is reached. Verify the solution by invoking the

Kuhn-Tucker relations.

27 . Consider the voltage divider shown.

Ry

O O

The specifications are as follows.

"o
0.4 < w4 < 0.53
12

1.85 < R, + R

1 £ 2.15

2

Assuming R1 2 0, R, > 0, derive the worst vertices of a tolerance

2

region for independent tolerance assignment on these two

components.,
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8. Consider Lhe problem defined in  Question 27. Optimize the
tolerances £ and £, on R1 and R? given the cost function
R
C = + .
€1 €

assuming an environmental parameter T common to both resistors

such that
0 0
-
Ry = Ry + g e) (T0 + up ep)
0 ) 0
R, = (R, + n, €5) (T" + u e )
where
-1 £ I T LS S
0

[The independent designable variables include R?, Rg, £ and €2.]

29. Consider the problem defined in Question 27. Optimize the

tolerance 4 on R' given the cost function

is tunable by +10% of its nominal value. [The

independent designable variables include R?, 91 and Rg,]

assuming that R2
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30. Consider the voltage divider shown with a nonideal source and

load.

+0

Q|

It is desired to maintain

0.47 < vV £ 0.53,

1.85 < R £ 2.15 ,
for all possible

Rg £ 0.01,

RL 2 100 ,
with

0 0

R1 = R2 )

€5 % &5

- 13 -
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31.

32.

and maximum tolerances. Find the optimal values for R?, Rg, €,
and €5
Minimize w.r.t. ¢
2 2

U_¢1+u¢2
subject to

6, + 2¢2 -1 =0
The function has a minimum value of 0.5 at ¢1 = 0.5, ¢2 = 0.25.

Suggested starting point: 0g = 05 = 1.

[Source: Fletcher (1970). See also Charalambous (1973).]

Sketch contours of the function

V = max[U, U + ah, U - ah]
2 2 . ..
w.r.t, ¢ for U = ¢1 + U4 and h = ¢l + 2¢? -~ 1 in the vicinity of

the solution stated in Question 31, for o = 0.1, 1.0 and 100,

taking care to indicate points of discontinuous derivatives.

[Source: Bandler and Charalambous (1974).]
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33. Minimize w.r.t. ¢

f= "'¢1 ¢2 ¢3

subject to

72 - ¢, - 2¢2 - 2¢3 2.0

The function has a minimum of -3300 at ¢1 = 20, ¢? = 11, ¢? = 15

This problem is referred to as the Post Office Parcel problem.

[ Source: Rosenbrock (1960). See also Bandler and Charalambous

(1974).]

34, Minimize w.r.t. ¢

2
3

NN

£=6h w00 v 200 + 0p - 50y = 50, = 2105 + Toy

subject to

-~ 15 -
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3

P

D

2 2 2
- - - - 5
2¢1 ¢2 ¢3 2¢1 MR ZIR 20
The function has a minimum of -4l at ¢1 = 0, ¢, = 1, o, = 2, ¢M =

-1. Suggested starting point: 6. = 0, ¢, = 0, ¢

1 2 =0,y = 0

3

Thic problem is referred to as the Rosen-Suzuki problem.

{Source: Rosen and Suzuki (1965). See also Kowalik and Osborne

(1968) .1
Minimize w.r.t. ¢
2 2 2
f=9 - 8¢1 - 6¢2 - 4¢3 + 2¢1 + 2¢2 + ¢3 + 2¢1¢2 + 2¢1¢3

subject to

3= 0y 7 by 20,20

The function has a minimum of 1/9 at oy = 4/3, = 7/9, = 4/9.

*3
Suggested starting points: (a) 0= T, 0, = 2, b5 = 1; (b) oy = o,

%

= 1; (e) 0, =

¢3 ¢2 = ¢3 = 0.5; (d) ¢1 = ¢2 = ¢ = 0.1. This

problem is referred to as the Beale problem.

[Source: Beale (1967). See also Kowalik and Osborné (1968).]

- 16 -
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36.

37.

Minimize w.r.t. ¢ the maximum of

£ =0y + 05
£, = (2207 + (2-9,)%
f3 = 2exp(-¢1+¢2)
The minimax solution occurs at ¢, = 0, = 1, where f. = f, = f3 3

2. Suggested starting point: ¢1 = ¢, = 2.

[Source: Charalambous (1973).]

Minimize w.r.t. ¢ the maximum of

)
"

2 2
(2-0.0° + (2-0,0°

)
]

3 2exp(-¢1+¢2)

The minimax solution ocecurs at

6, = 1.13904, 0, = 0.89956 ,

- 17 -
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where

=5
1
.
w
-3
5=
(@]
o

Suggested starting point: ¢, = 6, = 2.

[Source: Charalambous (1973).]

38.  Approximate in a uniformly weighted minimax sense
el
f{x) = x
Dy
F(x) = a, x + az’exp(x)
on the interval [0,2].

[Source: Curtis and Powell (1965). See also Popovic, Bandler and

Charalambous (1974).]

39. Approximate in a uniformly weighted minimax sense

[(8x = 12+ 1192 tan~'(8x)
8x

f(X) =

by

X +

Fo T K A

F(x) >
1 + b1x + bjx

1}

on the interval [-1,11.

a

[Reference: Popovic, Bandler and Charalambous (1974).1]

- 18 -
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4o, Consider a lumped-element LC transformer to match a 1 ohm load to

a 3 ohm generator over the range 0.5 - 1.179 rad/s. A minimax

192

| Ls L3 Ly

. nrvrn___,_nmr\m_y_r‘rvr‘r\,,o_j
|

30 | ==Cg =C,4 ==C,
j
DA

e
!
F—p

approximation should be carried

out on the modulus of the

reflection coefficient using all six reactive components as

variables. The solution is

(@]
=
t

C6:

at which max |p]|

points in the band.

[Source: Hatley (1967).

1,041,
0.979,
2.341,
0.781,
2.937,
0.347,

= 0.075820.

- 19 -

Use 21 wuniformly spaced sample

Suggested starting point:

See also Srinivasan (1973).]
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A Consider the RC active equalizer
|:.\’1
r —/\N\,
C
9
e
4

ol
F
ol

The specified linear gain response in dB over the band 1 MHz to ?

MHz is given by G = % + 51, where 135 in MHz. Find optimal

solutions using least pth approximation with p = 2, 4, 8, ..., =

taking as variables C}, C,, R1 and Rj. Twenty-one uniformly
< el

distributed sample points are suggested with starting values

C1 = C2 = 31 = R2 =1

and

N
o)
T

L1 = b2 = R] = R2

Comment. on the results.

Reconsider the problem using only Ci and R, .
I

[ Source: Temes and Zai (1969).]

- 20 -
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o, Consider the problem of finding 2 second-order model of o
fourth-order system, when the input to the system is an impulse,

in the minimax sense. The transfer function of the system is

L (s+h)
G(s) = 5
(s+1) (5 +LUs+8)(s+5)

and of the model is

B

H(s) = > 5
(S+¢1) o,

The problem is therefore equivalent to making the function

|
F(,t) = == exp (-¢.t) sin ¢ b
~ ¢? 1 2
best approximate
(1) = = - 1 ey _oexp(=2t) o, .
S(t) 0 exp(~t) + = exp(-5t) 65 (3sin2t+11c0s2%)

in the minimax sense.
The problem may be discretized in the time interval 0 to 10
seconds and the function to be minimized is

max je.(e¢)]| , i= {1, 2, ..., 51},
. il
iel .

where

e (9) = Flo,t,) - S(t))

The solution is

tb,‘ = 0.68}4“2,
¢2 = £ 0-95409,
(})3 = 0.12286,

- 21 -
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and the maximum error is 7.9471 x 10-3. Suggested starting point:

[See, for example, Bandler (1977).]

Consider the LC filter shown.

Tne insertion loss specifications are
1.5 dB 0-1 rad/s (upper)

25 dB 2.5 rad/s {lower)

The corresponding minimax solution, taking the passband sample
points as 0.45, 0.5, 0.55, 1.0 and the stopband as 2.5, is

L1 = L2 = 1.6280

C = 1.0897.

Using appropriate optimization programs verify the worst-case

tolerance solutions shown in the following table for the objective

- 22 -
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0 0
L L 0
R B
c € €

1 2 C

Continuous Solution Discrete Solution

Parameters Fixed Nominal Variable Nominal from {1,2,5,10,15}%

3.5% - 9.9% 5% 10% 10%
/C 3.2% 7.6% 10% 5% 10%
3.5% 9.9% 10% 10% 5%
1.628 1.999 1.999
c 1.090 0.906 0.906

L 1.628 1.999 1.999

[Source: Bandler, Liu and Chen (197%).]
bl For the circuit of Question 43 verify numerically that the active

worst-case vertices of the tolerance region are identified as

follows.

Vertex Frequency

6 0.45, 0.50, 0.55
8 1.0

1 2.5

. [Source: Bandler, Liu and Tromp (1976).]

- 23 -
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b5,

Consider {Lhe 10:1 impedance ration, lossless two-section

transmission-line transformer shown. The lengths of the sections

e |, “r‘“ Lo "}
1
O O Oo—
|
I
I
10 : Z, z, 09
|
é> -0 O~
!
I
p—eP
are 21 and 12. The corresponding characteristic impedances are Z1

and Z?. Minimize Uhe maximum of the modulus of the reflection

coefficient p over 100 percent relative bandwidth w.r.t. lengths

and/or characteristic impedances. The known quarter-wave solution

.

is given by

L, = by = lq (the quarter wavelength at centre frequency),
2, = 2.2361,
= h.oar21,
where
lq = 7.49481 em for 1 GHz centre.
The corresponding max |p]| = 0.42857.

Use 11 uniformly distributed (normalized frequency) sample
points, namely 0.5, 0.6, ..., 1.5. Seven suggested starting

points and problems are tabulated, namely, a, b, ..., g.

- 24 -
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h6.

Problem starting points

Parameters a b c d e f g

21/2q fixed (optimal) 0.8 1.2 1.2

Z1 1.0 3.5 1.0 3.5 # 3.5 3.5
N ; - #

22/2q fixed (optimal) 1.2 0.8

Z, 3.0 3.0 6.0 6.0 * * 3.0

# Pparameter is fixed at optimal value.

Suggested specification, if appropriate to the method, is |pl

£ 0.5. A variation to the problem is to minimize the maximum of

0.5 ]p|2. Suggested termination criterion: max |p| within 0.01

percent of optimal value.

[Source: Bandler and Macdonald (1969).]

Consider the problem ‘described in Question U5, Using a computer
plotting routine plot the contours

{max |p|} = {0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80}
for the following situations

(a) 1<17,£3.5, 322,56,

-
n

2
(b) 0.8 < 21/1q, 12/mqg

(e) 0.8 % 11/1(15, 1.2, 1 <17, £3.5.

Parameters not specified are held fixed at optimal values.

[Source: Bandler and Macdonald (1969).]

- 25 -
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.

b8 .

by,

Consider the problems described in Questions 45 and U6, Use a
computer plotting routine to plot contours of a generalized least
pth objective function for p = 1, 2, 10, «, taking |[p| as the

approximating function and 0.5 as the upper specification.

[Source: Bandler and Charalambour (1972).]

Consider the same circuits, terminations and specifications as in

Question 45. Let €, and e, be the tolerances on Z, and Z,,

respectively. Starting at the known minimax solution with 51 =

P 0 .0
0.2 and £, = 0.4 minimize w.r.t. 21, Lg, €, and e,
@ ¢ = e
1 2
0 0
Z Z
(b) C, = :4‘+ ;Z ’
1 2

for a worst-case design (yield = 100%).

[Source: Bandler, Liu and Chen (1975). See also Abdel-Malek

(1977) .1

Consider the same circuilt and terminations as in Question 45 but
with three sections. The known quarter-wave solution is given by

(see Question 45 for definition and value of zq)

Ry, = Ry = ko,
Z, = 1.63471,
Z, = 3.16228,
Zy = 6.11729.
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The corresponding max |p| = 0.19729. Use the 11 {(normalized
frequency) sample points 0.5, 0.6, 0.7, 0.77, 0.9, 1.0, 1.1, 1.23,
1.3, 1.4, 1.5, Three suggested starting points are tabulated,

namely, a, b and c.

Problem starting points

Parameters a b c
* %
21/zq 0.8
Z1 1.0 1.0 1.5
% %
22/2 1.2
% #%
22 3.0
/ # i 0.8
37 :
Z3 10.0 10.0 6.0

#  Parameter is fixed at optimal value.

#% Parameter varies, starting at optimal value.

o
A variation to the problem is to minimize the maximum of 0.5 |p|".
Suggested termination criterion: max |p| agrees with optimal

value to 5 significant figures.

[Source: Bandler and Macdonald (1969).]

- 27 -
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50.

J.W. Bandler

Design a recursive digital lowpass filter of the cascade form to

best approximate a magnitude response of 1
normalized frequency ¢ of 0-0.09, and 0 in the
0.11. Take the transfer function as

K 1+a z"1+bkz_2

H(z) = A | | K

K=1 1+ckz—1+dkz

-2

where K is the number of second-order sections,

z = exp(jym) ,
_2f
s

in the passband,

stopband above y =

f is frequency and fs is the sampling frequency.

derivatives w.r.t. the coefficients a s bk’ Cp
derived.
Suggested sample points ¥ are
0.0 to 0.8 in steps of 0.01,

and d

0.0801 to 0.09 in steps of 0.00045,

0.11 to 0.2 in steps of 0.07,
0.3 to 1.0 1in steps of 0.1.

Use one section and a starting point of

a, = 0,

b1 = 0,

01 = O,

d1 = -0.25,
A =20.1,

- 28 -
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Analytical

are readily
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for least pth approximation with p = 2, 10, 100, 1000, 10000 and
minimax approximation, each optimization starting at the solution

to the previous one,

[ See Bandler and Bardakjian (1973).]

51. Grow a second section at the solution to Question 50 and

reoptimize appropriately.

[See Bandler and Bardakjian (1973).]

52. Optimize the coefficients of a recursive digital lowpass filter of
the cascade form (see Question 50) to meet the following
specifications:

0.9 < |H] £ 1.1 in the passband,
|[H] £ 0.1 in the stopband,
where the passband sample points ¢ aﬁe
0.0 to 0.18 in steps of 0.02,
and the stopband sample points y are
0.24,

0.3 to 1.0 in steps of 0.1.

Begin optimizing with one section starting at

a1 =0,
b‘l =1,
] = =1 9

- 29 -
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d1 = 0.5 ,
A =0.1,
for least pth approximation with p = 2, 10, 1000, 10000 and

minimax approximation, each optimization starting at the solution

to the previous one,

[See Bandler and Bardakjian (1973).]

Grow a second section at the solution to Question 52 and

reoptimize appropriately.

[See Bandler and Bardakjian (1973).]

For the five-section, lossless, transmission-line filter shown,
the following objectives provide two distinct problems, each of
which is subjected to a passband insertion loss of no more than

0.01 dB over the band 0 - 1 GHz.

J o- o o o o
1 :

! L2y €22, L3,y Lglsy  Lsiis

& o o o o— o
T

—

(a) Maximize the stopband leoss at 5 GHz.

- 30 -
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(b) Maximize the minimum stopband loss over the range 2.5 - 10
GHz.
The characteristic impedances arc to be fixed atl the values

Z, = 2., = 7. = 0.2
L 3 5

22 = ZM =5
and the section lengths (normlized to Qq as the quarter-wavelength
at 1 GHz) as variables. Suggested sample points: 21 uniformly

distributed in the passband, 16 for the stopband in problem (b).

Suggested starting point is

L. /8 = 2 /% = R

Vi = helty = 0.07,
L./ = 0.15,

3 q

l?/lq = Q,u/ll,q = 0.15.

[Source for Problem (a): Brancher, Maffioli and Premoli (1970).

See also Bandler and Charalambous (1972).]

55. Solve Question 5U4(a) with normalized lengths fixed at 0.2 and

impedances variable.

[See Levy (1965).]

56. Consider the design of a five~section, cascaded, lossless,
transmission-line filter and with unit terminations shown in the

figure. Let the passband be 0 - 1 GHz.
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Consider a single stopband frequency of 3 GHz.

The attenuation in

the passband should not exceed 0.4 dB, while the attenuation at 3

GHz should be

constraints:

where

L
q
It is suggested

the passband.

{ See Srinivasan

as high as

2.5 cm (quarterwave at 3 GHz).

possible,

subject to the following

that 21 uniformly spaced frequencies are chosen in

(1973) and Carlin (1971).]

Reoptimize the example of Question 56 subject to the constraints

0 £ 8./2
1 q

0.4416 S‘Zi <

<

2

I~
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58.

where lengths Li and impedances Zi are allowed to vary.

[See Srinivasan and Bandler (1975).]

Consider a third-order lumped-distributed-active lowpass filter as

shown. The passband is 0 - 0.7 rad/s, the stopband 1.415 - «

rad/s.

Three design problems are to be solved for minimax results.

(a) An attenuation and ripple in thg passband of less than 1 dB,
with the attenuation in the stopband at least 30 dB ( second
amplifier removed).

(b) An attenuation and ripple of 1 dB in the passband with the
best stopband response.

(¢) A minimum attenuation and ripple in the passband subject Lo

at least 30 dB attenuation in the stopband.
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The nodal equations for the circuit are

’ 3 \
Yoo+ JuCy -(y,04Y ) 0 vy “Y12Vs
A 1. _
‘(y22*y12*RO) y11+y22*y12+y21+ﬂo 0 Vol = |3 #y 00
A 1,
R1 0 R1+JwC2 V3 0

where Yi10 Y00 Yoq and Yoo are the y parameters of the uniform
distributed RC line given by
coth 6 -csch 6

-csch 6 coth o

where Y = /%Q and 6 = /sRC .

Suggested passband sample points are

{o, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7} rad/s.
Suggested stopband sample points are
{1.415, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5,
2.6, 2.7, 2.8, 2.9, 3.0} rad/s.

Let 02R1 be one variable with C2 fixed at 2.62. Variables to

be used for problem (a) are A, R, C, R R, and C1' For problems

0’ 1

and C1 with R, = 1 and R =

(b) and (c¢) the variables are A, C, R 0

1
17.786. It is suggested that the transformation
1
¢i = exp ¢1
T
is used so that the variables ¢i are unconstrained while the ¢i

are positive,

[Reference: Charalambous (1974).]
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59. A seven-section, cascaded, lossless, transmission-line filter with

frequency-dependent terminations is depicted.

ol —ste— ) —vfa— [ —wle— [ o [ et [ —ste— L

o o 2 o o o —0—
-0 o o o- —o o o— o

The frequency dependence of the terminations is given by

e e e e

- - _ 2
Rg = RL = 377//4 (fc/f) ’

where

fc = 2.077 GHz.
The section lengths are to be kept fixed at 1.5 cm. The problem
is to optimize the 7 characteristic impedances such that a
passband specification of 0.4 dB insertion loss 1is met in the
range 2.16 to 3 GHz while the loss at 5 GHz 1is maximized.
Suggested passband sample points are 22 uniformly spaced

frequencies including band edges.

[Reference: Bandler, Srinivasan and Charalambous (1972).]
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60.

Consider the active filter shown. Let Rg = 50 @, R =75 @. Take
a model of the amplifier as

A.w
A(s) = Q-2

S+

where s is the complex frequency variable, A is the d.c. gain and

0

wo = 12% rad/s. Use the equivalent circuit shown for the purpose
of nodal analysis.

The ideal transfer function, i.e., for AO + o and R3 + o is

XZ ) . sC]
v ~ 71 2
g s C102+sG2(C1+C2)+G2(Gu+G})

and the nodal equations for the nonideal filter are

g 3 ( (

G1+Gg 0 --G1 0 V1 Gng
0 G2+G3+SC2+A2G3 -SC2 —G2+A1A2G3 V2 ) 0
-G1 —sC2 G1+Gu+sC1+sC2 -SC1 V3 i 0
k 0 -G2 -sC1 G2+sC1 Vu \ 0
Let F =»|V2/Vg|. The specifications are w.r.t. frequency f:

F < 1//2 for £ < 90 Hz,
F < 1.1 for 90 < £ < 110 Hz,

F

I

1/v2 for £ > 110 Hz,

F

v

1/v2 for 92 < f £ 108 Hz,

F

v

1 for £ = 100 Hz.

Find an optimum solution in the minimax sense for components R1,

C1, C2 and Ru, given
B 5
AO = 2 x 107 ,
R2 = 2.65 x 10 @ ,
C, =C, =¢C
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