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Abstract An attractive, exact and efficient approach to network
analysis for cascaded structures is presented. It is wuseful for
sensitivity and tolerance analyses, in particular, for a multiple of
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facilitates the exploitation of symmetry to reduce computational effort
for the analysis. Responses at different loads in branched networks,
which may be connected in series or in parallel with the main cascade,
can be obtained analytically in terms of the variable elements.
Sensitivity and large-change effects w.r.t. these variables can be
easily evaluated. The approach is not confined to 2-port elements but
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I. INTRODUCTION
This paper presents a new and comprehensive treatment of
computer-oriented cascaded network analysis. The analysis of cascaded
networks plays a very important role in the design and optimization of
microwave circuits, so that an attractive approach which facilitates
efficient analytical and numerical investigations of response, first-
and highér-order sensitivities of response, simultaneous and arbitrary
large-change sensitivity evaluation is highly desirable. As is
well known, first-order sensitivities, for example, are useful in
network optimization by gradient methods. Large-change sensitivities
are important in tolerance analysis and design centering.
The approach we have developed permits efficient
(a) exact analysis of cascaded networks in any direction,
(b) exact evaluation of first-order response sensitivities at any
location,
(¢) exact evaluation of the effects of any number of simultaneous large
changes in any elements,
(d) the exploitation of network structure: branches, symmetry,
reciprocity, ete.,
(e) evaluation of the exact effect due to simultaneously growing
elements in appropriate locations,
(f) exact response and response sensitivity evaluation for branches
connected in series or parallel with the main cascade.
The conceptual advantages enjoyed by our approach and applicable
to 2-port elements are
(a) all calculations are applied directly to the given network: no

auxiliary or adjoint network is defined,



(b) all calculations involve at most the premultiplication of two by
two matrices by row vectors or postmultiplications by column
vectors: no explicit matrix inversion is ever required,

(e) response functions, sensitivities or large-change effects are
represented analytically in terms of the parameters to be
investigated: all parts of the network to be kept constant are
reduced numerically to a few two-element vectors appearing as
constants in the formulas,

(d) calculations can be carried out easily by hand, if éppropriate, or

are readily programmed.

II. THEORETICAL FOUNDATION
Consider the two-port element depicted in Fig. 1. The basic

iteration, also summarized by Table I, is

e |

= { y, where A is the
transmission or chain matrix, g contains the output voltage and current
and ¥ the corresponding input quantities.

Forward analysis (see Fig. 2 and Table I) consists of initializing
a §T row vector as either [1 0], [0 1] or a suitable linear combination
and successively premultiplying each constant chain matrix by the
resulting row vector until an glgmzﬁ;;ﬁ;;gﬁg;gg; or a termination is
reached.

Reverse analysis, which is similar to conventional analysis of
cascaded networks, proceeds by initializing av column vector as either
[1 o]T or [0 1]T or a suitable linear combination and successively

postmultiplying each constant matrix by the resulting column vector,

again until either an element of interest, or a termination is reached.



In summary, assuming a cascade of n two-ports we have

Fl=y0 = ata? oAt LR (1)

~ ~ ~ ~ ~ o~

and, applying forward and reverse analyses up to Al, this reduces to an

expression of the form

4T T
d = u1 y1 =cut al i ) (2)

~ ~ ~ ~ ~

where

y =c¢cv (3)

and ¢ and d relate selected output and input variables of interest
i
explicitly with A™.

The typical formula will, therefore, contain factors of the form

function evaluation: ETﬁ v==>0Q, ()
. s s s =T
first-order sensitivity: u 6A v ==> §Q , (5)
—T 3A
partial derivative: u ;:'v ==> Q' , : (6)
. =T
large-change sensitivity: u™ AA v ==> AQ , (7)

where the parameter ¢ is contained in A. A full reverse analysis taking

n n
SEERLY

L1}
o -2
- O

yields

~ ~2



and a corresponding full forward analysis taking

-4 —4 T T 10
[u} u;] = [5? ug] -
- h 0 1
yields
1 0 T
at A% A [E? ay .
o 1 ~ ~ ~ ~ ~
Symmetrical Networks Consisting of Symmetrical Elements

In many practical cases we encounter symmetrical networks (around a
central plane) which consist of reciprocal and symmetrical elements.
Series impedances, shunt admittances, transmission lines and RC lines
are examples of such elements. The properties possessed by these

elements are

211 = 322
and
det A = 349 855 = 845 8¢ = 1,
where
A 411 g2
At : (8)
31 %

which lead to the transformation

_ a=1
(o1 -ep) A ley -5,) = 2

or

-1
[e, -e,) & " [e, e, ] =4 .

Using this transformation it may be shown, for such networks, that

—Tn-i+1 —m-i+1,T

1 i
vy vol = [y, u, 1.



This equality can be used to reduce computational effort.

Reference Planes

In considering more than one element in the cascade we divide the
network into subnetworks by reference planes. These in turn are chosen
so that no more than one element is to be explicitly considered between
any pair of reference planes. In Fig. 2 the element § is the only

element whose effect is to be considered. In Fig. 3 the elements Ak, Ai

and é‘j are considered in the kth, the ith and the jth subnetworks,
respectively. Note that the superscripts of A here, and from now on,
denote the subnetwork and not the element. Forward and reverse analyses
are initiated at the reference planes. A forward iteration of the
structure of Fig. 3 is illustrated in Fig. 4, where equivalent
(Thevenin) sources are iteratively determined. Reverse iteration is

shown in Fig. 5, where equivalent (Norton) sources are iteratively

determined.

III. NETWORK FUNCTIONS IN TERMS OF ELEMENTS UNDER CONSIDERATION
Performing forward analysis from the source of the ith subnetwork
to the input of Ai and reverse analysis from the load to the output of

ei we have

_ T
i +2: ) Al (v v, « (xiv - thyvy = VK . Zg iyl

~1 S ~2 ~1 L L"~2 L S7S (9)

and the current through the voltage source of the ith subnetwork

_T
Ii = u A (V v+ (Y t— I )v ) =

S 2 (10)

k k k
L L IL ’

From (9), letting Ii = 0 and Yi = 0, we have Ig = 0 and the Thevenin

L



Yyoltage
i i
. v \'}
V'j = Vl = S = S. PR (11)
S L - = T i Ql +Z1Q1
(u,+Zgu,) A%y 11778 21
where the Q terms have been defined in (4). Letting Vé = 0 and Yi =0,
J i
= - output impedance
we have IS IL and the
1 = =T 1 .14
S - Ii - - T i Qi +ZiQi !
L (E1+ZSEZ) Ay, 1178721

where, again, the Q terms of (4) are used to obtain a compact
expression. These expressions for Vg and Zg permit equivalent Thevenin
sources to be moved in a forward iteration.

From (9) and (10), letting Ii = 0 and Zi = 0 we have Ik = 0 and the

L S L
input admittance
Sl TAi(v aivy o ol
k S 2~ ~1 L2 21 L 22
Y = = = . (13)
Loyt =Ty, o1 ot ariot
S u, A (v +YLv2) 117°LT12
i i k
Letting VS = 0 and ZS = 0, we have VL = 0 and the Norton current
S S LG4 TR )TAiv = -rhaket, - ot (14)
L~ 7S~ “L'L: ~2° < ~2° L LT12 22" °
k k
These expressions for IL and YL permit equivalent Norton sources to be

moved (if desired) in a reverse iteration.

The input current Ié for Ii = 0 is obtained via (13) as
T

1 14 u Ai(v +Yiv )
I, =V./|Z5 + =l =1 La2-
S S S _T { i

u, A (v +YLv )



T

=t i i, 4 .id

Ve, Aty V5(Qy,-1,055) .(15)

- _ . T. . S i o.idi . idi igid
(u1+2;u2) At(v +YEV2) Q11+YLQ12+ZSQ21+Z;YL022

Tables II and III summarize the procedures and the effort required
in evaluating the different factors in the derived equations.
Useful special cases of these formulas for IS and VL in Fig. 2 are,

from (15) and (11), respectively,

E'TAV Q
S 'S _T - 'S Q11
u, Av,
and
Vs Vs
VL = T =9 . (17
u, Av 11

Table IV gives some useful formulas which can be obtained for variations
in a particular element 5. We note, for example, that, since é is
arbitrary and at most only one full analysis yields all Q11, 6011, Q;1
and AQ11, the corresponding VL’ GVL, avL/a¢ and AVL w.r.t. all possible
parameters anywhere in the cascade can be evaluated exactly for one
network analysis. This particular special case is equivalent to the

results of previous researchers [1,2].

IV. NUMERICAL EXAMPLE
The cascaded seven-section bandpass filter shown in Fig. 6 [3, 4]

serves as a numerical example. All sections are quarter-wave at 2.175

GHz. The normalized minimax characteristic impedances are [U4]



0 _ .0 _
20 = z) = 0.606463
0. .0 _
29 = Zg = 0.303051
0 .0
Zy = Zg = 0.722061
zg = 0.235593

The output voltage VL~at a normalized frequency of 0.7 is
0.49740790 = j3.901159hx10-3, verified twice using (11): once

associating Ai with Z3 and once with ZM' Furthermore, one analysis

yielded

VL(23+0'03) 0.49838950 - j 0.034901610

vL(zﬁ-o.o3) = 0.49062912 + j 0.034959186

The open-circuit voltage at the load end was calculated using (11)

as

VOC = 0.98624507 + j 0.092266904

and the Thevenin impedance using (12) is

ZTH = 0.98119253 + j 0.20103391

which further verified VL.

One analysis taking €, = 0.021, ey = 0.024 yielded

0.49719716 + j§ 2.2191360x10™3

0 0

v. (2% ) j 2.363631ux1o'2

0
LiZ*e, 2555
0 0
VL(Zz-e2,25+es)

0.49583538

0.49732462 + J 1.7909912x10™2
3

0 0 -
VL(ZZ+52,ZS+65) 0.49751427 - J 8.3726U470x10
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A multidimensional quadratic approximation was carried out for VL
following the approach of Bandler and Abdel-Malek [5]. The variables
for the approximation were the characteristic impedances as well as the
normalized frequency. The circuit responses at U5 base points (which is
equal to (k+1)(k+2)/2, where k is 8) were needed to eQaluate the
coefficients of the quadratic polynomial approximating the response
function [5]. A base point is a point where the approximation and the
actual function coincide. The center base point, which is the center of
the interpolation region in which the approximation is assumed to be
valid, had the characteristic impedances given before and a normalized
frequency of 0.7. 16 base points were determined by varying one
parameter at a time by *§ w.r.t. its value at the center of
interpolation. For the characteristic impedances § was chosen to be
0.03 and for the normalized frequency it was 0.01. At the remaining 28
base points only two parameters were perturbed at a time from their
values at the center of interpolation by a percentage of their §.

The symmetry of the structure was taken into consideration in
choosing these base points. Letting E- be the center of the

interpolation region, the base points can be expressed by [6]

o' o . g1 =D -1,

~

B o]+['§

-~ -~

.01, (18)

te |

where

N is equal to 45 in our case,

1

K is a k-dimensional identity matrix,

Oy is a zero vector of dimension k,
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0.03
0.03

0.03
0.01

and

B is a k x [k(k=1)/2] matrix given on page 12.

Examining this ? matrix we note that the entries for perturbing two
parameters at a time are the same as for their corresponding symmetrical
Parameters. The choice of base points given by (18) preserves symmetry
in the appropriate coefficients of the multidimensional polynomials.

Taking the optimal minimax characteristic impedances [4]:

Z1 = Z7 = 0.606595
Z, = Lg = 0.303547
z3 = z5 = 0.722287
Zu = 0.235183

and calculating the group delay using the derivative of VL w.r.t. o

obtained from the quadratic approximation yielded

TG = 0.893 ns ,

while the exact group delay is [7]

TG = 0.895 ns.
exact
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m:



- 13 -

V. TWO ALGORITHMS FOR EVALUATION OF LARGE CHANGES
The two following algorithms were used to obtain responses at the
base points for the interpolation performed in the previous section.
The first was used when one parameter at.a time was perturbed and the
second was used when pairs of parameters were perturbed simultaneously.
Note that when the normalized frequency was perturbed a whole new

analysis had to be performed.

Step 1 Initialize'? and v.
Set i « 1, m« 1, j < n.

Comment n is the total number of elements in the cascade and m is
a counter for the variable elements.

Step 2 If i = zm go to Step 5.

Comment Lm is an element of L, an index set containing
superscripts of the k matrices containing the k variable

parameters and ordered consecutively. It is assumed that

each matrix contains only one variable.

Step 3 al « b al,
i«1i+.
Step U4 If i = - to Step 5.
Go to Step 3.
Step 5 Let x" « u,
If 1= zk go to Step 7.
Comment {1. 32, coey 3k are working arrays to store the u vectors

~

required in the evaluation of the large changes taking

place.
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Step 6 m<+«<m+ 1. Go to Step 3.

Step 7 If n = 2, go to Step 10.
Step 8 17=A‘j V.
J+«J-1.

Step 9 If j = zm go to Step 10.

Go to Step 8.

Step 10 Evaluate Q using the stored xm, v and the perturbed Aj.
If j = 11 stop.
Comment Positive and negative extremes of the variable in QJ are

considered simultaneously.

Step 11 m<+m-- 1. Go to Step 8.

rithm ultiple Pairwise nge
This algorithm is for evaluating the response at the k(k-1)/2 base
points where two parameters are perturbed at a time. At the first k-1
points following those considered in Algorithm 1 the parameters
indicated by the subscripts
1,2 1,3 ... 1,k
are changed; at the next k-2 points the parameters indicated by the
subscripts
2,3 2,4 ... 2,k
are changed, and so on, until the final point at which parameters k-1

and k are perturbed. Fig. 7 serves to illustrate the analyses involved.

Step 1 Initialize u?, ug, u} and u;.
Set 1 « 1, m+« 1, q« 0, r+ 1and s «k~-1.
Comment 9} and u; are vectors to be initialized as u? and ug,

respectively. They have the same role as u? and ug in the
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forward analysis initiated at a reference plane
immediately following the first variable element.

If i = 8, 80 to Step 4.

Lm is an element of L, an index set containing
superscripts of the k matrices containing the k variable

parameters as indicated in Algorithm 1.

U?T + U?T Ai.

0T 0T ,i
uy” +uyt A

If m= 1 go to Step 6.

1T 1T i
R
1T 1T ,i
u,” «u, AT

un . un i.

EgT . EgT ~i.

This step is not performed until we reach a variable
element, since the analyses involving the Bjdo not begin
until the jth variable element has been considered.

Set 1 « i+ 1.

Ifi-= zm go to Step 7.

Go to Step 3.

If m = k go to Step 9.

Calculate the Thevenin impedances and voltages

Zg(m, 1), «vvy Zg(m,s),

Vs(m,1), ooy Vs(m,s).

8«8 -1,

For the first variable element k-1 sets of Z_ and VS have

S



Comment

Step 11

- 16 =

to be evaluated since changes in this element will be
coupled one at a time with changes in the next k-1
variable elements. For the second variable element k-2
sets of ZS and VS are calculated and so on. See Fig. T.
If m=1go to Step 13.

Set p « 1.

p is an internal counter.

fr « uP,

If p

q go to Step 12.

When the analysis has reached a reference plane
immediately preceding an element containing a variable
whose change 1is to be associated with any previously
encountered variable a snapshot of the appropriate u
vectors is taken and stored in the X arrays. See Fig. 7.
Set r «+r + 1.

p «p+ 1.

Go to Step 10.

Set r «r + 1.

If m = k go to Step 16.

ERC
oT 0T .i
u,” «u, A%

If m=1go to Step 15.

1T AT i
upt ey AT

u1T . u1T Ai
~2 ~2 ~ :

‘qT qT i
Uy Yy 2

qT . un i

Up % 2

-~
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In Step 7 we calculated sets of ZS and VS accounting for
variations in ei. In Steps 13 and 14, however, we carry
forward the analyses for which éi is considered fixed.

Set 1 « i+ 1.

meem+ 1,

q+q+ 1.

Initialize u?T and ugT and go to Step 6.

u?T and ugT are initialized to start a forward analysis at
a reference plane immediately following a variable element
at,

Set r «+r - 1.

mem- 1.

Initialize v, and Ve

At this step we start the analysis from the load end.

If n= zk go to Step 20.

Set j « n.

n is the total number of elements in the cascade.
!1*§JY1'

2 * fj Vor

Je3-1.

If J = &, g0 to Step 20.

Go to Step 18.

p « 1.

Calculate Q using VS, ZS’ éJ and Y and the appropriate f'
When we reach the kth variable element we calculate

k-1 values of Q, and when the variable element k-1 is

reached we calculate k-2 values of Q and so on as



- 18 =

illustrated in Fig. 7.
Step 22 If p = q go to Step 23.

Set r «r - 1.

p+«p+ 1.

Go to Step 21.
Step 23 If m = 1 Stop.

Set q «q - 1.

me+<m-=- 1.

Go to Step 18.

VI. BRANCHED CIRCUITS
Consider, as an example, the cascaded circuit shown in Fig. 8,
which has two branches, one connected in series and one in parallel. 1In
the series and parallel branches we highlight, for example, the elements
B and C, respectively. The series branch can be thought of equivalently
as an element consisting of a series impedance connected in cascade with

the main circuit as shown in Fig. 8. This impedance Z may be taken as

the inverse of the input admittance derived in (13) and is given by

—T
Wi B Vip

s, (19)
Uy B Vip

where the subscript B distinguishes terms associated with the branch
from that of the cascaded main circuit. The forward analysis is
initiated at reference plane d and the reverse analysis is initiated at
reference plane b. (See Fig. 8.)

Similarly, the parallel branch can be thought of equivalently as an

admittance Y connected in shunt in the cascade. The admittance Y (as in



19 -

(13)) is given by

—T
e ¢ Yic

Yo (20)
e ¢ Yic

where the forward analysis is initiated at reference plane e and the
reverse analysis is initiated at reference plane c.

Different formulas relating the load voltages of the branches to
the variables can be derived. The load voltage of the series branch can

be derived (Appendix A1) as a function of B as-

T
& Y1z Vs
Vg (B) = . [z ) (21)
Y 2 Vi Yz |, | Y1z
where
sz is the result at reference plane f of a forward analysis

initiated at the source,
Viz is the result at reference plane g of a reverse analysis
initiated at the load reference plane a.

It can also be obtained (Appendix A2) as a function of C as

R R
~1Yf ~1Yg Y 1 ~1Y 'S

Vg (0 = T o ’ (22)
GT B v ET : v
~1B ~ ~1B <1 ~1Y
Y 1
where

;fY is the result at reference plane h of a forward analysis,

Viy is the result at reference plane k of a reverse analysis,

;?Yf is the result at referehce plane h of a forward analysis

initiated at reference plane f,
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E?Yg is the result at reference plane h of a forward analysis
initiated at reference plane g.
The load voltage of the parallel branch can also be derived

(Appendix A3) as a function of C as

T
& Yy Vs
V. (C) = ’ (23)
CL'< ;T c GT 1 0 .
~1C ~ ~1C 1Y ~1Y
Y 1
and (Appendix AY4) as a function of B as
& Yy Vs
V.. (B) = (24)
R vl R
~1C < ~1C <212 0 1 ~1Z

VII. CASCADED NETWORKS OF 2p-PORT ELEMENTS
The approach we have developed can also be utilized in the analysis
and design of cascaded networks consisting of 2p-port elements.
Consider the 2p-port element shown in Fig. 9, possessing p input ports

and p output ports. 1Its transmission matrix is given by

A A
I ,
~ |8 By

where é11, 512, 621 and 522 are p x p matrices. The input quantities in

this case are
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and the output quantities are

where the element with subscripts 1 to p denote voltages and from p+1 to

2p denote currents.

e e

For the forward and reverse analyses the matrices g1, 92, y1 and Y2

are initialized such that
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where
A Y
E, = ’
0
—~p-
and
A %
E, = ’
1
h~p -
and where

1_is the unit matrix of order p,

~

Qp is the null matrix of order p.

We can now derive in an analogous manner to the derivation of (9)

=(E'f+z T A (V. V., +V

~S 2" - ‘-1 L 2 (XL YL = IL))’ (25)

Vs
where
U1, U2, V1 and V2 are the matrices obtained from forward and

~

reverse analyses,
YS is the vector containing the p source voltages,

YL is the vector of load voltages,

IL is the vector of current sources at the loads (if any),

gs is a diagonal matrix containing the impedances of the sources,

¥L is a diagonal matrix containing the load admittances.

To evaluate the unknowns VL’ having obtained numerical values for
(25),a system of p linear equations is solved. When A is perturbed or

when derivatives are required, only 6p3

additional multiplications and
the solution of a p-system of linear equations are needed and not a

whole reanalysis of the entire cascaded circuit.
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VIII. CONCLUSIONS

An important claim we make in this paper is that equations (9) -
(15) can be used to generate in a straightforward manner, following
differencing or differentiating (as appropriate), any desired exact
formulas for multiple network analyses, sensitivity and tolerance
analysis with simultaneous large changes. All calculations are carried
forward simultaneously and redundant calculations are obviated as
demonstrated by the examples and algorithms presented.

Symmetry of the networks analyzed can be exploited leading to
saving of computational effort. Branched circuits can be handled
readily. Formulas, similar to (21)-(24), can be derived for other
branched structures using the same concepts so as to render the
sensitivity analysis and design of these circuits as simple as possible.
The approach should prove to be very suitable for computer-aided design
of cascaded microwave circuits and systems consisting of 2-ports. It

appears to be readily extendable to 2p-port networks.



-2 -

APPENDIX

A1 To Obtain YBL as a Function of ys and E

The voltage across the impedance Z, representing the branched

circuit, in terms of VBL is given by

= ET Bv (A1)

Vy = wp BVvyp Vg

and it can be expressed in terms of voltages in the main cascaded
circuit as
V, = el [V, = v, 1V (A2)
Z "~ <2112 127 L ?

where ;HZ is the result of the reverse analysis at reference plane f.
So (A2) can be written, substituting for the chain matrix of the element

representing the branch, as

r [z
V=l Viz = Vizd Y (A3)
0o 1
1z 1 0
= [1 0] - v Vv (AY4)
0o 1 o 1]|~"% L
- ef 7V (85)

=S Viz &L

The load voltage of the main cascade V. can be expressed by

L

VL = 1 7 (A6)
ur v
~1Z
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and (A1) can be rewritten as

vz

VoL =7 - (A7)

W B Vg

Substituting for V, of (A5) we have

T

& vz 2V,
VBL =“f:¥“_;-_—— (A8)
Y2 V1B

and substituting for VL from (A6) and Z from (19), we get

;T Bv
T Y48 2 V1B
2%z Z1 Vs
Yg 2 Vi
v = , (A9)
B GT Bv GT 1 . v
Y1 2 Vi Y1z Y1z
0 1
hence
T
% Y1z Vs
Vg (B) = 1z
ET Bv ET v
e 2l iz |, | 1z

A2 To Obtain V. _as a Funotion of V_ and C

From (A7) and (A2) we can write Vg, as
T_
ey Vg = Vgl vy,
VBL = GT Y . (A10)
~1B ~ ~1B :

The load voltage VL can be expressed (compare with (A46)) by

Vs
v, g : (A11)
u v
Sy ] M




We can write, using notation defined for (22),

Similarly,

[Wiye = Ypyg] Y
;T Bv GT
~1B ~ ~1B ~1Y
A3 To Obtain YCL as a Function of YS and g

The voltage across Y in terms of VCL is given by

and in terms of VL’ as

But VL

So, substituting this V

get

is also given by

v

v

-T =T
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) GT 1 0

~1Z  J1Yf Y 1
.

) GT 1 0

~1Z2 - 1Yg LY 1

iy o

Viy -

(A10) we obtain

—T
We C Ve Ve 0

v

€1 Vay 'L

Vs

17 0 .
-—-T
Y1y [ ] M

Y 1

(A12)

(A13)

(A1Y)

(A15)

(A16)

(A7)

into (A16) and the resulting VY into (A15) we

(A18)
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A4 To Obtain yCL as a Function of !S_ggg_g

(1]

[2]

[31]

(4]

(51

From (A15), (A16) and (A6) we can write V; as

€1 Y4y Vs
V. (B) = . (A19)
CL'=2 o 1 zZ ]
Y1c ¥ Vic Y1z o 1| ~12
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TABLE I

PRINCIPAL CONCEPTS INVOLVED IN THE ANALYSES

Concept Definition Implication
Basic iteration ;'= Ay y ==> ;
Forward operation ;TA = uT uIz = ;TAy = uTX
Reverse operation .; = Av y = ¢cv ==>-§ = d;
A.]'7
Voltage selector e, = e, ==> u, or v
<1 ~1 ~1 ~1
0
P9
Current selector e, = . e, ==> u, or v
<2 . <2 ~2 ~2
1.
V-2 I ]
S °S’S T T
Equivalent source Y= . ey = Vg-Zglg, &5y = Ig
S §
VL
Equivalent load y = y = Ve +(Y V. -I e
b4 4 ~1 L'L "L'22
LI
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TABLE II

NOTATION AND IMPLIED INITIAL CONDITIONS

Initial Conditions

Factor . Identification Forward Reverse
‘GT (®) v, (1')11 voltage voltage
;T (%) v (+) voltage current
~1 ~2 12
GT (%) v (+) current voltage
7] Y4 21 g
—T

#
32 (#) v, (1')22 current current

(#*) denotes either A, 6A, 3A/3¢ or AA

(t) denotes Q, 8Q, Q' or 4AQ, as taken from (4), (5), (6) or
(7), respectively
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TABLE III

ANALYSES REQUIRED BY CERTAIN TERMS

Term Analysis Required
uTv Forward and reverse (conventional) cascade analysis
- to any corresponding reference plane, whichever is
convenient
T T
313, 923 Preferably one reverse analysis to source reference

-—T

u °v

o e v, w
4, " D Y
or e v, ur
4 T By
- ~T
u *v u

plane (avoiding calculation of u, and u2)

Preferably one forward analysis to load reference
plane (avoiding calculation of v, and 22)

One forward analysis to input of A and one reverse
analysis to output of A

One full forward analysis to input of A and one
reverse analysis to output of A

One full reverse analysis to output of A and one
forward analysis to input of A

One full forward analysis to input of A and one full
reverse analysis to output of é
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TABLE IV
FUNCTIONS OF INPUT CURRENT I

CHANGES IN A ONLY

AND OUTPUT VOLTAGE VL FOR

Variable Input Output
1 v
A IS=VS§ VL=‘Q‘§
~ 1" 11
V 6Q,.-I1.6Q V2
54 s1q = ——21—S 11 sV, = - T 6Q
2 S Q,, L Vg 11
aA 31, VQo.-I.Q. av v2
o4 s Vs%17Ts9% L kg
3¢ 3¢ 011 3 VS 11
Vo2Q, ., -I1.4Q ry2
AL AL o =S 2177811 AV _ T
< S Q11+AQ11 L VL+VS/AQ11A
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Notation for an element in the chain, indicating reference

directions and voltage and current variables.

Forward and reverse analyses of a cascaded network with

source and load impedances assumed constant.

Subnetwork i cascaded with subnetworks k (at source end)

and j (at load end).

Forward iteration for Fig. 3, transferring an equivalent
source accounting for design variables from subnetwork k

from one reference plane to the other.

Reverse iteration for Fig. 3, transferring an equivalent
source accounting for design variables from subnetwork j

from one reference plane to the other.

Seven-section filter containing unit elements and stubs

[3]. All sections are quarter-wave at 2.175 GHz.

Illustration for a cascade of 6 two-ports of the principal
stages in the calculations involved in the multiple
pairwise changes algorithm. Three variable elements are
considered, hence three sets of simultaneous analyses are

effectively performed.



Fig. 8

Fig. 9
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An example of a cascaded circuit with a branch connected
in series and a branch connected in parallel. Branches
are represented in the cascade by their equivalents.
Reference planes where different analyses are initiated

are labelled.

A 2p-port element: a generalization of Fig. 1.
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Fig.
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Fig, 3
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Fig. 7
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