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OPTIMIZATION OF DESIGN TOLERANCES USING NONLINEAR PROGRAMMING

J.W. BANDLERZ

Abstract A possible mathematical formulation of the practical
problem of computer-aided design of, for example, electrical
circuits and systems and engineering designs in general, subject
to tolerances on the k independent parameters is proposed. An
automated scheme is suggested starting from arbitrary initial

acceptable or unacceptable designs and culminating in designs

¢

which 1mder reacanzble rectristipns nra nnnnn F T I J . T

B T el T Y o S R

"
O
e

case sense. It is proved, in particular, that if the region of
points in the parameter space for vwhich designs are both feasible
and acceptable satisfies a certain condition (less restrictive
than convexity) then no more than 2k points, the vertices of the

tolerance region, need to be considered during optimization.
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1. Introduction

An extremely important practical problem is the problem of optimal
design subject to tolerances. Recently published work (Refs. 1 to 6) has
vielded some practical insight into the nature of the problem. Indeed, it
immediately suggests the possibility of formulating the complete worst case
design of circuits or systems as a nonlinear programming problem.

An automated scheme would start from an arbitrary acceptable or
unacceptable design and under appropriate restrictions stop at an acceptable
design which is optimum in the worst case sense for specified tolerances.
The most suitable objective function to be minimized would also seem to be
one that best describes the cost of fabrication of the circuit or system,
as suggested by some authors (Refs. 1 to 6).

It is the purpose of this paper to propose possible formulations
‘and to discuss this problem generally. It is not claimed that a complete
solution has been obtained. However, a number of interesting objective

functions (more appropriately, perhaps, cost functions) have been investigated.

iy

Many types of objective functions can be formulated. A number of

variations on the sum of the inverses of the absolute tolerances or the sum



of the inverses of the tolerances relative to respective nominal parameter

values can be obtained. Furthermore, the nominal parameter values may or

may not be variable. The relative merits of these and other fumctions which

attempt in some way to maximize the size of the region of possible designs,

namely, the tolerance region, are discussed.

For the purposes of this paper, it is assumed that the parameter

tolerances can be independently specified. Furthermore, it is assumed that

the design parameters and tolerances can be continuously varied. The

tolerance region, in this case, will be defined by simple upper and lower

bounds on the parameters. The region will, of course, contain an infinite

number of acceptable designs, assuming that it is a subregion of the inter-

section of regions of acceptable and feasible designs. It is proved that

if this region satisfies a certain condition (less restrictive than

convexity) then only the (finite) number of vertices of the tolerance

region need at most to be investigated.

2. Feasible and Acceptable Designs

A wide range of design problems can be formulated as nonlinear

programming problems. One usually defines a scalar objective function G(¢),
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represents the k independent design parameters. Design constraints can be

4
assembled into a column vector g(¢) and the problem stated as finding %
N

such that
UG = min U(4) 2)
i ¢eR A
A, C
where
A
R, = {glg(®) > 03 (3)

For the purposes of the present discussion let us assume that
two kinds of constraint functions are present, ones that determine the

feasibility of a design designated gf(¢) and ones that determine the
AL A,

acceptability of a design designated ga(¢). We will therefore define a
A8 A

feasible region of points Rf as

7

i o>

By = {glge 2 03 )

and an acceptable region of points Ra as

> 0} (5)
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Thus, RC = RffﬂzRa. It is assumed that all sets are nonempty. Note
that Ra not necessarily a subset of Rf.
The objective function is usually set up so that a feasible
solution is obtained at an interior point of the acceptable region, and
as far as possible, in some sense, from its boundary. The reasoning
behind this is the hope that when the design is fabricated, inevitable
errors in the design parameters might, nevertheless, yield an acceptable

design. It is this flexibility which can be exploited in the optimization

of tolerances. Often

U(g) = - Tf{ gi(fg) (6)
a

where the index set Ia relates to constraints defining Ra' It follows
then that

R, = {3]U($) < 0} N

3. The Tolerance Region

Given a nominal point QO and a set of nonnegative tolerances ¢,

where

(8)
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we can define a region of possible designs Rt as

=3
e

{$[¢§—si <6y < dgte s 1=1,2,....k) (9
or, equivalently,

R, 4 {2!% = ¢g +ties, -15t151, i=1,2,....,k} (10)
Obviously, depending on the location of $° and the value pf i’ Rt may or
may not be a subset of Rc'

The tolerance problem is beginning to take shape - Rt should be
placed inside Rc in some optimal manner by adjusting Qo and g to optimal
values %0 and %. A serious development, however, is that all points Q € Rt
must satisfy 2 > g. We have, effectively, to deal with an infinite number
of constraints.

For any given point 20 we can view the functions %(2) with respect
to £ as follows. We let the origin of the g space correspond to 20

(translation). We then consider all the possible linear parameter trans-

formations, from (10),

e = T(6 - ¢°)
oy

Y n

suggested by the transformation matrix (magnification and reflection)
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for -1 < ti <1, i=1,2,...,k.
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Two-dimensional examples of allowable tolerances in the tolerance

space corresponding to particular constraints and particular nominal points

in the parameter space are shown in Fig. 1.

4, Restrictions on Rc

For obvious reasons it is impractical to consider an infinite

number of constraints. . In order to make the problem tractable a number of

simplifying assumptions could be made to try to obtain a solution to the

problem with reasonable computational effort.

It can be shown that if Rc is convex then, from Refs. 7 or §,

i

g € Rc for i = 1,2,...,n

implies that

(12)

"
bt
Lo
P



Given, for example, a finite number of points gi in a finite-dimensional
Euclidean space it is easy to visualize that the gi are vertices of a
polytope (the intersection of a finite number of closed halfspaces) and
that % is any interior or boundary point. If Rc is itself a polytope (all
constraints linear) it is clearly convex.

R, is a polytope with 2k vertices. Let the ith vertex be denoted

t
¢1 and let
N
Lo yO 2E R for i = 1,2 ok (15)
6 = % -e +2E X .1 € R, fori 22, ceey J
(\l ~
where '
El 0 . 0]
\ 0 &y 0 o
E= |° : (16)
n
.P 0 ek-

and V. is a k-element vector whose elements reflect the subscript i in binary
Y]

notation, i.e.,

o] M fo] M
o 0l 1| |1
0 0 0 0
vy ¢ fg’ vy = | l’ Va2 = HE vs {Ej IR )
o) 0 o 0

V. may be formed
/\)_'L‘l



where

Ula UZs see g uk € {0’1}

must satisfy (see Table 1)

(i .
uJ( ) Y

k. 1
i=1+ ) uj(i)ZJ

j=1

and where the k-element vectors Ej are given by

— -
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A | O A

b I N N2 =
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Fig. 2 illustrates an example in three dimensions. Observe that

j=1

Using (12)-(14),

0
1

0

-

g0 0

k
Ev, ., = .z uj(i) € ;

H

Nk

b

g

o0 7

(18)

(19)

(20)

(21}

(22)



2k
¢=¢—e+22(x Zu(i)au)en (23)
Voogmr e i A
if Rc is convex and the vertices of Rt are elements of Rc' Equation (23)
generates the set Rt‘ Therefore, Rt(:'Rc. See Fig. 3(a).
It will now be shown that the assumption that RC is convex is
unnecessarily restrictive.
Theorem 4.1 If the vertices of R, are in R, then RtC: R, if, for all
3=1,2,...,k,
ga’ sb(j) - 23 + u € R (24)
where o is a scalar, implies that
¢ = ga + x('%b(j) - 9% e R, (25)
for all A satisfying
0<ac<1 (26
See, for example, Fig. 3(b).
Proof Let iz denote some point, in general, in an Z-dimensional linear

manifold generated by the first 2Z vertices as

2
$p =9 E2 ] (p, ] ny(E)eus) (27)
i=1 3=1

with P satisfying
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;
p, =1
4=1 *
(28)
Py >0 i=l,2,...,2£
Note that since max i = 22, we can deduce from (20} that
u, =0 for j > 2 (29)

in (22), so that the relevant summation need be taken only up to £ and not k.

Assume that ¢£ ¢ R for all zi € R given in (22). Now consider
hg c c

. L
= ¢ —e+2 . . 0
041 = 9 - _Z_ cH _Z_ My(Deu) (30)
i=1 j=1
with 9y satisfying
2§+1_
q, =1
4=1 T (31)
q; 2 0 i=1,2,...,2°1
After some manipulation, we find that
. £ 2
= —g+2 .t (ije.u.
Spe1 = 278 izl[(ql q2£+i) jzluj( Ye,u,]
2£+1
¥ (37
+ 2( L 930€pe1 Ypa1 (32)
i=2"41
Let
22+1
r= ) a (33)
.ok
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and
= = £ 34
pi—'qi+q£ i—l’zﬁ"°’2 ( )
241
Hence, (32) becomes
Qer1 = 8p T2 A e Yoy (35)

With x=0, $£+1 = 22 £ Rc by assumption. If A=1, $£+1 = $£ + 28£+l%£+1’
which represents a translation of the f-dimensional manifold. Thus,

2£+1 € RC by assumption. For 0<i<l we note $£+1 £ Rc if (24) to (26) hold
for j = Z+1.

It is easy to verify that 21 € Rc and, furthermore, that $2 € Rc
if (24 to (26) hold for j=1 and j=2, respectively. It follows by the
foregoing inductive reasoning that Qk = ¢, as defined by (23, is in RC

n
under the conditions of the theorem.
The theorem allows both Fig. 3(a) and 3(b), but not Fig. 3(c).

5. Some Objective Functions

A number of potentially useful and fairly well-behaved objective

functions which might be used to represent the cost of a design can be

formulated. 1In practice, of course, a suitable modelling problem would

first have to be solved to determine the significant parameters involved



partially or totally in the actual cost. Here, we will assume that either
absolute or relative tolerances are the main variables; furthermore, that
the total cost C(%o,i) of the design is just the sum of the cost of the
individual components.

It is intuitively reasonable to assume that

c(4%e) »c 20 as ¢+ (36)
NN v

~

C(go,i) + o for any e; > 0 (37)
Two out of many possible functions which fulfil these requirements are,
for c=0,

c
i

= (38)
i

subject to €2 g as stated in (8), and

K oy
c. = .Z ¢; log, == (39)
i=1 i
subject to
6 > e >0 (40)
nNooT oA T
In both cases
c, >0 i=1,2,...k (41)
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6. Examples

It is interesting to comsider Ca and Cr for the different regions
Rc sketched in Fig. 4. We will let ¢y =y = 1. Fig. 4(a) depicts a
(4
situation where $° will have relatively little variation in going from
4 11 $° > . and $° = £.; £ $° > 0 but £
Ca to Cr' Fig. 4(b) will have ¢l > g an ¢2 = €,; for Ca’ ¢2 ut for

v
Cr, ¢g = 0 which, physics permitting, indicates that one parameter may be

]
[e=]
-

"removed". It can be shown (See Fig. 5(a)) that min Cr is given by é;
at ;2 = 2%, El = U5. Fig. 4(c) allows the possibility of removing ¢ if
Cr is optimized. The minimum cost is then loge 9. It is easily shown,
however, that to minimize cost ¢1 should not be removed. See, for example,
Fig. 5(b). Using Cr in Fig. 4(d) would indicate that ;g and ;; may be zero.
Using Ca in all the cases of Fig. 4 we would find éo éo be an interior
point of Rc'

A number of corresponding observations to those made above can

be made if, for the cases sketched in Fig. 4, we took, for example,

¢i = l/rb1 and ¢§ w ¢2 as parameters.
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7. Conclusions

If, as is usual in the design of circuits or systems, the optimal
design is obtained by solving an approximation problem, then a fairly large
number of inequality constraints usually define the acceptable region. For
any particular set of reasonable tolerances one could exploit the likelihood
of the worst case (point most likely to violate a given comstraint) being
predictable by a local linearization or higher-order approximation of the
constraints to greatly reduce the actual cost of the necessary computations
than is implied by the 2k vertices of the tolerance region. Further study
of these ideas from a nonlinear programming point of view should yield more
insight into the possible success or failure of particular tolerance

optimization algorithms that might suggest themselves.
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Table 1. The numbering scheme for the vertices of Rt“

He (D) My (1) Hg(d) oen oy (1) jiuj @)Eﬁj
0 0 0 0 g
1 0 0 0 €49y
0 1 0 0 €94,
1 1 0 0 €121+€2£2
0 0 1 0 €444
1 0 1 0 €l$1+€323
0 1 1 0 6222+€3%3
1 1 1 0 €1£1+€252+€333
1 1 1 1

cm




Figure Captilons

Fig. 1. Allowable tolerances corresponding to
particular constraints and particular
nominal points.

Fig. 2. A three~dimensional example of points
defining the vertices of Rt'

Fig. 3. Possible regions Rc'

Fig. 4. Examples used in the discussion
of objective functioms.

Fig. 5. (a) Example corresponding to Fig. 4(b)

Vo v
with ¢2 =g, = 0.

(b) Example corresponding to Fig. 4(c)
with ¢; =1and g = %. The best

value of Cr is, in this case, loge 3.
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