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Abstract

A package of FORTRAN subroutines called DISOPT3 for solving continuous and
discrete, constrained or unconstrained general optimization problems is

presented.

The method used for arriving at the discrete solution involves

conversion of the original constrained problem into a minimax problem by the
Bandler-Charalambous technique, solving the continuous minimax problem using a

recent least pth algorithm by Charalambous.

Fletcher's 1972 method for uncon-

strained minimization and the Dakin branch and bound technique to generate the

additional constraints.
1. INTRODUCTION

A package of FORTRAN subroutines called DISOPT3
for solving continuous and discrete, constrained
or unconstrained general optimization problems is
presented. The method used for arriving at the
discrete solution involves conversion of the
original constrained problem into a minimax
problem by the Bandler-Charalambous technique [1],
solving the continuous minimax problem using a
recent least pth algorithm by Charalambous [2],
Fletcher's method for unconstrained minimization
[3] and the Dakin branch and bound technique [4]
to generate the additional constraints. These
steps are iteratively implemented until all the
discrete solutions have been found. DISOPT3 is
based conceptually on the DISOPT program developed
by Bandler and Chen [5, 6]. All of the desirable
features of DISOPT have been retained in DISOPT3
and some more have been added. DISOPT has been
used as a yardstick against which the performance
and validity of DISOPT3 have been measured. A CDC
6400 computer was used for developing and running
this program.

The goal in developing DISOPT3 was to create an
efficient user oriented program. This goal has
been amply achieved. DISOPT3 not only
incorporates some of the most efficient
optimization algorithms but also conforms to the
precepts of structured programming. For example,
each subroutine performs only one function or some
strongly related functions, the program listing is

segmented into logical modules by means of comment
cards, the use of GO TO statements is minimal, the
logical structures are simple, and last but not
least, descriptive comments are an integral part
of the program listing enhancing its readability
and ease of understanding.

The reader should consult, in addition to the
references mentioned already [1-6], the following
material dealing with the least pth approach in
optimization: the paper by Bandler and
Charalambous [7] introducing the least pth
approach, some extensions [8-10] and a review
article by Charalambous [11]. DISOPT3, following
DISOPT, can solve, for example, recursive digital
filter problems involving finite or optimal word
lengths, analog circuit and system optimization
including design centering and tolerance
assignment (continuous or discrete). A number of
problems from the literature have been employed to
test the package [5,6,12,13].

2. BACKGROUND THEORY
2.1 ASSUMPTIONS
DISOPT3 may be used for solving a mixed
continuous-discrete nonlinear programming problem
which can be formulated as
minimize f(x1, Kyy oo xN)
subject to

This work was supported by the National Research Council of Canada under Grant
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where K1is f%ss than or equal to N, are variables
that can vary continuously but must ultimately
assume only certain specified values. These are
called discrete variables. Out of the N
variables, it is always the first K variables that
we assume are discrete. There are two kinds of
discrete variables. The first kind of variable
can only take a finite number of values. The
second kind of variable can assume values that
correspond to uniformly spaced points on a line,
i.e., any value belonging to the infinite set
(..., -3a, -2a, -a, 0, a, 2a, 3a, ...) where a is
a finite positive quantity. The number a may be
called the step size of a uniformly discrete
variable. Each of the x,, Xx,, ..., X, can be a
discrete variable of either kind (but always the
first K out of the N variables must be discrete).

2.2 GENERAL APPROACH

The nonlinear programming system presented above
is solved assuming that all the variables can vary
continuously. To obtain discrete values for
certain variables in the optimal solution, further
constraints are added to the problem and it is
solved again, in an iterative manner. The flow
diagram of Fig. 1 summarizes the technique.

Start

Assume that the variables of the
given problem are all continuous

Convert the constrained problem into an
equivalent unconstrained one (optimal
solution for one is optimal for the other
and vice-versa) using the Charalambous
least pth objective

Solve the unconstrained problem using the
Fletcher algorithm

Do all variables, to be Stop, we

discrete in the optimal YES have the

solution, have discrete -——————# required

values? solution
NO

If a discrete variable, say x., is not currently

discrete, add a constraint of the type x, £ x
| or x. > x.. to the problem, where x, and x. are,
respéctively, the nearest lower and the nearest

upper discrete values of xi
Fig. 1 General arrangement of DISOPT3.
2.3 LEAST pTH METHOD

For the nonlinear programming problem described

earlier, Bandler and Charalambous have shown [1,2]
that it is equivalent to the minimax problem

min max [f(x), f(x) - “igi(x)]
x 1€im - - -
where o, > O for i = 1, 2, ..., m, and

suffieieﬂtly large.

Charalambous has stated the problem equivalently
as

min max [f(x) - a;8;(x)]
x 0<im - -
where o, = 0 and o, > 0 for i = 1, 2, ..., m,

again as long as the a; are above some threshold
values.

This minimax formulation can now be converted,
using the Bandler-Charalambous technique into the
unconstrained least pth objective
U({,g,p,E) = M(E!gig) z

ieL(x,a,£)

1

£(x)-a,8, (x)-€)7 | 9
———g?;jgjgi—-— for M(x,a,g) # 0

= 0 for M(x,a,£) = 0 ,

where
M(X,G,E) = max [f(X)-ais.(X)-E] 3
~ A . ~ 1 ~
i=0,1,...,m
q = p sign [M(}f’gyg)] » P21
{i]£(x)-a,g, (x)-£>0} if M(x,a,£}>0
L(x,a,E) =
Iif M(x,g,E) <0
and

The parameters p, ¢ and & are fixed when
minimizing U with respect to x.

The objective function U has the property that
under the stated assumptions it is continuous with
continuous first partial derivatives except when
M(%,a,E) = 0 and two or more of (f(g)-a.gi(g)-z)
are 0 in which case U is continuous but tThé first
partial derivatives are discontinuous.

Keeping p constant and changing g at each optimum
point of U such that U + 0 yields the desired
minimax solution which, in turn, is the solution



of our original constrained problem. The key to
the algorithm is the use of multipliers at each
least pth solution to provide an estimate of the
Kuhn-Tucker multipliers at the solution of the
nonlinear program, which in turn are used in
updating the a. Charalambous derived a simple
formula linking the multipliers at the solution
with a such that, ideally, the minimum of U yields
the desired solution independent of p and E.

2.4 BRANCH AND BOUND ALGORITHM

This algorithm starts by finding an optimal
solution for the continuous problem. If this
solution is discrete, then it is the required
solution to the original problem. If the solution
is nondiscrete, then at 1least one discrete
variable, say x., lies in between x. and x,., the
nearest lower and the nearest upper discrete
values of X .

Since the range between x, and x. is inadmissible,
we force all solutions into two sSubsets:

(i) solutions in which Xy < X

(ii) solutions in which Xy > Xy
The solution is analogous to a node generating
another two nodes. The solution at each of the
two new nodes includes one of the above
constraints. The logical structure of this
process, if continued, is that of a binary tree.
The reader is referred to [4].

The tree search will always terminate in one of
the three ways: we may reach a discrete solution
or we may find that there is no feasible solution
to the problem or the objective function at the
current optimum solution is worse than the best
discrete solution found so far. The solution to
the original problem will be the best discrete
solution found in this way. Hence, the problem is
solved by searching this tree.

The tree is not, in general, unique for a given
problem since at any stage we are at liberty to
form the next constraint using any x, which is
nondiscrete; choosing different Xy wiil lead to
different trees. More than one constraint may
operate on a variable at one time.

For a discrete variable with uniform step size, x

and X, are determined as follows: L
x, = [x./a,]
L i7%i9?
Xy = [xi/ai] +ag.

3. COMPUTER PROGRAM DESCRIPTION

The programming package to solve the problem
discussed in the preceeding sections is called
DISOPT3. It contains FORTRAN subroutines. Some
of its distinctive features can be summarized as
follows:

(1) It is user oriented.

(2) It incorporates some of the most efficient
optimization algorithms.

(3) It conforms to the precepts of structured
programming. For example, each subroutine
performs only one function or some strongly
related functions, the program listing is
segmented into logical modules by means of
comment cards, the use of GO TO statements is
minimal, the logical structures are simple,
descriptive comments are an integral part of
the program 1listing enhancing its ease of
understanding, and the input and output
variables for each subroutine have been
clearly identified.

(4) The accompanying documentation [14] is so
organized that it should be possible to solve
problems after reading introductory Chapters
1 and 2. Chapter 3 has a discussion of the
many available options. Chapter 4 deals with
the concepts used in developing this program.
Chapter 5 summarizes some results obtained by
this program. The program listing is
appended.

3.1 EXAMPLE 1: MODIFIED BANANA FUNCTION [5]

Minimize
£ = 100((x,40.5) - (x1+0.6)2)2 + (0.4 - x1)2,

where x, and x_, are constrained to be natural
numbers. The opgimal solution is

2

N - o

-7
.0
.0

pry
"wonou

In order to arrive at this solution, many nodes
are generated by the branch and bound algorithm.
The solution at each node is shown in Table 1.
The nodes are numbered to reflect the order in
which they are generated.

TABLE 1
SUMMARY OF RESULTS FOR EXAMPLE 1

Node Upper Objective Solution Description
No. bound function x1, x2

0 1010 0 0.40, 0.50 continuous
1 2.12 0.16 0.00,-0.14 feasible

2 - 2.14 -0.56,-0.61 nonfeasible
3 - 2.12 0.00, 0.00 discrete

4 - 0.36 1.00, 2.06 feasible

5 - 0.72 1.00, 2.00 discrete

6 0.72 0.75 1.26, 2.99 nonfeasible

3.2 PROGRAM ORGANIZATION AND OPTIONS

There are eight subroutines in this program, in
addition to the main program and subroutine FUN
which are supplied by the user. Fig. 2 shows the
overall organization for these subroutines. A + B



implies that subroutine B is called from
subroutine A.

MAIN

PROGRAM

user supplied
DISOPT3
—— executes branch —
and bound algorithm
BOUND UOPT GRDCHK3
— determines solves nonlinear checks
upper bound program at node gradients

FIND QUASID
determines performs
whether unconstrained
solution optimization

is discrete

FUN OBJ :
—» user's «———— evaluates «a—
functions error functions

LEASTPD
formulates least pth
function, gradients

and multipliers

Fig. 2 Calling sequence for all the subroutines.

A useful feature of the program is that many of
the variables in it have a default value; but it
is possible and sometimes desirable to initialize
these variables in the main program choosing
different values. The user could, thus, opt for
fast execution without a detailed printout or, a
complete printout, etc. The performance of the
program 1is greatly influenced by the choice of
these values.

The many options available to the user through
this program are, briefly, as follows.

3.2.1 One or All Discrete Solutions

If there are many optimal discrete solutions to a
problem, will the user be satisfied with just one.
If the answer is yes, let ONESOL, a logical
variable, be TRUE; otherwise, FALSE. Finding all
the solutions requires more effort than finding
Jjust one.

3.2.2 Checking Vertices for an Upper Bound

The effort required to find an optimal discrete
solution using the branch and bound algorithm
strongly depends on how soon-a good upper bound
can be found. If the user thinks that the
objective function for his problem could not be
larger than, say, 10.5 at the optimal discrete

solution, he could set UPBND (the upper bound) =
10.5 in the main program. A value of UPBND which
is lower than the actual objective function value
(at the optimal discrete solution) will result in
the program's inability to find any solution at
all; whereas, too large a value will not save any
effort.

An upper bound is automatically generated and
updated whenever a discrete solution is found at a
node but DISOPT3 also examines the discrete points
surrounding the solution at node 0 if VERTCHK, a
logical variable, is TRUE. This method of
generating the upper bound could save a lot of
effort if the user has no idea about the upper
bound. If the user has a good idea, let VERTCHK
be FALSE, and save some function evaluations.

3.2.3 Tolerances on Variables

The choice of numbers for such variables as
TOLCONS, TOLDIS, TOLHEXI, TOLMULT and TOLX is
critical to the efficiency of the program. All
the tolerances should be chosen sufficiently small
with respect to the magnitude of numbers involved
in a problem. While too small a value for TOLX
and TOLHEXI may result in excessive effort, too
large a value could lead to the program's
inability to find any solution at all. In test
runs and to gain information about a problem, one
could use large values and then switch to tight
values along with some of the above features to
economize on effort and obtain a more highly
refined solution.

TOLCONS A small negative number. If a constraint
value is smaller than 0 but larger than
or equal to TOLCONS, it is considered as
satisfied.

TOLDIS A small positive number. If a variable

lies within TOLDIS neighbourhood of a

discrete value, it is assumed to be

discrete.

TOLHEXI A small positive number. Used by

subroutine UOPT as a stopping criterion

in the algorithm (see Charalambous [2])

that determines the continuous solution

at each node.

TOLMULT A small positive number. Used in
subroutine UOPT to select active
constraints. If the multiplier (see
Charalambous [2]) for a constraint
exceeds TOLMULT, it is considered to be
active. The active constraints are the
only constraints that are used during the
following optimization. By choosing
TOLMULT as 0, the user can force all the
constraints to be active all the time.

TOLX A small positive number. Used in
subroutine QUASID (Fletcher algorithm
[3]1) to test the convergence of the
solution.



3.2.4 Printing Options

Two hollerith variables, PRINTID and PRINTP,
influence printing and offer the following
options.
PRINTID = 3HYES if the input data is to be
printed, 2HNO otherwise.

PRINTP = A4HNONE for no printing at all by any
part of the program.
THONLYDIS for printing discrete
solutions only.
THNODEOPT for printing the optimal

solution at each node whether

or not it is discrete.
3HALL for printing the details of
the optimization at each
node. Results are printed
after every IPT iterations of
subroutine QUASID. IPT may
also be changed by the user.

3.2.5 Check of the User's Gradients

Often, there is a mistake in the definition of
gradients in subroutine FUN. The results obtained
as such will be meaningless. This waste of effort
might be avoided by setting GRADCHK, a logical
variable, as TRUE.

When GRADCHK is true, the gradients are calculated
(at the starting point) numerically and also by
the user's definition. If the discrepancy is less
than 10%, the user's definition is assumed to be
correct; the possibility that the gradients are
wrong must not still be ruled out, though. If the
gradients are correct, a logical variable WRONG is
FALSE; otherwise, it is TRUE and the program is
terminated. In either case a message is printed.

3.2.6 Holding a Discrete Variable Constant

In the branch and bound algorithm, additional
constraints, e.g., X £ XL or X > XU are added to
the problem if X is supposed tc be a discrete
variable but does not assume a discrete value in
the optimal solution. There are two ways to
implement it: (1) add the inequality constraint
and optimize, (2) do not add the constraint, but
hold X constant at the appropriate bound and
optimize. The second alternative is, generally,
more efficient and may be chosen by setting
HOLDVAR, a logical variable, equal to TRUE. In
the rare case when this method fails, it should
not be used.

3.2.7 Branching on First or Last Variable

Many of the discrete variables may not have a
discrete value in the solution. For the
additional constraint, as explained above, should
the first variable be chosen or the last? It is
not possible to predict the best choice for every
problem. However, if REVERSE, a logical variable,

is TRUE the last variable is chosen.
3.2.8 Other Options

In addition to the variables described in the
above options, the following could also be of
interest to the user.

ALMIN Used to initialize each element of vector
AL. Vector AL is used to convert the
nonlinear programming problem at each
node into an exact minimax problem as
proposed by Bandler and Charalambous [1].
ALMIN greatly influences the efficiency
of the program but usually there is no
way to predict a good value for a
particular problem.

EST An estimate of the optimal 1least pth
function value at node 0. If initialized
properly, this could save some function
evaluations in the very first
optimization.

IDCONS An array identifying the active
constraints, i.e., those constraints
which are actually being used in the
optimization at any node. This array may
be used in subroutine FUN to evaluate
only those constraints which are
required.

IDVAR An array identifying all the variables

except the one which is held constant.

If the evaluation of partial derivatives

is very time consuming then IDVAR should

be used in subroutine FUN to avoid the
evaluation of those derivatives which are
not needed.

IpP The parameter p of least pth optimization
(see [2, 7T-111).

An exhaustive list and a complete description of
the variables is provided in the program listing
of subroutine DISOPT3 [14].

4. EXAMPLES
4.1 EXAMPLE 2: BEALE CONSTRAINED PROBLEM [5]
Minimize, as in the Beale problem [12],

f =9—8x1-6x2-4x +2x2+2x2+x2+2x x2+2x b4

3 1 273 1 173
subject to
x1 20
x2 20
. x3 20
3 - x1 - x2 - 2x3 20
but where x , X, and x3 are constrained to be

natural numbers.

The optimal solutions are



1ABLE 3

SUMMARY OF RESULTS FOR EXAMPLE 3

f=1.0
Xy = 2.0 X, = 1. X, = 2.0
X5 = 0.0 X, = 1.0 X, = 1.0
x3 = 0.0 x3 = 0.0 x3 = 0.0
The results are summarized in Table 2.
TABLE 2
SUMMARY OF RESULTS FOR EXAMPLE 2
Node Upper Objective Solution Description
No. bound function X,y Xy X
1 2 3
0 1010 0.11 1.33,0.77,0.44 continuous
1 1.00 0.22 1.00,0.88,0.55 feasible
2 - 1.34 1.41,0.00,0.59 nonfeasible
3 - 0.25 1.00,1.00,0.50 feasible
y - 1.00 1.00,1.00,0.00 discrete
5 - 1.07 0.32,0.91,1.00 nonfeasible
6 - 0.50 2.00,0.50,0.00 feasible
7 -— 1.00 2.00,0.00,0.00 discrete
8 - 1.00 2.00,1.00,0.00 discrete

4.2 EXAMPLE 3:

VOLTAGE DIVIDER PROBLEM [5,13]

Minimize
f = 1/x1 + 1/x2
subject to
x, 20
1
x2 >0
0.53—(xu+0.01x2xu)/(x3-0.01x1x3+xu+0.01x2xu) >0
(xu-O.01x2xu)/(x3+0.O1x1x3+xu—0.01x2xu)-0.u6 >0
2.15 - xu - 0.01 x2 xu - x3 - 0.01 X1 x3 20
Xy - 0.01 X, Xy + x3 - 0.01 X, x3 - 1.8 >0
where x, and x._ both belong to the discrete set

1

{1.0, 3.0, 5.0,10.0, 15.0}.

The optimal solution is

MR N
EWN =

.0130514
.9901098

0.4
5.0
5.0
1.0
0.9

>

The results are summarized in Table 3.
4.3 PERFORMANCE WITH DIFFERENT OPTIONS
The performance of DISOPT3 contrasting the effects
of different options is shown in Table 4 for
Examples 1, 2 and 3.

5. CONCLUSIONS

An integrated computer program called DISOPT3 has
been presented in this paper. Many of its

Node Upper Objective Solution Description
No. bound function x1,x2,x3,xu
10 .
0 10 0.28 7.00, 7.00, continuous
1.01, 0.99
1 - 0.31 8.99, 5.00, feasible
1.01, 0.99
2 - 0.40 5.00, 5.00, discrete
1.01, 0.99
3 0.4 0.35 10.00, 3.99, feasible
1.02, 0.99
4 - 0.41 12.29, 3.00, nonfeasible
1.01, 0.99
5 - 0.30 10.00, 5.00, nonfeasible
1.01, 0.99
6 - 0.35 3.99,10.00, feasible
1.01, 0.99
7 - 0.41 3.00,12.43, nonfeasible
1.01, 0.99
8 - 0.30 5.00,10.00, nonfeasible
1.01, 0.99
TABLE 4
PERFORMANCE OF DISOPT3 WITH DIFFERENT OPTIONS
Number of function evaluations
Feature
Example 1 Example 2 Example 3
HOLDVAR = TRUE/FALSE 368/368 572/808  44T7/T7T74
ONESOL = TRUE/FALSE 370/368 515/572  452/u447
REVERSE = TRUE/FALSE 655/368  384/572  447/494
VERTCHK = TRUE/FALSE 368/581 572/788  H4T/U4T

features that make it a desirable program to use
for solving continuous or discrete nonlinear
programming problems have been discussed.

A fully documented 188 page report containing the

complete 1listing and numerous examples is
available at nominal charge [14].
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