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Invited Paper

Abstract

This paper reviews the approach to design centering and optimal assignment of

component tolerances adopted by the authors.

In particular, this paper surveys

suitable algorithms for carrying out yield optimization involving explicit

formulas for evaluating yield and
designable parameters.

sensitivities with respect to the

Examples and 6 available programs are referenced. A

comparison with the simplicial approximation is attempted.

1. INTRODUCTION

A review is made of the approach to design
centering and optimal assignment of component
tolerances adopted by the authors [1-11]. It
permits the effective use of generally available
simulation programs [9] such as SPICE2 [12]. The
authors' approach to centering via nonlinear
programming in which the production yield is
allowed to drop below 100% [5-9] is explained.
Arbitrary statistical distributions are handled
through explicit formulas for yield and its
sensitivities.

This paper surveys suitable algorithms for
carrying out the yield optimization. Involved are
steps to evaluate yield and its sensitivities
concentrating for computational efficiency on
constraints which are candidates for being
violated, avoiding as far as possible errors due
to the overlapping of nonfeasible regions
described by different constraints within the
tolerance region [11]. Exact description of the
boundary of the constraint region via a
generalized function of the least pth type leads
to new results applicable to postproduction tuning
[5,10]. Here, a tolerance problem equivalent to
the tolerance and tuning problem of Bandler, Liu
and Tromp [1] is presented. Based on this
equivalence a mathematical definition of
postproduction yield has been developed and
interpreted [5,10]. Results, for example, have
been obtained for optimal worst-case tolerance
assignment and design centering on an active
filter in which a postproduction tuning variable
was taken into account [10].

Central to our computational approach is the
quadratic modeling of the constraint functions
[2-5]. These models have to be determined and
updated efficiently. To this end inherent
symmetry [5] in the functions w.r.t. the
parameters is exploited and sparsity is forced in
solving for the quadratic models [7,8].

2. THEORETICAL REVIEW
2.1 QUADRATIC MODELING AND SOME IMPLICATIONS

A nonlinear programming approach based on work by
Bandler [13] and Bandler, Liu and Tromp [1], but
employing approximations to the design constraints
has been described in detail by the present
authors [3,11]. An interpolation region centered
at the initial guess to the nominal design is
chosen. The simulation program is used to provide
the value of the response functions (constraints)
at a certain set of base points (see Fig. 1). The
base points are points within the interpolation
region and defined in terms of values of the
designable parameters. Based upon the
corresponding values of the resulting responses,
multidimensional quadratic polynomials are
constructed. These quadratic polynomials have the
general form

(o) =ag+a(e-9) +2 (e~ HE=-9 , (1
where a, and a are, respectively, a constant

scalar and a constant vector, H is a constant

This work was supported by the National Research Council of Canada under Grant
A7239 and by a Postdoctoral Fellowship to H.L. Abdel-Malek.



Fig. 1 Arrangement of the base points w.r.t. the
center of an interpolation gegion iB 3 dimensions.
To exploit sparsity ¢', ¢ and ¢’ are, respeg-
tively, placed, in thq~pl§nesaeontaining {F, ¢,
Qé}, {3, gl'a ;3} and {3, ¢, ¢°307].

symmetric Hessian matrix of the quadratic and ¥ is
the center of the chosen interpolation region.

The base points are simply those points where the
approximated response function and the quadratic
polynomial coincide. Since the quadratic
polynomial is a linear function in the
coefficients (a,, elements of a and elements of
E), a system of simultaneous linear equations has
to be solved to obtain the polynomial. The number
of base points (exactly equal to the number of
simulations required) is the minimum necessary to

fully describe the responses by ‘the
multidimensional quadratic polynomials. This
minimum number is given by

N = (k+1)(k+2)/2 , (2)

where k is the number of designable parameters,
i.e., elements of variable vector ¢. The number N
is, of course, also the number of the unknown
coefficients (ao, a and H).

The authors have suggested ways of reducing the
computational effort in solving the resu%ting
sgstem of N simultaneous linear equations (N /3 +
N™ - N/3 multiplications or divisions for Gauss
elimination). Sparsity was forced in the system
matrix [7] by a special choice of base points.

The base points are chosen according to the
equation

o! % o g [ 2 [y 1 B 9]

cee 01, (3)

where gl, i=1,2, ..., Ny are the base points,
Gi’ i=1,2, ..., k; are parameters defining the
slze of the interpolation region (see Fig. 1), 1k

is the identity matrix of order k, O  is the zero
vector of order k and B is a k x k(§-1)/2 matrix
having only two entries in each row and consi-
dering all possible combinations. In other words,
the base points_ consist of (a) the center of
interpolation ¢, (b) points with only one
parameter at a time set to its positive or
negative extreme value within the interpolation
region, while other parameters are fixed at their
values at §' and (c) points where only two
parameters are different from their values at §.
According to this scheme, the number of operations
(mgltiplications or divisions) is reduced to only
5k~ - 2k.

The following useful theorem dealing with the
preservation of parameter symmetry has been proved

[s51.

Theorem

i.e.,

If £(¢) is symmetric w.r.t. a matrix S,
£(8 ¢) = £(4) , )

where § is a kxk permutation matrix obtained by
interchanging suitable rows of a unit matrix, then
the approximating polynomial P(¢) will b§
symmetric w.r.t. S if, for each base point ¢, S¢
is also a base point. N -

Symmetry will appear, for example, in certain
cascaded structures. Its preservation is effected
by appropriate choice of base points. Computa-
tional effort is reduced by not repeating
unnecessary analyses.

Another useful theorem, which follows, deals with
the preservation of one-dimensional convexity
{5,11].

Theorem If there exist three distinct base points
¢', ¢° and ¢3 in the ith direction, i.e.,
j 1 X
EJ = ¢ + ej Si s, J=2, 3, (5)

where c., j = 2, 3, are scalars and e, is the unit
vector” in the ith direction,” then the
approximating polynomial P(¢) is one-dimensionally
convex/concave in the ith variable if the
approximated function f(¢) is so.

Being the property which makes vertices of the
tolerance region (Fig. 2) worst cases [13], one-
dimensional convexity maybe an important property
to preserve. We should note here that the choice
of base points in (3) satisfies the requirement of
this theorem. See also Fig. 1.

The quadratic approximations are updated as the
optimization process or accuracy may require [11].
If the optimization indicates an optimum far away
from the interpolation region the approximations
are updated. Also, if higher accuracy is required
the size of the interpolation region is reduced
and hence the approximations are updated. Since



Fig. 2 Convex, one-dimensionally convex and
nonconvex regions with representative tolerance
regions. MNote that, in the nonconvex case; the
vertices are not worst cases [13].

vertices of the tolerance region are considered to
be critical, approximations should be updated to
cover potentially active vertices. In order to
save effort as many vertices as possible may be
collected within an interpolation region as shown
in Fig. 3.
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Fig. 3 Three situations created by the relative

sizes of the tolerance and interpclation regions

[11]1.

An algorithm emplecying the following simple
formulas based on Taylor expansions has been

developed [11].

a
b a aP(Q )
P(g ) = P(g ) + 2e; %, +2¢; Hio oy (6)
b a
vP(p ) = vP(g ) + 2e; H, 7
where
b
= e e, (8)

and where ¢a and ¢b are two neighboring vertices
of the tolerance Pegion, H,. is the ith diagonal
element of H and H, is the "ith column of H. The
algorithm is used to compute the values and
gradients of the quadratic polynomial
approximations required by the optimization
program in an efficient manner.

Since the approximations embody information about
the sensitivities of the approximated constraints,
w.r.t. the designable parameters, they can be
utilized for investigating the effects of slightly
perturbing some constraints without requiring any
additional simulations. This is simply effected
by altering the scalar a, in the approximation of
a perturbed constraint.

2.2 YIELD DETERMINATION VIA LINEAR CUTS

1t is inexpensive to conduct a Monte Carlo
analysis in conjunction with the approximation,
however, the resulting yield will not be a
continuous function of the design parameters due
to the finite number of Monte Carlo analyses.
Also, yield sensitivities are not available from
the Monte Carlo analysis. Both continuity of
yield and the availability of its sensitivites are
of particular relevance if optimization (of yield
or cost) is used. The authors have, therefore,
directed their efforts to developing a method
incorporating these features. This method can
also be used by itself for yield analysis only
[6].

The basic idea is to use weighted hypervolumes for
evaluating the yield [6]. Evaluating hyper-
volumes, in general, is expensive because it
involves a multidimensional integration. For the
special case of cutting an orthotope (generaliza-
tion of a rectangle in a multidimensional space)
representing the tolerance region by a linear
constraint, a simple formula can be found [5,6].
The volume removed by the linear cut in Fig. 4,
for example, is given by

3 3
2¢ 2e
Vetaee [1- (- - (-5
3 a, ay
3 3
2¢e 2¢ 2¢
-(1-""1) +(1—“‘l—'—2)]. (9)

g ay a,

A general formula has been derived [6] and,
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Fig. U4 Three dimensional illustration of the
intersection of a linear cut with the tolerance
region. ¢ 1is a reference vertex [6].

accordingly, the yield in the case of a uniform
distribution of outcomes within the tolerance
region can be expressed as

m 2
Y=1- 3 VvV , (10)

=1

where Vl is the ratio of the nonfeasible hyper-
volume defined by the ath linear cut to the
k

Hs)
i=1

the number of these cuts which are supposed to
approximate the boundary of the constraint region.
The assumptions made are

hypervolume of the tolerance region (Zk

(1) 1t is possible to locally approximate the
boundary of the constraint region by linear
cuts with reasonable accuracy.

(2) The nonfeasible hypervolumes defined by the
different linear cuts do not overlap within
the tolerance region in order to be able to
sum them as in (10).

The method does not assume that these linear cuts
are fixed in the parameter space. It is possible

[7,11] that these 1linear cuts be continuously
updated to follow the generally nonlinear
constraints. This facilitates a good

approximation to the boundary of the constraint
region as the tolerance region is allowed to move
in the parameter space during, for example, an
optimization process. Methods for continuously
updating the linear cuts have been given [7,11].

Arbitrary statistical distributions can be handled
through regionalization [14]. The tolerance
region is partitioned to orthocells (see Fig. 5).
Equation (102 can also be used to provide the
yield but V is now the weighted nonfeasible
hypervolume within the tolerance region defined by
the &th linear cut. The weight w(i1, i, .y i)
assigned to the orthocell (1 , 1 cesy 1 ) is the
probability per unit volume of %av1ng an outcome
(a set of parameter values) within this cell.
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o —‘1\99"' 20
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Fig. 5 Two-dimensional illustration of the
partitioning of the tolerance region into cells
indicating dimensions and weighting of those cells
relevant to the calculation of the weighted
nonfeasible hypervolume [6,7].

The freedom in assigning the dimensions of the
orthocells allows the use of previous information,
such as a worst-case design or a histogram
representing the relative frequencies of the
outcomes.

Having an analytical formula for the yield
facilities inexpensive yield and yield sensitivity
evaluations. The procedure is suitable for
optimization, in particular due to the relatively
large number of yield analyses required.

3. EXAMPLES AND COMPUTER PROGRAMS

This work was first introduced in conjunction with
2-section, lossless transmission-line transformers
[2]. These examples verified the accuracy
attainable by quadratic approximations,
particularly if they are updated. Worst-case
tolerance optimization of inhomogeneous waveguide
transformers [11] Jjustified the use of available
simulation programs that do not provide
sensitivity information. These examples also
confirm the accuracy of running Monte Carlo
analyses in conjunction with the quadratic models.

Karafin's bandpass filter [15,16] provided a
vehicle for testing the yield evaluation via
linear cuts derived at an optimal worst-case
toleranced solution. Three types of distributions
were tested: the uniform distribution, the
bimodal distribution, and the normal distribution

[6].

Optimal centering and optimization of the
tolerances of the components of a tunable active
filter provided further verification of the use of
this work with general purpose simulators, in this
case SPICE2 [12]. In fact, by carefully preparing
the data for evaluation of responses at the base
points, only two runs of SPICE2 sufficed to
produce an excellent optimal result [9].

A current switch emitter follower was optimized in
a number of ways [8]. A worst-case optimization
of the nominals and tolerances of 4 circuit



parameters was carried out. The quadratic models
were updated once hence, using (2), 30 simulations
(complete integrations) were required, as shown in
Table 1. Table 1 also indicate
required to maximize yield assuming a total of 8
parameters subject to statistical fluctuations, U4
of which were the previously mentioned ecircuit
parameters and U4 were correlated transistor model
parameters. The number of further simulations
required was 45 (substitute k = 8 into (2)). the
yield was increased from 39% to 89%.

TABLE 1
SUMMARY OF EFFORT FOR THE CSEF

Optimization CDC time
problem N.0.S. N.O.Y.E. M 0
worst-case 30 0 48 s 55 s
yield 75 49 122 s 96 s

perturbed

constraints and 0 ~50 0 ~45 s
specifications

N.0.S. = number of simulations

N.0.Y.E. = number of yield evaluations

M = modeling

0 = optimization

The integrations in the paper by Abdel-Malek and
Bandler [8] were executed through a specially
written program called CSEF [17] for solving the
state equations associated with this nonlinear
circuit. The analysis has,; however, been verified
both by SPICE2 [9] and by another specially
written program employing the companion network
[18]. A comparison for the various integration
schemes has been presented [9].

Selecting 3 appropriate different values for a, in
(1) to investigate 3 sets of specifications and
defining one different parameter constraint and
reoptimizing did not involve further quadratic
modeling, as indicated in Table 1. As seen from
the table less than one second was required to
carry out a complete yield and yield sensitivity
evaluation, while more than 1.5 seconds are
generally required for only one numerical
integration using Gear's method [19,20].

A documented program package is available [21] for
evaluating the coefficients of the quadratic
approximation using the sparse approach [7]. The
program is called MODEL4. The evaluation of the
approximating polynomials and their gradients at
vertices of the tolerance region is carried out by
a subroutine called QPE [21]. The optimization
methods used by the authors are based upon the
exact minimax approach developed by Bandler and
Charalambous [22] in conjunction with Fletcher's
quasi-Newton program for unconstrained functions
[23]. The least pth approach with extrapolation

is employed [24]. The optimization package is
called FLOPT4 [25]. The required gradient infor-
mation is either already available or is obtained
from the above mentioned quadratic models.

We should also mention that quadratic modeling has
been successfully applied to a microwave filter
example consisting of lossless transmission lines
and stubs [26]. The filter is symmetrical around
a central plane. Eight variables were considered:
seven characteristic impedances and frequency. U5
base points are altogether involved, however, due
to symmetry only 24 distinct points required
actual analysis. The approximation w.r.t.
frequency permitted an evaluation of group delay.

4. COMPARISON WITH SIMPLICIAL APPROXIMATION

In this section we commit to print our temerity in
comparing our approach based upon quadratic
approximations and linear cuts with the continual
evolution and refinement of the simplicial
approach originally devised by Director and
Hachtel [27-32]. 1In this connection we refer to
Table 2, and add the following amplification
within three relatively well-defined contexts:
Monte Carlo analysis, design centering and yield
maximization.

TABLE 2
COMPARISON OF TWO PRINCIPAL APPROACHES

Assumptions, Quadraties, Simplicial
features linear cuts approximation

sensitivities none none

linearization yes yes

convexity no yes

implementation difficult easy

design centering yes yes

design centering reduced same
(some nominals effort effort .
fixed)

optimal worst- yes no

case tolerances

M.C. analysis inexpensive inexpensive

M.C. analysis

(different inexpensive inexpensive

distributions)

optimal yield yes no
perturbed inexpensive restart
specifications

Both approaches make an attempt to model the
constraint boundary and, hence, can be used for
Monte Carlo analysis. Presently, simplicial



approximation is restricted to convex regions,
whereas the quadratic model, of course, is not.
Neither approach yields approximations accurate
everywhere. Simplicial approximation develops a
relatively large number of linear constraints or
point bases while we develop quadratic constraints
generally of the order of the number of actual
constraints.

Both approaches provide design centers but our
approach permits optimal worst case tolerances
w.r.t. any proposed objective function, whereas
the objective of the simplicial method seems to us
nebulous. In our approach the dimensionality of
the space of designable parameters is independent
of the space of statistically fluctuating
parameters (important in dealing with parasitic
effects and model uncertainties, e.g., see
references [8,33]). The simplicial method assumes
a variable nominal point for each parameter
subject to uncertainty.

Our dynamically updated 1linear cuts along with
explicit formulas for weighted hypervolumes
address the yield optimization problem explicitly.
Furthermore, our approach can utilize histograms
involving arbitrary distributions. The latest
developments in the simplicial method appear to
handle (albeit indirectly) only up to second order
moments of the distribution and hence assume
symmetrical distributions.

Finally, we note again that we can inexpensively
consider perturbed specifications, while the
simplicial method appears to require restarting.

5. CONCLUSIONS

This paper has reviewed the theoretical work of
the authors on optimal design centering, the
optimal assignment of component tolerances,
tuning, yield determination and optimization.
Attention has been directed at ‘realistic
engineering examples, algorithms for implementing
the theory and available documented computer
programs. Finally, we have attempted some
comparison between our approach and that of
Director, Hachtel and their coworkers. We concede
that the comparison may be premature: we are
convinced that neither approach has yet reached
its limit.
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