INTERNAL REPORTS IN

SIMULATION, OPTIMIZATION
AND CONTROL

No. SOC-210

ADVANCES IN THE MATHEMATICAL PROGRAMMING APPROACH TO

DESIGN CENTERING, TOLERANCING AND TUNING
J.W. Bandler and H.L. Abdel-Malek

July 1978

FACULTY OF ENGINEERING
McMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA







1978 JACC, Philadelphia, PA.

ADVANCES IN THE MATHEMATICAL PROGRAMMING APPROACH

TO DESIGN CENTERING, TOLERANCING AND TUNING

J.W. Bandler H.L. Abdel-Malek
Group on Simulation, Optimization Department of Engineering Physics
and Control, and Department of and Mathematics, Faculty of
Electrical Engineering Engineering, Cairo University
McMaster University, Hamilton Giza, Egypt

Canada L8S 4LT7

ABSTRACT

The nonlinear programming approach to the optimal worst-case assignment of - parameter
tolerances along with design centering taken by Bandler and extended to include tuning by
Bandler, Liu and Tromp is reviewed. This work was directed at worst-case design in which,
after tuning if necessary, all design outcomes must not fail to meet the specifications. A
logical further extension by the present authors which relaxes the requirement of 100% yield
is also outlined. Exact descriptions of the boundary of the constraint region via a
generalized function of the least pth type are discussed. Consideration of such a function
leads to new results applicable to postproduction tuning. Here, a tolerance problem
equivalent to the tolerance and tuning problem of Bandler and Liu is presented. Based on
this equivalence a mathematical definition of postproduction yield is developed and
interpreted.

INTRODUCTION

The nonlinear programming approach to the optimal worst-case assignment of parameter
tolerances along with design centering taken by Bandler [1,2] and extended to include tuning
by Bandler, Liu and Tromp [3,4] is reviewed. This work was directed at worst-case design in
which, after tuning if necessary, all design outcomes must not fail to meet the
specifications.

A logical further extension by the present authors which relaxes the requirement of 100%
yield is also outlined [5-11]. We developed analytical formulas for the calculation of yield
and its sensitivities with respect to design parameters based upon certain approximations and
assumptions. Optimization of yield taking into account realistic parameter distributions has
been carried out.

The nonlinear programming formulations associated with centering, tolerancing, tuning and
production yield can be extremely large. Approaches to reduce the size by exploiting various
properties of the systems being designed have been discussed in the literature [12-16].
Methods of obtaining a relatively small number of candidates for constraint violation have
been suggested [12-18]. Detection of critical regions, namely candidates for active
vertices, has been considered by Bandler, Liu and Chen [12] and by Karafin [17] using
sensitivity information. Bandler, Liu and Tromp [14] presented a scheme for vertex
selection. Vertices are considered in the optimization process if they are candidates for
satisfying the Kuhn-Tucker optimality conditions. Tromp [15,16] developed this work further
and described an algorithm based on the Kuhn-Tucker conditions as well as the directions of
the derivatives w.r.t. design parameters at the vertices of tolerance regions. Interval
arithmetic was suggested by Madsen and Schjaer-Jacobsen [18] for detecting worst cases.

Exact descriptions of the boundary of the constraint region via a generalized function of the
least pth type are discussed in this paper. Consideration of such a function leads to new
results applicable to postproduction tuning. Here, a tolerance problem equivalent to the
tolerance and tuning problem of Bandler and Liu [3] is presented and verified by circuit
examples. Based on this equivalence a mathematical definition of postproduction yield is
developed and interpreted.

The relevant work of some of the aforementioned and other important researchers [19-21] is

This work was supported by the Naticnal Research Council of Canada under Grant A7239 and by a
Postdoctoral Fellowship to H.L. Abdel-Malek.



contrasted with ours. This includes the early work by Karafin [17], who also forced discrete
solutions by the branch and bound method, the nonlinear programming approach of Pinel and
Roberts [19] employing truncated Taylor expansions of the constraint functions, the Monte
Carlo approach of Elias [20] and the simplicial approximation method of Director and Hachtel
[21] which employs linear searches in conjunction with linear programming.

FUNDAMENTAL CONCEPTS AND DEFINITIONS

A design is described by a nominal parameter vector ¢0, a tolerance vector ¢ and a tuning
vector t, where ~ ~

r 0 o9 -
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and k is the number of designable parameters. The tolerance vector e may be used to define
the extremes of the tolerance region or the standard deviation, etc.” The tuning vector ¢,
defines the size of the tuning range. See Bandler, Liu and Tromp [4#]. It is assumed that
the parameters can be varied continuously. Some of these vector elements may be set to zero
or held constant.

An outcome {¢0 , €, u} of a design {¢0, e, t} implies a point in the parameter space given by

¢ = ¢0 + E s (2)
where
€1 -1 u-ﬂ
€2 2
g é . , u é . (3)
€ u
L k‘ LkJ

and where p is a random vector distributed according to a joint pro ilit istr
function (PDF). The PDF might extend as far as (-=, «), however, for all practical cases it
is possible to consider a tolerance region Re such that

J F(¢) d@.l d¢2 soe d¢k = 1, %)
R ~
€

where F(¢) is the PDF.
For the sake of simplicity as well as the implications of independent design parameters,
there is no loss of generality in considering R€ to be an orthotope defined by

RQ{QIQ=QO+EE'EGR11}’ (5)

€ ~

where

R, Bp -1y <1, 121,20, k) (6)

This orthotope is centered at ¢0 and has edges of length Zei, i=1,2, ..., k. The extreme
points of R€ are called verticss and the set of vertices is defined by [1-4]

4 0
Ry= e log =0l pem voe 1,1}, 021,20y k). €3

iir

The number of these vertices is 2k and the following enumeration scheme introduced by Bandler
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[1,2j will be considered. For a vertex

¢"=¢°+Eur, uie {-1,13 , (8)
we have
r
k  p+l
r=1+ 3 (22, 9
i=1
The tuning region is defined by [4]
R & {g | g = W HE L +T o, o€ RY, (10)
where
t.l W [‘p.‘
t p
Td 2, , o 21521, (1)
L 3 Lk
and R may be defined, for example, by
)
R N P Spy &1, 1=21,2 oon, k 4 (12)
or in the case of one-way tuning or irreversible trimming,
%é{glngpigm1=1,a.“,u
or
Rpé%|ogpigui=1,a.”,m.

The constraint region (or feasible region) itself is given by

Ry S0y | 8y() 20,121,2 .ym}, (13)
where m_ is the number of constraints gi. The tolerance, tuning and constraint regions are
illustrated in Figure 1.
Production Yield

The production or manufacturing yield is simply defined by

Y& wm, (14)
where M is the total number of outcomes and N is the number of outcomes which satisfy the
specifications. Similarly we define the potential yvield by

A
Y =N /M 1
p p/ ’ (15)

where N_ is the number of outcomes which meet the specifications, after tuning if necessary.
Hence, Ehe relative frequency of outcomes which require tuning is

Y =Y -Y. ' (16)
One-Dimensional Convexity

A region R is said to be one-dimensionally convex [1,2] if for any direction defined by the
unit vector ej, J=1,2, ..., k, and for any two points 4 , ¢ € R, where
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o = ¢a teey, ¢ is a scalar , 17

~ ~

then

b

6= o  +a(p = o) € Rforall 0Ly <t (18)

~

One-dimensional convexity is illustrated in Figure 2.

If all vertices of the tolerance orthotope are within a one-dimensionally convex constraint
region, then the whole tolerance orthotope lies inside the constraint region. For a proof
see Bandler [1,2].

REVIEW OF CENTERING, TOLERANCING, TUNING AND YIELD OPTIMIZATION
Centering via Simplicial Approximation

The simplicial approximation approach of Director and Hachtel [21] involves linear
programming as well as one-dimensional search techniques. Their approach is to insecribe a
hypersphere inside the constraint region. During the process of enlarging this hypersphere a
polytope which approximates the boundary of the constraint region is constructed.

The algorithm initially searches for points on the constraint boundary in both positive and
negative directions for each parameter from a feasible point (a point within the constraint
region). The convex hull described by these boundary points provides the initial polytope
approximating the boundary of the constraint region. This polytope will be an interior
approximation only if the constraint region is convex. Using 1linear programming a
nypersphere is to be inflated inside this polytope in a k-dimensional space. The tangent
hyperplanes are determined. These hyperplanes, faces of the polytope, are simplices in a
space of k-1 dimensions. The largest simplex, i.e., the one which contains the largest
hypersphere, is to be broken and replaced by k simplices. This is performed by adding a new
vertex to the polytope obtained by searching for a boundary point along the normal direction
to the largest simplex from the center of the corresponding hypersphere. The computational
effort per iteration can be expressed as [71

CE = LPk + (k+1) LPk— + LS ,

1 .
where LP, is the computational effort to solve a j-dimensional linear program and LS is the
computatfonal effort in a one-dimensional search.

It is to be noted that the number of constraints for the linear programming problem increases
with the number of facei of the polytope. For the k-dimensional linear program and at the
nth iteration we have 2= + (n-1)k constraints, while for the k-1 dimensional linear program
the number of constraints is fixed and is equal to k. The sequence of approximations is
regarded to have converged when

- 8 §
T I
where r_ is the radius of the hypersphere obtained in the nth iteration, 51 and 62 are given
relative and absolute convergence parameters.

The Nonlinear Programming Approach

The method described before does not explicitly optimize values for parameter tolerances, in

other words there is no optimal tolerance assignment.

Pinel and Roberts [19] used nonlinear programming to assign parameter tolerances. The
nominal parameter values are fixed and the constraints are approximated by truncated Taylor
series expansions. Bandler et al. [1-4] treated centering and tolerancing simultaneously
with the goal of increased tolerances by permitting the nominal point to move.

A nonlinear programming formulation of the optimal centering, tolerancing and tuning problem
is
- 0
minimize C(¢ , €, u, t) , (19)
¢9€)t20~ T

subject, for example, to a constraint on yield



1% e, u, 0 2y, (20)

where C is a suitable gost function, sometimes called gbjective function, and YL is a lower
yield specification.

The objective function C should reflect a realistic cost-tolerance and tuning relation.
Reasonable properties of the objective function are [4]

C(Qo, €, u, t) > constant ase> =

C(Qo, €, M, 8) > @ for any €, + 0 (21
0 0

Cla™ go py B) > CQE7, 25 1) as £~ 0
0

C¢", g, 1, ) > = for any t; * .

An orthotope describing the tolerance region is to be inflated by minimizing the cost
function. The center of the orthotope provides the nominal parameter values and the lengths
of the orthotope edges are twice the absolute tolerances.

Elias [20] presented an approach which applies the Monte Carlo analysis directly to the
nonlinear constraints.

Karafin [17] presented an approach using truncated Taylor series approximations to the
constraints. The constraint function values are assumed to be normally distributed for all
tolerance choices. The parameters are assumed to be statistically independent and each
parameter is symmetrically distributed about its nominal value. According to these
assumptions, Karafin was able to reduce the k-fold integration of the k-variate probability
distribution function to at most 3-fold integration. The yield estimate is based upon the
resulting distributions of the values of the constraints. In minimizing the cost, the branch
and bound method was used to force the parameters to discrete values.

Quadratic Modeling and Dynamic Linear Cuts

A nonlinear programming approach but employing approximations to the design constraints has
been described in detail by the present authors [5-11]. An interpolation region centered at
the initial guess to the nominal design is chosen. The simulation program is used to provide
the value of the response functions (constraints) at a certain set of base points. The base
points are points within the interpolation region and defined in terms of values of the
designable parameters. Based upon the corresponding values of the resulting responses,
multidimensional quadratic polynomials are constructed. These quadratic polynomials have the
general form

P(4) =ay+a (4 -8) +3 (4 -0 HG - , (22)

te|

2 -

where a, and a are, respectively, a constant scalar and a constant vector, H is a constant
symmetric Hessian matrix of the quadratic and ¢ is the center of the chosen interpolation
region. -

The base points are simply those points where the approximated response function and the
quadratic polynomial coincide. A system of simultaneous linear equations has to be solved to
obtain the polynomial. The number of base points (exactly equal to the number of simulations
required) is the minimum necessary to fully describe the responses and is given by

N = (k+1)(k+2)/2 , (23)

where k is the number of designable parameters. The number N is the number of the unknown
coefficients.

The authors have suggested ways of reducing tge compe}ational effort in solving the resulting
system of N simultaneous linear equations (N°/3 + N~ - N/3 multiplications or divisions for
Gauss elimination). Sparsity was forced in the system matrix [7,9] by a special choice of
base points. ’



The quadratic approximations are updated as the optimization process or accuracy may require
[5]1. If the optimization indicates an optimum far away from the interpolation region the
approximations are updated. Also, if higher accuracy is required the size of the
interpolation region is reduced and hence the approximations are updated. Since vertices of
the tolerance region are considered to be critical, approximations should be updated to cover
potentially active vertices.

Since the approximations embody information about the sensitivities of the approximated
constraints w.r.t. the designable parameters, they can be utilized for investigating the
effects of slightly perturbing some constraints without requiring any additional simulations.

It is inexpensive to conduct a Monte Carlo analysis in conjunction with the approximation,
however, the resulting yield will not be a continuous function of the design parameters due
to the finite number of Monte Carlo analyses. Also, yield sensitivities are not available
from the Monte Carlo analysis. Both continuity of yield and the availability of its
sensitivites are of particular relevance if optimization (of yield or cost) is used. The
authors have, therefore, directed their efforts to developing a method incorporating these
features. This method can also be used by itself for yield analysis only [6].

The basic idea is to use weighted hypervolumes for evaluating the yield [6]. Evaluating
hypervolumes, in general, is expensive because it involves a multidimensional integration.
For the special case of cutting an orthotope by a linear constraint, a simple formula can be
found [5,6]. A suitable formula was originally stated by Tromp [22], following a concept
suggested by Karafin [17].

Our method does not assume that these linear cuts are fixed in the parameter space. It is
possible [5,9] that these linear cuts be continuously updated to follow the generally
nonlinear constraints. This facilitates a good approximation to the boundary of the
constraint region as the tolerance region is allowed to move in the parameter space during,
for example, an optimization process. Methods for continuously updating the linear cuts have
been given [5,9].

Having an analytical formula for the yield facilities. inexpensive yield and yield sensitivity
evaluations. The procedure is suitable for optimization, in particular due to the relatively
large number of yield analyses required.

THE EQUIVALENT TOLERANCE PROBLEM

A tolerance problem which is equivalent to the tolerance and tuning problem of Bandler and
Liu [3] is presented. The generalized least pth function [23] required for constructing the

equivalent problem, is given. Based on this equivalence, a mathematical definition of yield
is developed.
The Generalized Least pth Function

Given a set of functions f.(¢), j € J, we define

0 ifM=0 ,
A
U(fj(ﬁ), J, p, M) = (28)
1/q
e (9))°
aM| Z —;}l——— ifM£0,
jeK
where
M = max (kfj) , q=psignM, (25)
Jjed
J for M < 0,
K = (26)

{j | jed, ;fj(g) > 0} for M> 0



1 if U approximates max fj(¢) ,
jed -

A= 27

-1 if U approximates min f (¢)
Jjed J~

and where p is a scalar greater than one.
Theorem

An outcome, given by (2) as

if and only if ¢ e Rct’ where Rot is the tunable constraint region defined by

A
Ry = (& | max U(g(¢+10),1,% -1)20}, (28)
Per,
where
A .
I={1,2, ..., mc}. (29)
Proof

Assume that there exists p* e Rp such that

¢+ T P¥eR_ .
s~ c

~

Hence,
g (8 +T 0¥ >0 foralliel.
Also,
min g, (¢ + T P¥) > 0 .
; it~ TS~
iel
But since
max U(gi(2+2£), I, =, -1) 2 U(g, ($+I6%), I, =, -1)
PeR,
and
U(gi(iqgn), I, ®, =1) = min 31(3"'12*) >0 (30)
iel
then
$e Rct :

Now, ? € Rct implies that there exists P* ¢ R, such that (30) is satisfied. Consequently,

$+TP*eR, -



Example

To illustrate this idea, consider a two-dimensional example in which the constraint region is
defined by the two constraints [7]

g,(8) =¢, -, >0,

2
8y8) = 50, - (4,-5% - 25> 0.

Let

e
1]
e
"

and t= .

Figure 3 shows the constraint region R_ and the tunable constraint region R__. In the figure

R, and Rt(u) are defined according tS (5) and (10), respectively, where X, is assumed as
in (12). 7 ~

Mathematical Definition of Yield

We are now ready to give a mathematical definition of production yield. An outcome ¢ is said
to meet the design specifications either if ¢ € R or there exists P e R, such that $+TP e
Rc’ i.e., this outcome is tunable. In other words f 3 Rct‘

In an abstract manner, the expected potential yield, i.e., the expected yield after tuning is
given by

Yp = RIF(Q) v, at, ... d¢k , (31)
ct

where F(g) is the joint probability distribution function of the outcomes. The expected
yield before tuning is

Y = R]F(i») do, do, ... do . (32)
c
If the outcomes are uniformly distributed between the tolerance extremes, i.e., inside the
orthotope Re, the expected potential yield and the expected yield can be expressed as
Yp = V(R_ O R )/V(R)) (33)
and

¥ = V(RN Rc)/V(RE) , (34)

where V(R) denotes the hypervolume of the region R. The expectation of having outcomes which
require tuning as a post-manufacturing process is also given by (16).

Worst-Case Design

The worst-case design problem arises when the worst outcome is supposed to meet the
specifications. This implies a lower potential yield specification YL = 100%. Thus, for the
nonlinear program, the constraint (20) reduces to

RS Ry - (35)

For a one~dimensionally convex region Ro (35) can be replaced by

t’
=]
Rv Rct ’ (36)
where R is the set of vertices defined by 7).

At the worst-case optimum, the set of active constraints at a vertex ?r € Rv is defined by

I:o = {il gi(gr + T Er*) =0,ieT1}, (37)

~
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where pr is the optimum setting for the tuning variable for the vertex

o = 6%+ BN 4T, (38)

* *
E and ¢O are the worst-case optimums of E and @0, respectively. The set of active vertices

is consequently defined by

r r r
Rav = {2 | ¢ e Rv, Iac £ 0} . (3?)
The set of all active constraints is
2
I = U0 I . (40)
ac ac
r=1

An alternative approach is to define the set of active vertices for each constraint 8;» iel
given by
rE

r r r
av - {2 I gi(?l +Top =0, ¢ e RV} ’ (1)

~ o~ ~

*
where Qr is given by (38) and o¥" is the setting of the tuning variable for this vertex at

the optimum. Thus, the set of active constraints is defined by
R . i
Io=li|ieI, R #0}. (42)

The set of all active vertices is
R = U R . ' ' (43)

Worst-Case Centering

Worst-case centering is a minimax problem in which Bhe toleripce vector ¢ is fixed either
absolutely or relatively w.r.t. the nominal vector ¢ while ¢ and the tuning vector t are
variables. The problem can be expressed as - ” -

minimize U(-gi(¢0 +Epu+T
20, 0Lt -t
~ Ta AT ~max

)y I, @, 1), (u4u)

o

where t ax is an upper bound on the tuning range, U is the least pth function defined by (2U)
and p is chosen to give the worst outcome.

EXAMPLES
LC Filter

Consider the LC filter shown in Figure 4. Taking L, as a tunable parameter with 5% tuning
range, a worst-case design is obtained by minimizing khe cost function [U4]
0 o, °
L2/e2 + C /eC ,
where Lg and C0 are the nominal values of L2 and C, respectively, €5 and €y are the
corresponding tolerances. We considered five variables, namely, L?, Lg, Co, €5 and €ce The
same problem has been solved by Bandler, Liu and Tromp [4].

A quadratic approximation to the boundary of the tunable constraint region R _ was employed.
The constraint region is defined by the specifications given in Table I and the quadratic
approximation is obtained by interpolation at the set of 10 points defined by the columns of

s 0 o0l|1 o 0o -1t 0o 0 -9 .6 0 O E} E} 'E1
0 s O0fl0 1 0 0 -1 0 -7 0 5 0|+|L, L, ... L,
c c I

0o 0 0o 0 1 0 0o -1 0 .5 -6 0



where § is a parameter defining the size of the interpolation region and {L L C} the
center of the region. The approximation was conducted at the critical reglons [7? for each
constraint function. These critical regions are ultimately centered at the vertices of the
tolerance region under the one-dimensional convexity assumption. The results are shown in
Table I. The approximation was updated once using smaller § in order to improve accuracy.
The centers of interpolation for the different constraints are obtained by detecting the
worst vertices and perturbing the parameters by either the tolerance value or to one of the
extremes of the tuning range. The results are in good agreement with published values [ul.

Tunable Active Filter

Another example is the tunable active filter [8] illustrated in Figure 5. The specifications

w.r.t. frequency f on the transfer function F = IVZ/Vg| are

F < 1M2 for £/£5 &1 = 10/8y

F 1.1 for 1-10/f‘0 S.f/fo < 1+10/f‘0 ,

F < 14/2 for £/£5 2 1+10/8, ,
F> 1//2 for 1-8/£y & £/£5 £ 148/F

F2>1 for f = fo Hz,
where f. is the center frequency. Two sample center frequencies, namely fo = 100 Hz and f
700 Hz, were found to be enough for the tuning frequency range 100 < T, < 700 Hz. Qhe
normalized sample frequencies considered are 1 and 1 + 10/f, for the relevant upper
specifications, 1 and 1 ¢_B/f0 for the relevant lower specifications.

Again, the boundary of the tunable constraint region is approximated by a quadratic
polynomial. Interpolation is performed using the points defined by the columns of

61 0 0 1 0o 0 -1 0 0 8 -7 0 0 R1 R1 R1
0 8, 0 0 1 0 0o -1 0 -.6 0 5 0+ C1 C1 cee C1 .
0 0 63 0 O 1 0 0 -1 0 .9 =4 0 C2 02 02

At each of these points the optimum value of the tunable resistor R, is obtained [24] and the
corresponding value of a constraint is used for interpolation. %e assumed objective cost
function is

0 0 0

R.I/eR1 + C /e + C /e N
The design variables are RO C y €pqr € and €., Where C0 = C0 Co. Table II shows the
starting point and the optimum ob alne after each modeling step. %m is to be noted that
each optimum was used as a starting point for the succeeding optimization as well as
providing the new centers of interpolation. The vertices are numbered according to 9).

Computational Methods Used

In both examples subroutines MODELY and QPE [25] are used for carrying out the approximations
and evaluating them along with their gradients, respectively. Nonlinear programming problems
are solved using the Bandler-Charalambous [26] nonlinear programming to minimax
transformation with the subroutine FLOPTY4 [27].

CONCLUSIONS

Having a tolerance problem which is equivalent to a tolerance-tuning problem allows us to
deal solely with tolerance assignment. It permits the evaluation of yield to be based upon
hypervolume computation as has been dealt with by Bandler and Abdel-Malek [5-71].
Subsequently or alternatively Monte Carlo analysis using the approximations to the tunable
constraint region can be conducted to verify or find the production yield. Our approach
presented here is significantly more efficient than the one used by Bandler et al. [8].
Almost two minutes of CPU time on a CDC 6400 were previously required to solve a somewhat
simpler problem involving only one center frequency, whereas about 20s were required for the
example of Table II.
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TABLE 1

OPTIMIZATION OF LC FILTER WITH 5% TUNING OF L1

€ € Frequency
Situation LY L c? 2 ¢ point
(%) (%) (rad/s)
Starting 1.999 1.999 .906 10.0 10.0
Interpolation 1.9 2.2 .906 0.55
centers (g = .16) 1.9 2.2 .906 1.00
2.1 1.8 .906 2.50
Optimum 1 2.14 1.84 .906 15.7 12.6
Interpolation 2.03 2.12 .792 0.55
centers (6 = .0U4) 2.03 2.12 1.021 1.00
2.24 1.55 .792 2.50
Optimum 2 2.19 1.79 .907 16.1 12.6

Insertion loss should be less than 1.5 dB at 0.55 and 1.0 rad/s and greater than 25 dB

at 2.5 rad/s

OPTIMIZATION OF TUNABLE

TABLE II

ACTIVE FILTER WITH UNRESTRICTED Ru >0

R ¢® e eg cgp CDC Time(s)
Situation y -7 Model
(10" @) (10 'F) (%) (B) (%) M 0 information

Starting 1.200 7.200 1.00 1.00 1.00 11.2 - Conducted at all vertices with
84 = .06, 8§, = 63 = .36

Optimum 1 1.256 7.016 1.58 2.56 1.83 4.1 1.9 Dgtected active vegtices are
¢~ at 100 Hz and ¢ at 100 and
700 Hz. Q3 and 96 are
subsequently used as inter-
polation centers with
8, = .06, 8, = 63 = .36

Optimum 2 1.248 7.224 1.55 2.24 2.09 2.7 0.5 Q3 at 100 Hz and Q6 at
700 Hz and § reduced so that
51 = .015, 8, = 63 = .09

Optimum 3 1.245 7.233 1.65 2.51 2.25 - 0.3

Vector of designable parameters ¢ = [R1 o CZJT.

M = modeling

0 = optimization
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Figure 2 Illustrations of convex, one-dimensionally convex and nonconvex regions.
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