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Abstract This paper exploits the biquadratic behaviour w.r.t. a
variable exhibited in the frequency domain by certain lumped, linear
circuits. Boundary points of the constraint region of acceptable
designs are explicitly calculated w.r.t. any such variable at any sample
point in the frequency domain. An algorithm to exactly determine the
constraint region itself for the general nonconvex case is presented and
illustrated. This type of analysis leads to the determination of
circuit tunability and to decisions on design center and tolerance
assignment. A globally convergent and extremely efficient minimax
algorithm is developed and tested to optimize the frequency response

w.r.t. any circuit parameter.
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I. INTRODUCTION

A number of researchers have considered properties of response or
constraint functions w.r.t. one designable variable at a time in the
contexts of sensitivity evaluation of 1linear circuits [1-6] and the
prediction of worst cases in design centering and tolerance assignment
[7-11]. The bilinear behaviour of certain linear circuits has been
used to derive relationships between, e.g., first-order and large change
sensitivities. In the tolerance problem, attempts have been made to
find conditions which satisfy the common assumption that worst cases
occur at extremes of parameter uncertainty intervals.

In this paper we exploit the resulting biquadratic function
obtained from the modulus squared of the bilinear function to produce
some new results. In particular, at any point in the frequency domain
we can explicitly calculate boundary points of the constraint region of
acceptable designs. These boundary points are further utilized to
exactly determine the constraint region itself for the general nonconvex
case. Our analysis 1leads to the explicit determination of circuit
tunability. Furthermore, design centering and tolerance assignment
w.r.t. each parameter at a time is facilitated.

We present some theoretical ideas for predicting worst cases. A
globally convergent and extremely efficient minimax algorithm is derived
and stated. Examples employing a realistic tunable active filter
demonstrate the optimization of the frequency response w.r.t. a circuit

parameter.



II. THEORY

For certain lumped, linear circuits, we can express the circuit
response as a bilinear functon in a variable parameter ¢ (see, for
example, Fidler [1])

u+a¢o

£(¢) = T+D0 6’ (1)

where f is the circuit response at a particular frequency s, while u, a
and b are complex constants in general. The variable ¢ does not
necessarily have the value of the parameter, but it may take the value
of the parameter p referred to a reference value po. Hence, we take

¢ =p-p . (2)

It is to be noted that while u and a may assume zero value, b is
never zero for all practical problems.

Three analyses are consequently required to obtain the complex
constants in (1). 1In order to save computational effort, we may proceed
as follows.

1. Find f(0) by performing the corresponding circuit analysis, i.e.,

for ¢ = 0.

2. Find d = 9f(0)/9¢ by performing an adjoint analysis [12]. In this
process an LU factorization is saved by not using a new value of ¢.
3. Find £, = f(¢1), where ¢, 1s a chosen value of ¢ different than

zero, by performing the corresponding circuit analysis.

Thus, we can simply derive the following expressions:

u = f£(0) , ' (3)
a=d f1/(f1-u) - u/¢, (4)
b = d/(f,-u) - /¢, . (5)

Alternatively, we might use the analysis at three different values



of ¢ in order to find u, a and b. Considering ¢ = 0, ¢ = oy and ¢ = s,
for example, we get

u = fo , (6)

18,00 =0,)=1 (0, £ -0,1,)

T 6405 (F4=15) ’ ik

Coq85-0,19)-F4(04-0,)

0 ZEPACIRLPY ’ ©

where

fo = £(0), £, = f(¢1) and f, = f(¢2) . (9)

Since the magnitude of the response |f| or functions of this

magnitude are often of interestf, we may write

%
|u|2+2 R(u a)¢+|a|2¢2

]f(¢)|2 = ) (10)

142 R(b)¢+|b]2¢2
%

where u 1is the complex conjugate of u and R(+) denotes the real part

of (*).

In order to simplify the following derivations, we write (10) in

the form
2
A+2B¢+C¢
F = - 5 - (11)
1+2D¢p+E¢
Hence,
: c
lim F=p, E#0. (12)
¢+t
1.

Insertion loss and reflection coefficient specifications can be

expressed as specifications on the magnitude of the response.



To find the values of ¢ at which F = S, where S is a certain
specification, we replace F by S in (11). Then
(SE-C)¢2 + 2(SD-B)o + S - A =0 . (13)
When S # C/E, (13) has two finite roots given by

ry , = -8 ivég-(S-A)/(SE—C) , (14)

where
B = (SD-B)/(SE-C) . (15)

The following two cases will arise.
Real Roots L
(a) eal Roois (r1 < r2)

The value of F will satisfy the inequality

F-% S for all ¢ e [r1, r2] if s % C/E . (16)
If the specification S is such that
S=C/E, E#0, 17
a single root is obtained from (13) and is given by
r = -(C-AE)/2(CD-BE) . (18)
By perturbing S and looking for the average of the resulting two
roots, given by -8B, we investigate whether -B tends to + ®. Hence, we
derive the inequalities
F % S for all ¢ ¢ [r, ] if BE z cD , (19)
F2S forall ¢e[-= r] if BE, CD . (20)

(b) Imaginary Roots

The value of F will satisfy the inequality

>

F ; S for all ¢ € (-=,®) if §

C/E . (21)
Fig. 1 illustrates these inequalities.

The inequalities (16), (19), (20) and (21) lead to the
identification of certain intervals on the real axis such that if ¢

belongs to any of these intervals the specifications will be satisfied.

This is the subject of the next section.



III. VALID PARAMETER INTERVALS

Consider the set of specifications

A R
e; = wi(Fi - Si) <0,i=1,2, ..., m, (22)

where

(23)

W, =

{:-1 for lower specification Si’
i

1 for upper specification Si’
and m is, for example, the number of frequency points taken into
consideration.
According to the inequalities derived in Section II, it is possible
to define a unique continuous interval Ii so that if the specification
is satisfied on Ii then it is violated for all ¢ / Ii and vice versa.

The logical variable ti is defined by

t, = True if I, = {¢fe, <O}, (24)

or

t False if I

i i {¢|ei > 0} . (25)
A check can be made to investigate the possibility of meeting the m
specifications of (22) simultaneously by adjusting the parameter ¢ only.

This investigation can be carried out by finding the feasible region of

¢ given by
= - . 2
Ry (~] I, L“) I, (26)
t.=True t.=False
i i
If RS’ the feasible region of ¢ with the specification S, is empty, it

is 1impossible to meet this specification by adjusting the single



variable ¢ only.

It is to be noted that RS is not necessarily a continuous interval.

In general,

RS =

nc x

Loy ;2] , (27)

2=1

where k is the number of closed intervals [;l’ ¢2]. A flow diagram is

v

shown in Fig. 2 which provides k and the intervals [¢2’ ¢l], L =1, 2,

..., k, as well as the indices of the functions Fi which actually define

the extreme points of each interval. These indices are denoted il and

-

il for the lower and upper extremes, respectively.

Parameter Centering
Having obtained RS it is possible now to center the parameter ¢ at
0 = (5.40.0/2 ,
Jd J

where
(¢j - ¢j) 2_(¢2 - ¢2), L =1,2, ..., k.

The corresponding tolerance will be

e = (¢j - ¢j)/2 .

In words,we choose the largest continuous interval in R, and center ¢0

S
at its middle.

If several parameters are subject to centering, this process can be

successively carried out for each parameter independently (see Butler

[137).

Tuning
Finding the feasible region RS is of particular importance in the

case of single parameter tuning (trimming). It provides an inexpensive



check on the tunability of an outcome of the manufacturing process. An
outcome will be tunable if

[¢t, ¢t] n RS £ 0, (28)
where [¢t, ¢t] is the tuning range of ¢. This interval can be used to

- ~

initialize ¢1 and ¢1 in Fig. 2.
IV. EXTREMES OF A BIQUADRATIC FUNCTION

The stationary points of F, see (11), are given by

dF
e 0, (29)
where
dF (B-AD)+(C-AE) ¢+ (CD-BE) $°
ap - : (142D6+E0%)2 . B0

For finite stationary points, we solve the quadratic equation
(CD-BE)¢° + (C-AE)¢ + (B-AD) = O . (31)
In general, there are two stationary points [8], given by the roots of
(31). 1In the case of
CD -BE = 0, (32)
there is only one stationary point given by
¢ = - (B-AD)/(C-AE) . (33)
To prove that these stationary points are extremes of F (maximum or
minimum), we rewrite (11) as
(1+ 2D¢ + E¢2)F = A + 2B¢ + C¢2 , (34)
where we have assumed that the denominator has no real roots.
Differentiating (34) w.r.t. ¢ we get

dF
(1+2D04E2) 35 *+ 2(D+EGIF = 2(B+Co) , (35)



and differentiating (35) w.r.t. ¢ we get

> d2F dF
(142D¢+E¢") — + 4(D+E¢) g, + 2EF = 2C . (36)
d¢ ¢
Thus, for a stationary point
d2F C-EF
= 2 . (37)
d¢2 1+2D¢+E¢2
If a stationary point is an inflection point, i.e.,
d2F
— =0, (38)
d¢2
then (37) leads to
C
F=75. (39)

The finite point at which F = C/E is obtained by replacing F by C/E in
(11) to get

C-AE

¢ = - 2(cp-BE) ° (40)
Using (35), a stationary point satisfies

B+C¢
D+E¢ *

F = (41)

Hence, for a finite stationary point to be an inflection point (39)
and (41) have to be satisfied simultaneously for a finite value of ¢.
This is true if

BE = CD . ' (42)
Collecting the information we have so far, a finite stationary point ¢
which happens to be an inflection point is given by (40), however, (42)
indicates that ¢ is infinite unless

C-AE =0 . (43)
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Substituting for C from (43) into (42) and assuming that E # 0, we get

B = AD . (44)
But, (42), (43) and (U44) make dF/d¢, see (30), equal to zero everywhere.
This is the special case of a constant function F=A which is of no
interest.

To summarize, the stationary points of a biquadratic function which
has no real poles are extreme points. This result gives information to
the designer about the behaviour of the function on a certain interval.
It indicates that the function is monotonic at any interval as long as
no stationary points fall within this interval. If a minimax solution
is to be defined by one function (Section VI), finding the extremes of

this function is essential.

V. IMPLICATIONS OF A POLE

So far we have avoided the situation in which f(4) has a real pole.

A pole of F = |f|2 of order two w.r.t. ¢ at
¢ = =1/b (45)
is possible only if b is real, otherwise the zeros of the denominator of

(10) are complex. Similarly, the numerator of (10) indicates that a

real zero of order two w.r.t. ¢ at

2 (16)

¢ = - (u*a)/|u]2[a|

exists if (u¥a) is real.
Two design requirements are now of interest. If a pole is to be
placed at this particular frequency (at which f(¢) is obtained), we have

no choice but to take ¢ as given by (45). A finite specification S at

this particular frequency will not cause the denominator to be zero at
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the values of ¢ considered and hence all derivations in Sections II, III

and IV are valid. Regarding the stationary points we add that

dF (bo+1)2( R(u*a)+|a|26)-b(bs+1) (Ju|%+2 R(u*a)e+|a|%s2)

— =2 (47)

a0 (bg+1)"
Thus, one of the zeros of the numerator will be ¢ = -1/b, which is a
point of infinite gradient and the stationary point is

2
blu|®- R(u*a) AD-B
¢ = = B - (48)

la|2-b R(u*a)
2 2 . ‘L
If C-DB # 0, this point will be a minimum of F since d F/d¢ 1is positive

at this point and given by

d°F 2 5
5 = m |ub-a|” . (49)
de (1+b¢)

VI. THE ONE-DIMENSIONAL MINIMAX ALGORITHM

A one-dimensional minimax algorithm based upon the foregoing theory
is now developed. The algorithm is guaranteed to converge to the global
minimax optimum. See the Appendix for theorems on the convergence of
the algorithm. Fig. 3 illustrates the algorithm. The following steps

set it out in detail.

Step 1 Find U, ai and bi’ i=1,2, ..., m

Comment These complex constants are obtained through (3), (4) and (5)
or by (6), (7) and (8). Hence, a biquadratic function of the
form (10) (equivalent to (11)) for each i = 1, 2, ..., m, is

available.



Step 2

Step 3

Step 4

Comment

Step 5

Comment

Step 6

Step 7
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Initialize ¢.

Find

8 = max ei(¢)
i

-

Find [¢2, ¢z] and i, i

specifications

(50)

¢ = 1, 2, ..., k, using the

., m. (51)

This is carried out using the flow diagram of Fig. 2. If all

functions are convex, k will always be one.

-

Find g2 and gl, L =1, 2,

aF;
v 2!
g T Miode | .
g ¢
L
dF?
1
~ !I
e Vi dy |
* 6
2

., k, given by

(52)

(53)

These are simply the sensitivities at the extreme points of

each valid interval.

If k=1, set j « 1 and go to Step 8.

Find j such that
Aj_>_A2, L =1, 2,

where

L

..y k, (54)

(55)



Comment

Step 8

Comment

Step 9

Comment

Step 10

Comment

Step 11

In this step we select the jth interval which appears to be the
most promising interval in terms of the expected improvement in

the minimax optimum based on linearization. Al will always be

positive.

Set

vV A A v A v

b « (gj¢j—gj¢j)/(gj-gj) if i, # iy. (56)

If the extremes of the jth interval are defined by two
different functions, the new value ¢ 1is taken as the
intersection of the linear approximation to the two functions.
Set ¢ to the minimizing point of the function wg F; if ij =
- J
i,.

J

The minimum of a function Fi is one of the roots of (31) for

(SN

which (37) is positive after multiplying by w; .
J

Set

6 « (¢j+¢j)/2 if ¢ ¢ (¢j’¢j) . (57)

This is a default value to obviate any numerical problem which

~

may arise in Step 7 or Step 8, for example, gj = 0.

Stop if k = 1 and if

(6,=04) L e |9] » (58)

where ¢ is a prescribed small positive number.
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Step 12 Go to Step 3.

Comment It is anticipated (see Appendix) that, eventually, k will be

one, i.e., a single global minimum is reached.
VII. EXAMPLE

A tunable active filter [14] has been chosen to implement the
theory and algorithms. The filter is shown in Fig. 4 and its equivalent
circuit in Fig. 5. The specifications w.r.t. frequency on the modulus
squared of the transfer function F = |V2/Vgl2 are

F £ 0.5 for f/f0 £ 1-10/1,
F £ 1.21 for 1—1O/f0 S,f/f0 3_1+10/f0,

F

IA

0.5 for f/f‘O 2_1+10/f0,
F > 0.5 for 1-8/f0 S_f/folg 1+8/fo,

F>1for = fo Hz,

where fO is the center frequency. Using the one pole roll-off model for

the operational amplifiers, given by

AO‘”a

A(s) =

S+ !
Wa

where s is the complex frequency, AO is the d.c. gain and wy the 3 dB

radian bandwidth, the nodal equations are

G 1*0g 0 -G, o (v, [‘vag“
0 G2+G3+SC2+A2G3 —sC2 -GZ+A1A2G3 V2 0
-G1 —SC2 G.|+G,_l+sC1+sC2 -sC1 V3 = 0 .
_ 0 -G2 —sC1 G2+sC1_) _VMJ L 0 3
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According to equations (3), (4), (5) and (10) a biquadratic model
in Ru was obtained at each sample frequency. The normalized sample
frequencies are taken as 1 and 1 =+ 10/fO for the relevant upper

specifications, 1 and 1 + 8/f. for the relevant lower specifications.

0
This leads to six error functions e i=1,2, ..., 6. The range of RM
for which the specifications are satisfied is that for which e L0, i
=1, 2, ..., 6. The maximum of the error functions ei versus Ru is
shown in Fig. 6. A single run of a program implementing the flow
diagram of Fig. 2 indicated that the filter 1is tunable for the
specifications defined at a center frequency of 100 Hz. It meets these
specifications if

R, ¢ [181.126, 187.166]

4
and with other circuit parameters fixed at values given in Table 1. It
is also tunable around a center frequency of 700 Hz (see Fig. 7) and
meets the specifications if

Ry € [3.4881, 3.5012]

To find min max €, we are faced with the local minima in Fig. 6.
R i
I

The convergence of other algorithms to the global minimum depends upon
the starting point. For the proposed algorithm the results are shown in
Table II for different starting points and at different center
frequencies. Note how small is the number of iterations required.

When R1 was altered to the value 14 k@ the filter is not tunable as
is determined by one run of the program. The optimum value of Ru,
however, was obtained in only two iterations (see Table II). In fact,
the algorithm converged in the first iteration since the optimum is

defined by one function, however, the second iteration was performed to

satisfy the stopping criterion.
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VIII. CONCLUSIONS

Implications of the bilinear behaviour of certain linear circuits
in the frequency domain have been investigated. The explicit determina-
tion of the points defining the boundary of the feasible region w.r.t.
one parameter led to results on centering and tolerance assignment as
well as a considerably simple check on the tunability of an outcome of
the manufacturing process by adjusting a single parameter at a time.
Detection of worst cases within an interval for any circuit parameter,
of course, is also facilitated.

The proposed minimax algorithm is not only extremely efficient but
is also globally convergent. It has been shown how few iterations are
required for convergence to the global minimax optimum from different
starting points even when local minima exist. In fact, difficulties
arising out of multiple local minima have been observed by the present
authors in implementing a one-dimensional version of the minimax

algorithm of Madsen et al. [15].

APPENDIX

The global convergence of the one-dimensional minimax algorithm is

proved through the following two theorems.

Theorem 1 If ¢n is an optimal value of ¢ after n iterations then

6n+1 < 6n )

Proof According to Step 3 of the algorithm
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s" & max ei(¢n)
i
Knowing that inequalities (16), (19), (20) and (21) may assume equality
only at an extreme point of the closed intervals [¢2, ¢£], L =1, 2,

. n+1 . . . .
...y, k, and since ¢ is secured to be an interior point as shown by

Step 10, we have
Thus,

Q.E.D.
*
Theorem 2 If ¢ is a unique global minimax optimum, then for
sufficiently small e, used in the stopping criterion of Step 11, we have
a ¥ a
le7=¢ | < elo |, (A1)

where ¢a is the value of ¢ to which the algorithm has converged.

Proof The proof is divided into two parts. First consider the case
where only one interval (k=1) is found by the algorithm. Thus,
inequalities (16), (19), (20) and (21) guarantee that ¢* will always
belong to this interval which is defined to be the feasible region of
(51), where & is given by (50), i.e.,

ei(¢*) S.ei(¢n) <§,

where ¢n is the value of ¢ after n iterations.

According to (58), we have

v

- a
(¢1 - ¢1) L €|¢ I ’
But,
* v ~
0%y ¢ € Log, 0,0 .

Thus,
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A

#*
16%-0 | < |0

v

a
1m0l Lelotl .

Secondly, assume k > 1. We show that for sufficiently small € the

number of intervals k will be reduced. There is no loss of generality

% - - v ~
if we assume k=2 and that ¢ e [¢2, ¢2]. Let ¢ e [¢1, ¢1] and A, > A,

so that the algorithm will select interval 1 according to (54). Thus,

A v A A v A

8181(04-0,)/(8,-8,) > 858,(0,-0,)/(8,-8,)
or
. g,84(8,-8,)
(65-0,) < 7‘7‘?7“:7‘;' (04-04) . (A2)
8,8,(8,-8,

~ v

But, Theorem 1 implies a strictly montonic decrease in § and hence
a strictly montonic decrease in (;1-;1). Thus using (58) and choosing ¢
to be sufficiently small we contradict (A2) since it is impossible that
(;2-;2) tends to zero while it contains the global minimax optimum.
This proves that at a certain stage, interval 1 will be dropped from the
algorithm so that the algorithm will converge as in the first part of

the proof. Q.E.D.
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FIGURE CAPTIONS

Illustration of a biquadratic function with regions in which
F>SorF £S.

Flow diagram for checking one-dimensional tunability or for
determining the extremes of each continuous interval defining
RS.

Illustration of the behaviour of the one-dimensional minimax
algorithm. Note that the algorithm switches from interval 1 to
interval 2, based on predictions of the decrease in the

maximum.

Tunable active filter.

Equivalent circuit for nodal analysis.

Max e, versus the tuning resistor R4 for specifications
1<i<6

defined around fO = 100 Hz indicating the active functions

(and hence active frequency points).

Max e. versus RM for specifications defined around fo = 700
1<€i<6

Hz for two cases (a) Ry = 12.446 ko, (b) R1 = 14 kQ.
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