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This paper deals with engineering design problems in which,
for example, either a large volume of production is envisaged
or in which only a few units are to be custom made. Designs
are considered subject to manufacturing tolerances, material
uncertainties, environmental wuncertainties and model
uncertainties. The reduction of cost by increasing
tolerances, the determination and optimization of production
yield, the problem of design centering and various aspects of
tuning are discussed. Nonlinear programming approaches are
considered. The important problem of searching for
candidates for worst case solutions is briefly mentioned.
Simplicial approximation, quadratic modelling, linear cuts
and space regionalization are reviewed. A fairly extensive
bibliography to relevant work in the modelling and design of
electrical circuits is provided.

INTRODUCTION

This paper deals principally with those engineering design problems in which
either a large volume of production is envisaged, e.g., integrated circuits, or
in which only a few units are to be custom made, e.g., filters for satellite
applications. In the latter case, reliability and high performance are
essential, whereas in the former, low production cost at the expense of
performance is more typical. A1l designs are considered to be subjected to
manufacturing tolerances (e.g., on physical dimensions of components),
uncertainties on the materials used in fabrication (e.g., on dielectric constants
of insulators), uncertainties on the environment in which the product is to
operate (e.g., on temperature), uncertainties in the computational models used in
the design process (e.g., on equivalent circuits purporting to represent the

actual circuits) and so on. Attention is directed towards the relevant
modelling, the design and the manufacture of electrical circuits such as filters,
amplifiers and switching circuits. Hence, certain undesirable effects which

deteriorate performance over and above those already indicated may be due to
electromagnetic coupling between (usually adjacent or closely located) components
and to terminations which, inevitably, are not ideally matched to the circuit
under consideration. The effects are particularly acute at high frequencies of
operation.

The main objective is to discuss some approaches to the reduction of cost as
effected by increasing or optimally assigning tolerances, maximizing production
yield with respect to an assumed probability distribution function, utilizing any
available design margins and the interrelated optimization problem called design
centering which, as the term implies, involves the optimal location of a set of
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nominal design parameter values. Post-production tuning is also highly relevant.
Such tuning is customary in engineering production as a means of improving or
repairing actual outcomes in an attempt to improve performance. Production yield
in the present context may be simply defined by the ratio of number of outcomes
which satisfy the specifications to the total number of outcomes. A potential
yield may be similarly defined by replacing the number of outcomes by the number
of outcomes which satisfy the specifications after tuning if necessary [13].

An extensive bibliography of relevant material is appended [1-48].
REVIEW OF COMPUTER-AIDED DESIGN

In order of general complexity, Fig. 1 attempts to highlight typical problem
formulations in modern computer-aided engineering design, in particular using the
nomenclature appropriate to the optimal design of electrical circuits and systems
[1,10]. Fig. 2 shows some typical design situations. The concept of upper and
lower specifications or desired bounds on a response function of an independent
variable V¥, e.g., frequency or time, implies a constraint region in the
k-dimensional space of designable variables ¢, viz.,

¢

ne>

(1)

L ¢y ]
This concept is easily generalized to response functions of a number of
independent variables similarly assembled in the vector ?. Error functions
involved in a minimax or Chebyshev approximation problem expressed along a
sampled ¥ axis can be represented in terms of ¢ by contour diagrams of the
maximum, with its distinctive discontinuous derivatives. A family of possible
responses, involving, e.g., a whole production line of circuits with independent
parameters lying within a tolerance region of a nominal design is shown also.
Since all the points in the tolerance region are also in the constraint region
the envelope of responses lies within the upper and lower specifications.

The ideas of Figs. 1 and 2 may be amplified as follows. Nominal design: here we
seek a single point in the space of designable variables which best meets a given
set of performance specifications and design constraints. A suitable measure of
deviation such as least squares, least pth or minimax [27] is typically chosen as
the objective function to be minimized. Sensitivity minimization: here it is
recognized that the solution point is subject to fluctuation or change due to any
phenomenon associated with design parameters. An overall measure of this
sensitivity, wusually involving first-order sensitivities with respect to the
parameters, is often included in the objective function [45]. The aim is, of
course, to trade off some performance by gaining greater insensitivity of the
possible outcome.

When undesirable effects such as model uncertainties and manufacturing tolerances
are considered explicitly, two important classes of problems emerge: statistical
design and worst-case design. In statistical design it is recognized a priori
that a production yield of less than 100% is likely and there are, consequently,
two principal aims. We attempt to minimize the cost or, alternatively, maximize
the yield. Worst-case design requires that all units meet the performance
specifications under all circumstances [T7]. Typically, we either attempt to
center the design with fixed assumed absolute or relative tolerances (analogous
to maximizing yield) or we attempt to optimally assign tolerances to reduce
production cost. What distinguishes all these problems from nominal designs or
sensitivity minimization is the fact that a single point is no longer of
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Fig. 1 A typical sequence of computer-aided design problems. As one proceeds
down the diagram the problems tend to increase in complexity [1,10].
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interest: a (tolerance) region of possible outcomes is to be optimally located
with respect to the feasible (acceptable, constraint) region.

We can deal with fixed designs or tunable designs. A fixed design or model
implies that no subsegquent tuning or adjustment 1is available to correct a
posteriori for unacceptable performance. Thus, if a worst-case design is sought,
then every unit has to be individually tested and each violating outcome
discarded. On the other hand, a tunable design implies that at least one
variable can be adjusted after such testing in an effort to meet the
specifications [19]. There is no guarantee that the specifications will be met,
of course, even after tuning unless it was properly accommodated in the original
design.

The presence of tuning tends to increase cost, not only in making the tunable
component available but possibly in having to pay a skilled person to carry out
the tuning [19,41]. Repairing seems closely related to tuning in this respect.
Tuning (repairing) may often be a design feature to permit the customer to alter
his unit to meet different specifications. This leads to the concept of tunable
constraint regions [11,19], which can be handled readily mathematically albeit
computationally at greater expense.

Fig. 3 is a representation in the space of designable parameters of the concepts
of the manufacturing tolerance over which it is presumed there is no control (by
definition), the manufacturer's tuning variable, which is usually designed to be
inaccessible to the customer and the tuning variable designed specifically for
the customer which is exteriorized and often embodied in a large knob with
attendant scale. It may be remarked that Fig. 3 applies equally in a descriptive
sense whether the tolerance and tuning effects are all associated with one
physical variable or whether they relate to different physical variables.

Setting any or all of the aforementioned problems up as nonlinear programs poses
numerous difficulties [7,19]. There is the problem of identifying a suitable
objective (cost) function to be minimized. Very little is known, in general,
about production cost as a function of the variables entering into a design.
This observation probably applies as much to most manufacturers as to outsiders.
Hence, highly simplified points of view are usually taken in an attempt to render
the problem tractable: functions which force the expansion of a tolerance
orthotope within the constraint region accompanied by its optimal location, the
optimal location of an expandable sphere within the region and so on. The matter
is complicated by generally unknown correlations between variables, empirical
assumptions about models and model parameter uncertainties and unreliable or
unknown distributions of outcomes of component values between tolerance extremes.
The number of constraints and even variables that could be chosen for an
otherwise deceptively simple design problem is virtually unlimited.

One of the most challenging problems, therefore, is the development of general
rules or methodology at a high level, procedures or algorithms at a lower level,
for rapidly determining candidates for active constraints [47,u48]. Various
obvious mathematical assumptions have been proposed to simplify the selection
problem: linearity of the constraints with respect to the variables [41],
convexity of the constraint region [29,30], one-dimensional convexity of the
constraint region [7,17,25].

The most frequently made assumption (virtually axiomatic in the 1light of the
current state of the art) is that extremes of performance correspond to extremes
in designable variables. Hence, most approaches to optimal design subject to
tolerances concentrate on extreme points of parameter ranges.

The direct use of the Monte Carlo method of tolerance analysis within the
optimization loop is extremely expensive [32]. Many approaches have therefore
been suggested, either to avoid repeated use of the Monte Carlo method for
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Fig. 3 A representation of the concepts of tolerance and independent tuBing both
by manufacturer and customer, with respect to a nominal design ? .

estimating yield, or to employ multidimensional approximations of the design
constraints [1-4,9-14,29-31]. However, the need to optimize yield in the context
of a huge production has sometimes dictated the computational impetuosity of
uniting a Monte Carlo analysis with a general purpose simulator. That such
extemporaneousness is extant only serves to underline the importance of the
anticipated results.

SOME OPTIMIZATION APPROACHES
Bounding the Constraint Region Rc

The constraint region R_ is the set of all points ¢ for which all performance
specifications and desigh constraints are satisfied. Thus
A

R,= (8] &(®) 20, (2)
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where g is the vector of constraint functions. Upper and lower bounds on each
parameter ¢, (the ith component) for which ¢ e R provide useful design
information 128]. In a statistical analysis, for example, constraints can be
stacked in order of increasing computational effort, suitable upper and lower
bounds appearing at the top of the stack. If any constraint is violated further
testing of the candidate solutions becomes unnecessary.

Fig. U4 illustrates the bounding of R . In general, 2k optimizations, where k is
the dimensionality of ¢, are required. In practice, however, since common
solutions are likely to  exist [8], significantly fewer optimizations would be
expected. Upper bounds on tolerances for fixed designs can, following such an
analysis, be immediately calculated. Similarly, upper bounds on yield can be
calculated for fixed designs.

max ¢, X
|
\
 max ¢1
i R
min ¢1 N c
!
\
l\\\w\
min ¢2

Fig. 4 Bounds on the constraint region obtained by independently maximizing or
minimizing the parameters subject to the constraints [8].

Minimax and Least pth Objectives M and U
Often, in engineering design, we define a function of the form

M(¢) Y _min g;(2), (3)
ieIc

where Ic is an index set, each element of which identifies a particular
constraint defining R _. More generally, the so-called generalized least pth
objective [15,27] can Be defined, for example, as
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0 if M(%®) =0,

u(e) & (4)
1/q
-g,(0)]1
M(¢) - if M(¢) £ O,
- ieJ(g) M(f) ~
where
Q= p sgn M(¢) , p 21 (5)
and

{1 11eI,,g(¢) <0} forM>o0,

(6)

I for M < 0.
c

The important feature of U(¢) is that it coincides with M(¢) when M = 0, it
shares the same sign as M(¢), yet under mild restricfions on p it is
differentiable everywhere excep€ when M = 0. The role of the M in the definition
of U in (4) is twofold. Firstly, it scales the functions automatically
ameliorating ill-conditioning attributable to the exponent gq. Secondly, it
facilitates the matching of the two otherwise discontinuous least pth objectives,
namely, the objective for M > 0 and the one for M < 0. A discussion of the
properties of this function is available in the literature [15,27].

The problem

minimize U(¢)
¢

~

where U(¢) is given by (4)-(6), is, consequently, not only a feasibility check
but is also a centering process if R is not empty, since ¢ then tends to move

away from the constraint boundary té’the interior of R_. ~ Tolerances are not
explicitly optimized by this formulation. However, this(ﬁind of optimization is
virtually mandatory prior to introducing explicit tolerances. Active or near

active constraints can then, for example, usually be identified.

Interior Approximation RI and Exterior Approximation RE

In accordance with the foregoing concepts we can now let

RZ {6 | UGs) <O}, <)

where U(¢) is given by (4)-(6). Under assumptions of convexity of R_ or
one-dimensional convexity [7] we can eliminate the corresponding regions
indicated in Fig. 5. This allows further refinement, for example, of finding an
upper bound to production yield over and above that outlined earlier.

Interior or exterior approximations to Rc can be conceived [8] as illustrated by
Fig. 6. A best exterior approximation may be found by deflation of a suitable
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approximation and deflating the exterior approximation [8].

region R, and a best interior approximation by inflation of a suitable region RI,
while retaining

(8)
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Under these circumstances, the calculation of the original functions describing

RC would only be necessary for ? € RE - RI, which is a region of uncertainty as
to the location of the boundary.

While the exterior approximation may be exploited computationally to provide an
upper bound, the interior approximation obviously leads to a lower bound.

The Tolerance Region R€

The interior or exterior approximation could be used in design centering
procedures. Consider the tolerance region [T]

Ro2 (0160 -ccoce®se, (9)

where 90 is called the nominal point and € > 0 is a vector of associated
tolerances. Thus, - ~

Rc a Re <{==> Rs is an exterior approximation,

Re a RC {==> Re is an interior approximation.
A serious problem, in general, in the above expressions is the implication that
all points ¢ € Re for the interior approximation and all ¢ ¢ R, for the exterior

approximation must be accounted for, i.e., we have to deal with an infinite
number of constraints.
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The Outcome Region Ru

Consider, for example, the region

A

Ry, = (0 | -1 < <1}, (10)

where ¥ is a k-vector. In this case, we could define an alternative expression
for the tolerance region of (9), namely, the orthotope

R, =1(¢ 1 0=0" vEN veRy, (1)
where
[ e, )
€2
A
£= ) ’ (12)
! "k
J
Suppose also that a discrete set of ¥ is available, say Ruv’ and let
A 0
Ro= 181 8=0 +E¥ ¥eRyl (13)

In practice, we are forced to consider a discrete set of ¥ out of computational
necessity. What would distinguish one algorithm from another is the strategy for
discerding elements of the set and/or adding new elements.

Candidates for Worst Case
if
[} ==
Rv Rc > R, @ Rc (1)

then Rv or R are said to provide candidates for a worst-case design. In

Uy
practice [18-20], it is usual to consider vertices of R. or R, as candidates so
that

R, = L, e -1, 11}, (15)

This corresponds to intuition, which suggests that extremes of performance
correspond to extremes of designable variables. Mathematics, fortunately, was
invented to harness intuition and avoid its pitfalls, consequently the assumption
that R, yields candidates for worst case requires justification in particular
problems.

Optimization with Fixed Tolerances
The extension of the generalized least pth objective to handle all H ¢ Ruv and
the minimization of the resulting function U(¢0) with respect to ¢0 for fixed

absolute or relative tolerances is rather simple. Difficulties occur essentially
in housekeeping of arrays. Of course, depending on the sizes of the tolerances
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and the assumption (14) the solution obtained is not necessarily an acceptable
worst case [21]. It may be that violations still occur at vertices and in the
neighborhood of violating vertices.

Optimizing the Tolerance Orthotope

If we have a cost function C(fo,f) with the properties [7]

C(QO,E) *cas e >
- (16)

C(fo,g) + « for any e ©

then the minimization of C(¢O,E) with respect to ¢O and € subject to Rs < R can
be used to optimize (maximize) the tolerances. HAgain, candidates for worst case
RV are considered in practice to reduce computational effort.

Typical objective functions which fit the requirements of (16) and which have
some physical justification [7,18,19,35,40,44,45] can take the form

k i
cC= Z P “7)
i=1 i
or
0
k d>i
C = 'Z e T (18)
i=1 i

where c, are constants which reflect the cost or importance of the corresponding
term.

Tolerancing and Tuning

Tuning is the post-production process which permits a manufacturer to correct for
unavoidably large deviations from the specifications or the customer to optimize
his unit under operating conditions. We can take into account a simple situation

where one or more variables are tunable by considering the slack region

R ={gl-1go.g1}, (19)

where p is a k-vector. A tuning region Rt(g) may then be defined as

A

RIS e =00 v Ey+To, 0 R, (20)

where g t1 h

t
T 8 )
r ' (21)
t
L k
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and a suitable cost function C(go, €, t) minimized. Such a cost function should
probably have the properties b

C(¢0, e, t) »cas g€ » =
C(¢0, e, t) + » for any gy v

o 0 (22)
C(¢ , €, £t) » C(¢p , €) as t - O

0

C(¢'y e, t) » = for any t, » =.

~ ~

See, for example, Bandler et al. [19]. The cost function might also involve u
[13], since the cost of tuning may well depend on a statistical distribution to
outcomes.

The important concept to note in any worst-case optimization program, for
example, that is set up to solve a centering, tolerancing and tuning problem is
that for all selected sets of y taken, for example, from R of (15) there must
exist some p (i.e., one 1ndependent p vector for each u véttor) which permits a
corresponding p01nt ¢ to be in R (i~e., the intersection of the R (u) of (20)
and R must not be empty) . -

Vertex Selection

An efficient vertex selection scheme in a tolerance assignment or centering
problem would involve finding local or global solutions u to

min  g,(s° +E u)
€R - T
Lo
It is easily shown that the components of y satisfy [21,46,47]
agi(E)

N. = - sgn ——— 23)
My g Buj (23

for 1 € R v of (15). Iterative approaches for solving the associated nonlinear
systém of¥equations :

u = - sgn gugi(g) (24)
for all i € Ic’ where
r8/8u1ﬂ
8/3u2
v & (25)
~H
8/3uk

is the partial derivative operator with respect to the H have been suggested
[21,47,48].
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The Generslized Tolerance Problem

Tromp [47,48] has carried out extensive research which has permitted the
generalization of the tolerance problem to accommodate physical tolerances, model
uncertainties, external disturbing effects and dependently toleranced parameters
in a completely unified manner. In essence, his approach begins by defining the

kOi-dimensional vector QOl, the ki-dimensional vector gl and the kui-dimensional
vector El so that ?1 is a function of ?01 and gl for all i =1, 2, ... n, and ?01

itself depends on all ?1_1 for i =2, 3, ..., n.

Input parameters, for example, the physical parameters (dimensions, constants of
materials used, etc.) available to the manufacturer might be identified as ?1,
whereas ¢" would be the output vector, for example, the sampled response of a
system o;‘the constraint vector 8 introduced earlier. The quantities ¢2, ooy
¢n-1 can be identified, for example, as appropriate intermediate o; model

parameters. The variables Bl, i=1,2, ..., n, embody unavoidable, undesirable

or unknown fluctuations generally. Hence, we may assemble the vectors

~ = - = - -
901 ‘21 E‘I
302 92 E2
A A A
,?0 = 3 2 = ’ E = (26)
LgOn ?n Lln
- J L J .

The preceding discussions involving the M variables and the H-space generalize in
an obvious manner. However, the tolerance region in the ?—space need no longer
turn out to be an orthotope [47,48].

This kind of analysis permits more than strictly design or manufacturing problems
to be simulated and optimized. Planning problems, anticipated system operation,
aging, measurement errors and so on may be embodied into the original simulation,
and the design solution accordingly optimized to reflect these phenomena. It is
obvious that uncertainty can enter into the problem at any stage: at a high
(conceptual) level or at a low (computational) level. Distributions of and
correlations between parameters exacerbate the situation, but one may even
conceive of building desirable correlations into a manufacturing process.

Centering via Large-change Sensitivities and Performance Contours

The design centering approach of Butler involves large-change sensitivities in
conjunction with pairwise changes in parameter values with respect to chosen
performance contours [26]. A scalar continuous function of design parameters
which reflects the goodness of a design is chosen as a performance criterion. A
nominal design which satisfies this performance criterion is assumed to exist.
The concept of large-change sensitivities is that of finding changes in function
values due to significant deviations in designable parameters. This concept is
used to draw contours of the performance criterion changing parameters in a
pairwise manner for each contour. The design center is obtained by inspection,
i.e., by choosing a nominal value which is well centered for all contours. As an

14



example of a performance criterion, we might use -M(?) of (3). The method is
illustrated in Fig. 7.

% %5

min g;=0 min g;=
i i
0
= 0
=% _\ % =%
¢0;__- T~ 4,0
| | \\\\\\\\\\W
% ¢S
qu
/ : =
min g,=0
|
’*\/ .
¢§)-
3 //
qbo ‘~>4;
2
Fig. 7 Performance contours for pairwise changes in parameters [26]. Reducing

¢? will result in a better centered nominal design [1].

Centering via Simplicial Approximation

The simplicial approximation approach of Director and Hachtel [29,30] involves
linear programming and one-dimensional search techniques. Their approach is to
inscribe (inflate) a hypersphere inside the constraint region. During the
process of enlarging this hypersphere a polytope which approximates the boundary
of the constraint region is constructed. Fig. 8 illustrates the procedure.

The algorithm initially searches for points on the constraint boundary in both

positive and negative directions for each parameter from a feasible point (a
point within the constraint region). The convex hull described by these boundary
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Fig. 8 An illustration of the simplicial approximation approach due to Director
and Hachtel [29]. 1In (a) we show the results of an initial search for
boundary points. In (b) is depicted the polytope approximating the
boundary of the constraint region after two iterations [1].

points provides the initial polytope approximating the boundary of the constraint
region. This polytope will be an interior approximation only if the constraint
region 1is convex. Using linear programming a hypersphere is to be inflated
inside this polytope in a k-dimensional space. The tangent hyperplanes are
determined. These hyperplanes, faces of the polytope, are simplices in a space
of k-1 dimensions. The largest simplex, i.e., the one which contains the largest
hypersphere, is to be broken and replaced by k simplices. This is performed by
adding a new vertex to the polytope obtained by searching for a boundary point

16



along the normal direction to the largest simplex from the center of the
corresponding hypersphere:

The inflation of an orthotope, as distinct from a sphere, describing the
tolerance region is the essence of the work of Bandler et al. [1-21].

Quadratic Modelling of the Constraints

A nonlinear programming approach but employing approximations to the design
constraints has been presented [1-5,8-14]. An interpolation region centered at
the initial guess to the nominal design is chosen. The simulation program is
used to provide the value of the response functions (constraints) at a certain
set of base points. The base points are points within the interpolation region
and defined in terms of values of the designable parameters. Based upon the
corresponding values of the resulting responses, multidimensional quadratic
polynomials are constructed. These quadratic polynomials have the general form

P(¢) =a, +2a (9-29 +5 (¢- $)" H($® - ¢), 27)

0 ~ ~ ~ 2 ~ ~ ~ Ve ~

where a. and a are, respectively, a constant scalar and a_constant vector, H is a
constang symmetric Hessian matrix of the quadratic and ¢ is the center of the
chosen interpolation region.

The base points are simply those points where the approximated response function
and the quadratic polynomial coincide. A system of simultaneous linear equations
has to be solved to obtain the polynomial. The number of base points (exactly
equal to the number of simulations required) is the minimum necessary to fully
describe the responses and is given by

N = (k+1)(k+2)/2, (28)
where k is the number of designable parameters. The number N is the number of
the unknown coefficients. An arrangement of the base points is depicted by
Fig. 9.

Space Regionalization for Statistical Analysis

Space regionalization was suggested by Scott and Walker [43]. Based upon the
probability of having an outcome to fall within a region, a weight is assigned to
this region and the center of the region is checked against the nonlinear
constraints to determine whether this whole weight will contribute to the yield
or not. See Fig. 10. The number of required analyses, however, increases
exponentially with the number of variables subject to statistical variations,
since the response at the center of each region is to be evaluated.

Regionalization was also used by Leung and Spence [36-38] in conjunction with
systematic exploration. The centers of the regions are scanned systematically by
changing one parameter at a time and employing efficient matrix inverse
modification methods for the (linear) circuit analyses required. Leung and
Spence also suggested checking the worst outcome in each region, instead of the
center of the region, if a lower bound on yield is required.

Yield Determination and Optimization

Elias applied the Monte Carlo method directly to the constraints [32]. Director
and Hachtel suggested applying the Monte Carlo method in conjunction with their
simplicial approximation [30]. Their polytope could be updated according to the
points which fall within the constraint region but not in the polytope. Pinel
and Singhal used importance sampling, concentrating the distribution of sample
points at critical regions to reduce computational effort [u42].
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Fig. 9 Arrangement of base points for computing the quadratic interpolating
polynomial in 3 dimensions [3]. In order to exploit sparsity in the

associated system of 1linear equations ?7, ?8 and 49 should be,
respectively, placed in the planes containing {?, ¢1, ¢2}, {¢, f1, 43}

and {9, ?2, f3}, where ¢ is the center of interpolation [3].

Bandler and Abdel-Malek [1-4,9,14] dealt with the mass of calculations involved
in determining and optimizing yield as follows. Multidimensional quadratic
polynomials are fitted to the constraints and updated periodically during the
optimization process. An analytical approach is used to calculating yield and
its sensitivities with respect to all the variables employing linear cuts of the
tolerance region. The sensitivities permit the use of gradient methods of
optimization.

The basic idea is to use weighted hypervolumes. Evaluating hypervolumes, in
general, is expensive because it involves a multidimensional integration. For
the special case of cutting an orthotope by a linear constraint, however, a
simple formula can be found [2,14,46]. See, for example, Fig. 11.

The method of Bandler and Abdel-Malek does not assume that these linear cuts are
fixed in the parameter space. It is possible for these 1linear cuts be
continuously updated to follow the generally nonlinear constraints. This
facilitates a good approximation to the boundary of the constraint region as the
tolerance region is allowed to move in the parameter space during, for example,
an optimization process. Methods for continuously updating the linear cuts have
been given [3,14].

CONCLUSIONS
Most of the approaches in current use for design centering, tolerance assignment
and yield optimization employed by electrical circuit designers appear quite

general. While many applications of the techniques are directed towards design
problems involving linear systems of equations, nonlinear circuits are of
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Fig. 10 Regionalization [U43] of the parameter space for estimating production
yield [1].

particular interest to circuit designers [3,4,11] and it is expected that
considerable effort will be devoted to such systems in the future [22].

Some of the formulations described here, if expedited intact for problems
involving masses of nonlinear constraints, for example, are formidable beyond our
present computational means. With the anticipated breakthrough of computers with
massive parallel processing capabilities, however, some of these problems are
certain to be dealt with by engineers on an almost routine basis in the near
future. Even at this time relevant and enormous computational problems are
begging to be solved, not the least of which involve optimal topology and
reliability of large systems. Of course, feasible solutions to such problems can
be and are currently obtained suboptimally. It is the integration of all the
concepts mentioned in the foregoing pages into a unified design methodology that
is called for whether or not, for computational expedience, the superproblem thus
created is subsequently partitioned or decomposed.
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Fig.

11 A two-dimensional example illustrating the calculation of nonfeasible
hypervolumes [1,2]. The nonfeasible area V is given by subtracting the
areas of triangle ?1bd and ?uac from frab where ?r is termed a reference
vertex. Hence, it is easy to show that
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