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Abstract An exact and efficient approach to network analysis for
cascaded structures has been suggested by Bandler et al. They
demonstrated that it is useful for sénsitivity and tolerance analyses,
in particular, for a multiple of simultaneous large changes in design
parameter values. This paper extends their work to second-order
sensitivities, as well as to the evaluation of the response and its
first-order sensitivity at the vertices of a tolerance region located in
the space of toleranced design parameters. This information is needed
in a worst-case search algorithm for design centering and tolerance
assignment. A substantial saving in computational effort is achieved by
using the new approach over the basic approach of reanalyzing the

circuit at every vertex.
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I. INTRODUCTION

A newly developed approach for the analysis of cascaded networks
(using the chain matrix) has been used efficiently to perform response
evaluation as well as simultaneous and arbitrary large-change
sensitivity [1]. This paper shows how first- and second-order
sensitivities of the response w.r.t. the variable parameters can be
obtained using this new approach.

In tolerance assignment, where tolerances on elements are
optimized, the response and its first-order sensitivity at the vertices
of the tolerance region [2] are needed by the optimization algorithms.
This information is very useful if a worst-case search algorithm has to
identify the worst vertex. Using the new approach this information can
be obtained very easily and with minimum effort.

Two specific algorithms are presented. One 1is designed for
evaluating first- and second-order sensitivities of the response and the
other for evaluating the response and its sensitivities at the vertices
of a tolerance region. An example is given along with a comparison
between the new approach and the conventional way (the reanalysis) for

evaluating the response and its sensitivites at the vertices.

I1. THEORETICAL FOUNDATION

Consider the two-port element depicted in Fig. 1. The basic
iteration, also summarized by Table I, is y = A y, where A is the
transmission or chain matrix, y contains the output voltage and current

and g'the corresponding input quantities. Table I presents some of the



principal concepts involved in the following analyses. Fig. 2 depicts a
cascaded network with appropriate terminations.

Forward analysis consists of initializing a ET row vector as either
[1 0], [0 1] or a suitable linear combination and successively
premultiplying each constant chain matrix by the resulting row vector
until an element of interest or a termination is reached.

Reverse analysis, which is similar to conventional analysis of
cascaded networks, proceeds by initializing a v column vector as either
[1 0]T or [0 1]T or a suitable linear combination and successively
postmultiplying each constant matrix by the resulting column vector,
again until either an element of interest, or a termination is reached.

In summary, assuming a cascade of n two-ports we have

L N S b (1)

. ¥
and, applying forward and reverse analyses up to Al, this reduces to an

expression of the fprm
d=u y:c-u_l AlVl, (2)

where

yn =c V" (3)

and ¢ and d relate selected output and input variables of interest
explicitly with AT,

The typical formula will, therefore, contain factors of the form

function evaluation: ;TA v==>Q, (4)
. —T
first-order sensitivity: u 6A v ==> §Q , (5)



partial derivative: — v ==>Q', (6)

-T

large-change sensitivity: u~ AA v ==> AQ , (7)

<

where the parameter ¢ is contained in Q. A full reverse analysis taking

[Vn Vg] = 1 °
T 0 1
yields ~-
. . . . 1 0
[vl vl] - A1+1 A1+2 L. An
- - - - - 0o 1

and a corresponding full forward analysis taking

R
e T T |1 o
[u) 'l = (o w31 =
0 1
yields
10 . T
U CRU Cal P YC Ry

Reference Planes

In considering more than one element in the cascade we divide the
network into subnetworks by reference planes. These in turn are chosen
so that no more than one element is to be explicitly considered between
any pair of reference planes. In Fig. 3 the elements ék, ei and éj are
considered in the kth, the ith and the jth subnetworks, respectively.
Note that the superscripts of é here, and from now on, denote the
subnetwork and not the element. Forward and reverse analyses are
initiated at the reference planes. A forward iteration of the structure

of Fig. 3 is illustrated in Fig. U4, where equivalent (Thevenin) sources



are iteratively determined. Reverse iteration is shown in Fig. 5, where

equivalent (Norton) sources are iteratively determined.
III. NETWORK FUNCTIONS IN TERMS OF ELEMENTS UNDER CONSIDERATION

Performing forward analysis from the source of the ith subnetwork
to the input of Al and reverse analysis from the load to the output of

i
A™ we have

i - i-— i, i i i i k i i
Vg = (up+Zgu)) AV vy + (YU = T)vy) =V + ZgIg (8)

and the current through the voltage source of the ith subnetwork

i k. k k -
IL)Yz) = VY -1 . (9)

1 - 1 1 1.1
Ig=uy AT (Vv (4V)-

From (8), letting Ii = 0 and Y = 0, we have I3 = 0 and the Thevenin

L S
voltage
i i
. . \' v
J_ oyl _ S _ S
VS ) VL T~ i— T i ) Qi +ZiQi , o
(u+Zguy) A'v,  “117sTe

where the Q terms have been defined in (4). See also Table II. Letting

V; = 0 and Yé = 0, we have Ig = -Ii and the output impedance
v azin atv, qbleaiol
J __L ~1 S-.2° ~ 2 12 S 22
8 = T = = , 11
S ot - = T i Qi +ZiQi
Lo (ugezguy) Ay, TSt

where, again, the Q terms of (4) are used to obtain a compact

expression (see Table II). These expressions for Vg and Z% permit

equivalent Thevenin sources to be moved in a forward iteration.

From (8) and (9), letting I} = 0 and zE = 0 we have IE = 0 and the

L~ S



input admittance

T . .

i - i i i ii
& _.Eﬁ i u, A (X1+YL22) ) QZ]+YLQZZ (12)
L - Vi ST i i i Qi +YiQi .

S u, AT(v +Y.v.) 11 L7112

~1 < '~ L.2
Letting V; = 0 and Z; = 0, we have Vt': 0 and the Norton current

K i i = T ik i i
I = -Ig = -IL(YLE1 -u,) A v, = 'IL(YLQ12 - Q22) . (13)

These expressions for IE and YE permit equivalent Norton sources to be
moved (if desired) in a reverse iteration.
A special case of (10) applicable to Fig. 2 is

\") '}
V., = — S = S . : (14)
L T Q
u1 Av1 11

Table III gives some useful formulas which can be obtained for

variations in a particular element A. We note, for example, that, since

e is arbitrary and at most only one full analysis yields all Q sQ

11’ 11’
1
Q11 and AQ11, the corresponding VL’ GVL, BVL/a¢ and AVL w.r.t. all

possible parameters anywhere in the cascade can be evaluated exactly for

one network analysis.
IV. SECOND-ORDER SENSITIVITIES

The first-order sensitivity of VL w.r.t. a variable parameter ¢1 is
given using (14) by

aQ
y. —1

BVL S 39 4
3¢1 = Q2 . (15)
11




Differentiating (15) w.r.t. 0, we get

—_— = -V, — |— /Q
30,90, S 20, | 3¢, 1
°2°11 8Q,4 3949
Q4 30,364 - 36, 30,
= - vL Q2 (16)

11

The evaluation of aQ11/a¢1 and 3011/a¢2 is straightforward (see
Table III). For the evaluation of the term 82011/8¢2a¢1, we assume that
the variables are numbered consecutively from the source end to the load

end so that this term is expressed, for example, by

2

3°Q, > _p oA

—— = (u)) T v, . (17)
20,90, = 20, ~1" 26, ~1

Note that ﬁf

~

is a function of a certain chain matrix which contains
the variable ¢1, é is the chain matrix containing ¢2 and 21 is evaluated
at the reference plane following 5.

The following algorithm, which is similar to Algorithm 2 in [1] can
be used to obtain the first- and second-order sensitivities of VL w.r.t.

the design variables. Fig. 6 illustrates the main stages of the

algorithm.

lgori irst- an -Qrder Sensitivities
Step 1 Initialize u® and v.
Set i« 1, m+« 1, q+« 0, r«1, j+n.

Comment n is the total number of elements in the cascade.



Step 2

Comment

Step 3

omment

Step 4

Step 5

Step 6

ommen

Step T

If i = L, 80 to Step 6.
lm is an element of L, an index set containing superscripts of
the k matrices containing the k variable parameters and ordered

consecutively.
oT _ uOT Al

u
Ifm= 1go0 to Step 4.

u1T . u1T Al.

~ ~ -~

u1, u2, ceey gq are working arrays used to proceed with the
evaluation of the gradients of go w.r.t. the q variables

~

already passed by the forward analysis.
Set i « i+1.

If i = Qm go to Step 6.

Go to Step 3.

m 0
X - .

(-]

If m 1 go to Step 10.

Once a variable element is reached the uo is stored in x™ to be
used in the calculation of the first-order sensitivity.

Set p « 1.

wr+up.

~

r « r+1.
If p= q go to Step 10.

The w arrays are used to store the appropriate gradients of uo,

1 2

namely, u, u, ..., for the calculation of second-order

sensitivities.



Step 9 Set p « p+1.

Go to Step 8.
Step 10 If m=k go to Step 12.
aal
umT . uOT ~
or ot aim
u u A
u1T . 1T Ai.

u(m-1)T . u(m—1)T Al

-~ ~

Comment At this step a new u is introduced which is equal to uo

multiplied by the derivative of A" w.r.t. ¢, where AT is a

function of ¢m only.

Step 11 Set i « i+1.
m <« m+1.
q « qg+1.

Go to Step 5.

Step 12 Set r « r-1.

If n = 2k go to Step 15.
step 13 v« 4.

j o« 3-1.

Comment This step is concerned with the reverse analysis.

Step 14 If j = lm go to Step 15.
Go to Step 13.

Step 15 Calculate aQ/a¢m and 320/3¢$.

Comment At this point the first-order derivative of Q w.r.t. ¢m can be
evaluated, since go and v at the reference planes before and

after the element are known. 82Q/3¢i is evaluated using uo, \4
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and azAj/a¢2.
~ m

Step 16 If m = 1 stop.

Set s +m-1. p <« 1.
Step 17 Calculate 3°Q/20 24, .

If p=q go to Step 19.
Comment 32Q/a¢sa¢m is evaluated using the appropriate gr, aéj/a¢m and

v, where s = 1, ..., m=1.
Step 18 Set p «+ p + 1.

r<+<r-1.

s+ s - 1.

Go to Step 17.
Step 19 Set q « q - 1.

m<m- 1.

r+<r-1.

Go to Step 14.

V. THE EVALUATION OF VL AND ITS SENSITIVITIES W.R.T. DESIGN

PARAMETERS AT ALL VERTICES OF THE TOLERANCE REGION

‘Algorithms concerned with finding worst vertices of the tolerance
region need the value of the response at the vertices [3] as well as the
sensitivity of this reponse w.r.t. the design parameters [4,5]. Each
parameter will have a tolerance associated with it so that it can have
one of two values ¢ + € or ¢ - ¢, where ¢ is the tolerance [2]. The
number of vertices of the tolerance region is 2k, where k is the number
of variable parameters, which includes all different combinations of

parameter values.
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Assume that we have partitioned the network by reference planes
into subnetworks such that each subnetwork contains one chain matrix
containing a variable parameter.' Each reference plane is chosen to fall
immediately after a variable element.

The Thevenin voltage/impedance of the ith subnetwork is considered
as the source voltage/impedance of the (i+1)th subnetwork, given by (10)
and (11), respectively, where j = i+1. We have to note here that the
terms Q§1, 021, Q%Z and Q;Z are as defined in (4) with v, and v, set to
€4 and €5 respectively, since the appropriate reference plane
immediately follows the element Qi. The number of pairs of terms V;+1

and Z;+1 to be evaluated is 21, since each subnetwork contains one

variable element with two extreme values (assuming that each At contains

only one variable parameter).

Differentiating (10) w.r.t. Oy where o does not belong to Al, but

V; and Zg are functions of ¢h (i.e., ¢h is in a subnetwork h before the

ith subnetwork) we get

Y S
vt (71425 Q39 SEi - V;'§$§ %,
o @t + 2} o) ’ o
and differentiating (11) w.r.t. ¢,, we get
. 3zt Y e
p21*! (@} 425 Q3 3;3 ab, - (95,475 3, ;;i Q;,
T (Qi1 + 25 Q27
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i i i i i
aZg (Qq4Q5, - Q1,9
- - — ) (19)
3¢ i i i 2
b (Qqy + 25 Q)

On the 6ther hand, the derivatives w.r.t. ¢i which is contained in

At (Z; and Vg are not functions of ¢,), are

i i
. 9Q . 3Q
ie1 -vi (—L 4 7t —21
Vg S "3¢ S 3¢5
= - — (20)
3. i i i .2
i (Q11+ZS Q21)
and
i i i i
. . . aQ . 3Q . . . aQ . 9Q
. 1 1 1 2| 1 22 1 1 1 || 1 2[
azitl  (Q+Zg Q) (G5 + 25 70™) - (Q 42y %) Go * %5 3e, )
S i i i i
YV i i i 2 ’
i (Q11 + ZS Q21)
(21)
i i i i
Q. 3%, 39, 3, .
where , , and correspond to (6) and Table II. This
30, 20y 3¢y 3¢5

sensitivity information is carried and through the analysis for each

subnetwork. The number of variables for which sensitivities of V;+1 and

Z§+1 exist at the (i+1)th subnetwork is i so that 2'.i sensitivity

calculations are performed. Having YL and IL as zeros, the expression
relating Ve and the last sets of VS and ZS’ is given by (10), so that 2k

values for VL and its sensitivities can be obtained from appropriate

values of V Z. and A.

S’ S
Fig. 7 shows an example of the stages involved in the algorithm to
obtain the response and its sensitivities at the vertices (3 variables

==> 8 vertices) of the tolerance region.
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Algorithm 2 Response Value and its Derivatives w.r.t. All Variable

Parameters, at All Vertices of the Tolerance Region

Step 1 Initialize Uqy YUy and v.

Set i « 1, m « 1, J « n.

Step 2 Ifi-= 2, 80 to Step 6.
step3 uj «uj AL

oo« ul ot

~2 ~2~.

Set i « 1 + 1.
Step 4 If i = L. 80 to Step 5.

Go to Step 3.

Step 5 If m=k go to Step T.

Step 6 Calculate VS’ ZS ’
s Vs
31)1’ eec a¢m ’
3ZS BZS
a¢1’ . , a¢m ’

o sets all together.
"Setm+m+ 1.
i« i+ 1.

Initialize u, and U, and go to Step 4.

Step 7 If n = Ek go to Step 10.
Step 8 v = éj v.

Set j « j-1.
Step 9 If Jj =%, 80 to Step 10.

Go to Step 8.
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Step 10 Calculate Q, 3Q/8¢1, ceoy 8Q/a¢k 2k times.

Stop.
VI. EXAMPLE
The cascaded seven-section bandpass filter shown in Fig. 8 [6] was

considered. All sections are quarter-wave at 2.175 GHz. The optimal

minimax characteristic impedances [7] are taken as nominal values. They

are
Z1 = Z7 = 0.606595
22 = 26 = 0.303547
Z3 = Z5 = 0.722287
Zu = 0.235183

The sensitivity of the output voltage vL w.r.t. length lu of the
fourth section and the sensitivity w.r.t. Zu are evaluated at a

normalized frequency of 0.5 as

BVL

—= = -0.2804064 + j0.5161026
Ay

BVL

—=* = -2.617364 + j4.817395
BZu

" Without any further effort (since the two parameters belong to the
same element) we obtain

2
3%V
— L

BZualu

= 11.71675 + j5.415667

Table IV compares the results obtained by this method and the one

obtained by the adjoint network method [8]. Taking two parameters in
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different elements, for example ZM and ZS’ we obtain the second-order

term

32y

—L _ _30.12383 - 3j7.516802
3Zu325

A tolerance of *0.03 on Z1, ZM and Z5 was chosen. Algorithm 2 was
used to evaluate VL’ aVL/aZ1, aVL/BZM and aVL/aZ5 at the eight vertices
of the tolerance region (23 vertices where 3 is the number of toleranced

variables). The results are tabulated in Table V. They were checked

individually by reanalyzing the circuit at each vertex.

VII. DISCUSSION AND CONCLUSIONS

The calculation of the first- and second-order sensitivities of a
circuit reponse involves one additional analysis of the adjoint network
(assuming the analysis of the original network has already been
performed) and k(k+1)/2 analyses to find second-order sensitivities
calculated by finite differences. A more efficient approach is to
calculate these second-order sensitivities using the adjoint network
concept by performing only k analyses. Using the new approach for the
analysis of cascaded structures, however, less than k analyses are
performed and no additional memory is required.

The algorithm for evaluating the response and its sensitivities at
the vertices of the tolerance region proved to be very efficient. The
seven-section filter example was run with tolerances on the
characteristic impédances of the stubs and transmission 1lines (all

seven). It took 0.269 s CPU time to evaluate the response (only) at the

128(27) vertices. Using the conventional method of reanalyzing the
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circuit for different component values would take 0.074 x 128 = 9.U472 s
CPU, where one analysis is performed in approximately 0.074 s. For the
case of evaluating the response and its sensitivities at vertices
discussed in Section VI, it took 0.118 s CPU time compared with 8 x
0.074 = 0.592 s for 8 analyses. The savings in computational effort is

substantial.
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TABLE I

PRINCIPAL CONCEPTS INVOLVED IN THE ANALYSES

Concept Definition Implication
Basic iteration .; = Ay y ==>-;
Forward operation ETA = uT Ty = ETAy = uTy
Reverse operation v = Av y = cv ==> ; = ev
")
A 1 ,
Voltage selector e, = e, ==> u, or v
- -
o]
Current selector e, = e, ==> u, or v,
1
L]
[ A
Equivalent _ |'sTsTs Ty = VaeZole, ety = I
quivalent source y = . e,y = Vg-Zslss ey = Ig
. S J
v,
Equivalent load y = y = VL§1+(YLVL-IL)32
i
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TABLE II

CONDITIONS

Initial Conditions

Factor Identification Forward Reverse
:? (*) v, (+) 44 voltage voltage
—T
*
uj (%) N (1')12 voltage current
—lI‘
*
u, (*) v, ('l')21 current voltage
gg (%) v, (1')22 current current
(®¥) denotes either A, S§A, 3A/3¢ or AA
(+) denotes Q, §Q, Q' or AQ, as taken from (4), (5), (6) or

(7), respectively
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TABLE III

FUNCTIONS OF OUTPUT VOLTAGE VL FOR CHANGES IN A ONLY

Variable Output

v
s
A \') =
~ L Qy
v
Gé GVL = - "7; 6011
2
34 oon Q!
26 2 T T Vg 1
v
AA AV, = o ——E—
~ L V+Vg/8Qq4
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TABLE IV

COMPARISON OF SECOND-ORDER SENSITIVITIES WITH DIFFERENT APPROACHES

1st Order Sensitivity
by Adjoint Network

Term Adjoint Network 2nd Order Sensitivity The New Approach
by Perturbation

32V

52‘;%’ 11.71675+35. 415667 11.713232+35.431066 11.71675+35.415667
4=y
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1

Notation for an element in the chain, indicating reference
directions and voltage and current variables.

Cascaded network with appropriate terminations.

Subnetwork i cascaded with subnetworks k (at source end) and j
(at load end).

Forward iteration for Fig. 3, transferring an equivalent source
accounting for design variables from subnetwork k from one
reference plane to the other.

Reverse iteration for Fig. 3, transferring an equivalent source
accounting for design variables from subnetwork j from one
reference plane to the other.

Illustration for a cascade of 6 two-ports of the principal
stages in the calculations of first- and second-order
sensitivities w.r.t. three variable elements.

ne>

gi 3Q11/3¢i, i=1,2,3,

ne

2 ..
S 9 Q11/3¢ia¢j, i,j = 1,2,3.

ij
Illustration of the principal stages of Algorithm 2.

Seven-section filter containing unit elements and stubs [6].
All sections are quarter-wave at 2.175 GHz.
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Fig.
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Fig. 3
l I
| |
|
Z's ! le l
V! b orotion vl i function of
s , forward iteration Vg , subnetwork i
I l
: .
Fig. 4
8 b
function of ‘oo Y:‘_ I:‘_ reverse iteration ... Y:_ I:_
subnetwork i
(? <
|

Fig. 5
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variable

N T

O— 1 2 3 —O
stage
»
1 —u,,u,
2 Ug,Up
*

Uy,U2

Vs,Zg
3 ———— 2sets ( Vg /d¢,

0Zg /0¢,
4 Ug,Up

%
U1,U2
Vg:Zg
5 4sets ( dVg /09, ,0Vg /0¢,
0Zg /0¢p,,0Z5/0¢,
6 v
]
V.9V, /¢3¢>1
T 8 sets { -
0V, /9¢,,0V, /3¢y

* denotes initialization of u4,u;

Fig. 7



- 27 -
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