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handle biquadratic functions. It is shown, as expected, that the
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under mild conditions we show that the rate of convergence is at least
of second order. The rare case when the minimax solution is defined by
functions whose derivatives vanish at that solution is considered in
some detail. Minor modifications to impfove the algorithm are

suggested.

This work was supported by the Natural Sciences and Engineering
Research Council of Canada under Grant AT7239.

H.L. Abdel-Malek is with the Department of Engineering Physics and
Mathematics, Faculty of Engineering, Cairo University, Giza, Egypt.

J.W. Bandler is with the Group on Simulation, Optimization and
Control and Department of Electrical Engineering, McMaster University,
Hamilton, Canada, L8S U4LT.

R.M. Biernacki is on leave from the Institute of Electronics
Fundamentals, Warsaw Technical University, Warsaw, Poland.



-2 -

I. INTRODUCTION

Abdel-Malek and Bandler [1] have presented some new results
involving the biquadratic function obtained from the modulus squared of
the bilinear network function. They presented a globally convergent and
extremely efficient minimax algorithm for obtaining minimax solutions to
sets of biquadratic error functions.

This report studies the convérgence properties of the algorithm in
some detail. The global convergence is verified, and the rate of

corivergence under different conditions is examined.
II. ALGORITHM

We begin by briefly describing the one-dimensional algorithm given
by Abdel-Malek and Bandler [1].
Consider the minimax problem

minimize max e.(¢), (1)
¢ 1£i<m

where the ei(¢) are biquadratic functions of the form

2
Ai + 2Bi¢ + Ci¢

ei(¢) = . : (2)

2
1 + 2Di¢ + Ei¢

Fig. 1 illustrates the algorithm for solving this problem. The
following steps set it out in sufficient detail, with appropriate

definitions to be used subsequently in the convergence proofs.

Step 1 Initialize ¢.



Find
§ = max e, (¢) (3)
i
Find intervals I, = [éys ¢z] and i, i, 2 =1, 2, ., k, such
that, for all i, ei(¢)<$ § for ¢ € U Iz’ and that there exists
i such that ei(¢) > & for ¢ ¢ UI, ey (¢,) = e (61) = 6.
This is carried out using the algorithm presented by Abdel-
Malek and Bandler [1].
Find g, and g, £ =1,2, ..., k, given by
dey
& = 4o ; ) (4)
L
de;
- L
gz = d¢ ~ , (5)
¢2
These are simply the sensitivities at the extreme points of
each valid interval. It is to be noted that éz £ 0 and ém 2 0.
If k=1, set j « 1 and go to Step 7.
Find j such that
A.JzAE, L =1, 2, .y K, (6)
where
slsz(¢z-¢z)/(gz-gz).
A, = y . (7)
0 if 82 = 82 = 0.
In this step we select the jth interval which appears to be the
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most promising one in terms of the expected improvement in the
minimax optimum based on linearization. A will always be

2

positive unless either g = 0, g, = 0 or 51 =9,.

Set

v v A A v A

#e b .-g2.0. ~g.) i . i, A, .
¢ (chbJ gJ¢J)/(gJ gJ) if iJ £ iy and j £0 (8)

If the extremes of the Jjth interval are defined by two
different functions, the new value ¢ 1is taken as the

intersection of the linear approximation to the two functions.

v

Set ¢* to the minimizing point of the function ei if ij = ij‘
J

Set

¥ 0. if ¢# v. . A, = 0.
¢ (¢J+¢J)/2 if ¢% ¢ (¢J,¢J) or j 0

This is a default value to obviate any numerical problem which

~

may arise in Step 6 or Step 7, for example, gj = 0.
Set ¢ « ¢¥.
Stop if k = 1 and if (¢1 - ¢1) is sufficiently small.

Go to Step 2.

In the following sections, superscript n will denote the index of

iteration of the algorithm.
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III. THE MAIN RESULT

Theorem

n n

If I A [¢", o] is a unique interval such that ei(¢) < & for i =

1, 2, ..., m, then |¢n - ¢n| » 0 as n + =, The rate of convergence is

at least of second order.

r rgen

Let us consider two different functions e1(¢) and ei(@) which

n

define the extreme points ¢n, ¢n of I, The proof is obvious from Step

8 of the algorithm if only one function is considered. Without loss of
generality, we can assume that ei(¢) < e;(¢), for ¢ € I" and ei(¢) <

~ “n n A .¥n n
ei(¢) for ¢ I, i=1,2, ..., m, where I = [¢, °min]’ I° = [¢

min’
¢n] and ¢min is the unique intersection point of e;(¢) and e;(¢) in the

interval In. There is also no loss of generality if we assume $n+1 =

* . N
¢"" for all n and that g® < 0, 8" > 0, since there is only a finite set

of ¢ for which the derivative is zero. We will show that there exists a

value vy < 1 such that

161 _ ™ <y o™ - 6" for any n. 9)

- 1

Since gn > 0 the interval 1™ can be estimated as follows. We

have
én
~ v ~ * ~ * ~ v
¢n+1 _ ¢n+1 - ¢n+1 _ ¢n < ¢n _ ¢n " (¢n _ ¢n) (10)
g -g

|
If e;(¢) is such that e2(¢) > & for any ¢ € I, where £ is a

sufficiently small positive number, we will find vy as

y=——5¢<1, (1)
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where
n = mafn -ei(¢).
pel

The above estimate is not possible only if’eé(¢) + 0 and ei(¢) +c #£0
for ¢ - ¢min1‘ In this case the function e;(¢) becomes convex in the
interval [¢min’ ;n] for any n > N when N is sufficiently large. Then
the interval In+1 can be estimated as follows

A

v A *
¢n+1 _ ¢n+1 < ¢nL _ ¢n’ (12)
where ¢nL is the intersection point of the linearization of e1(¢) at the
~ *
point o" and the line 6n+1 = e;_(¢n ).

From the appropriate geometrical relations (see Fig. 2) we obtain

¢nL - 6" A" 4 e£(¢n ) - e;(¢n)

= = . (13)
* .

o0 - 9" A"

After some manipulations, we find that

Rn

. . .

ol _ g™ = — (" -0
A

o]

n*) -

) (1)

mbﬂ o

where Rn is the second-order remainder of Taylor's formula for the

* v
function ei(‘»n ) at the point ¢n. It can be written in the form

An v
6 - ¢ ~ .
——— | (6" - M
v 2
(gn - gn)

n

- 1
nL n*
o n 'n

- ¢ = _2—q g ’ (15)

v v

where an is the second derivative of e1(¢) at some ¢ € In. Since qn is

limited by a number ¢ and gn + 0, én + ¢ # 0, we can find a sufficiently

] 1 v ~
' 1f both ei(¢) + 0 and ei(¢) + 0 the rates of convergence of gn and g"
are of the same order and it is possible to find an estimation of gn/gn

such that (9) is satisfied. See Appendix for details.
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large number N1 > N such that the number

1
Y=518 > <1 (16)

satisfies the condition (9) for all n 2 N,. But according to (10) the
N

interval I ! can be reached after a finite number of steps since én and

-én are greater than sufficiently small positive numbers for any n < N1.

QED

e vergenc

Because of the estimate (12) and equality (15) we have already
proved that the convergence is at least of the second order in the
foregoing case. This result can be generalized for any case when the
function e;(¢) becomes convex in a neighbourhood of ®min This is
because the neighbourhood in question can be reached after a finite
number of steps, following which the estimate (12) is valid. The only
exception is for the case when °min is the minimizing point of both
functions e1(¢) and e;(¢) since the denominator of (15) approaches zero
if n + ». We consider this case in the Appendix.

Now, let us consider the remaining case ofv concavity of the

function e£(¢) on the whole interval 1®. It is easily seen that the

sequence {@n} is strictly increasing and 1lim én =z ei(¢min) s g. The
interval In+1 can then be estimated as follosgw(see Fig. 3).

$n+1 _ $n+1 < 6nLg _ én*’ (17)
where $nLg is the intersection point of line s21 - e1(¢n.) and the
straight 1line through the point (8", ei(&n)) with slope &. From

geometrical relations we have
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~ 'n n¥* “n
* v - v
¢nLg _ P A+ ei(¢ ) ei(¢ )
= = (18)
n n¥ 'n '
b -9 A
where
g
?
An=T‘An.
n
g
After some manipulations we obtain
A e A R
L x 88 #
o7 — M = = (0" - ")+ T, (19)
g g

where Rn is the second order remainder of Taylor's formula of the
. v, n¥* . 'n
function ei(¢ ) at the point ¢ .
]
Using Taylor's expansion for the function e£(¢) we find
-6 . ), (20)

~

where an is the second order derivative of e;(¢) at some point ¢ € In,

so (19) can be estimated by

~ v

n n
#* ~ vk q % v
oTL8  _ ¢PT < —— (" - 4" )2+5§(¢“ - 2

-

~ 1 o - .. 2
n n n n
_gqul+2IqI](¢ ¢
From (17) and (21) it is seen that the convergence of the algorithm is

at least of the second order.

QED

Rate of Convergence II
The quadratic convergence of the algorithm can also be proved in a
somewhat different, but equivalent way. In the following we assume that

both gn and gn do not approach zero but we do not need distinguish the
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case of convexity from the case of concavity of e;(¢).

Using the second order Taylor formula we can write

1

e£(¢n+1) - e£(¢n) . gn (¢n+1 _ ¢n) +-§ qn (¢n+1 _ ¢n)2’ (22)
“n+1 “n “n ,“n+1 “n ! “n ,“n+1 “n,2
e;(¢ ) = e;(¢ ) + 8 (¢ -6) +74a (o -0 ). (23)

(It should be noted that q° in (23) can be different than q© in (20).)
v ~
Knowing that e1(¢n) = e;(¢n) for any n, (22) and (23) give the relation

1

gn (¢n+1 - oM - én ($n+1 _ ;n) -3 [an (¢n+1 _ ¢n)2 _ qn (¢n+1 _ ¢n)2]'
(2u)
Using (6), the left hand side of (24) can be written as
% v A - A v -
d)n (gn _ gn) + 8n ¢n+1 _ gn ¢n+1.
. n* vn+1
Now, if we assume as before, for example, that ¢ = ¢ ', (24) can be
rewritten as
“n ,“n+1 Yo+ ! vn ,vn+1 *n2 “n , n+1 “n.2 |
g (67 -0 )=73 [q (67 =07 =a (67 =-9¢) ]. (25)
From the above we have the estimate
~ v 1 v, v v, ~ - A
|¢n+1 _ 4>n+1|$ = [lqnl (¢n+1 _ 4)n)z + | (¢n+1 _ ¢n)z]
2g
! n, “n “n Yn,2
<= Ua'l + la 1) (o7 = 6", (26)
2g

The final estimate is based on the fact that both 21 and o™ are

“n+1 _ “n,2 vn)2

interior points of 1% so (¢ o) < (¢n N n+1 n)2

and (¢ - ¢ <

v ~

n)2. Since second derivatives qn and qn are bounded and gn does

X
not approach zero the factor on the right side of (26) has a finite

limit, so the convergence of the algorithm is at least of the second

order. ' QED
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IV. GLOBAL CONVERGENCE

According to the comment after Step 6, Az is always positive if |¢2
- ¢:l > 0. We can omit the cases when gz = 0 and/or gz = 0 since gz <0

and gs > 0 almost everywhere and Step 9 secures us against these

ﬂn v
situations. Moreover, it is easy to notice that AE + 0 if |¢m - ¢2|»0.

Let us consider two intervals I? and 12 which are found by the
algorithm in the nth iteration. Let us assume that b e Ig is a unique

global minimax optimum. According to (7) and using the following

notation
n . “‘n "n n *‘n "n
a, = min (-gi, gi), b, = max (-gi, gi)

where i = 1, 2 is the index of the interval, we have

n n n
n * b1 “n  'n b1 “n 'n
A1 = n (¢1 - ¢1) < > (¢1 - ¢1) 27)
a,. + b
1 1
and
n n n
a_ b a
Bl R s — R (28)
5= n p (0o mep) 275 (e = 0o
a, + b
2 2
Thus,
n n °“n ‘n
— < — . = - (29)
n- _n n n
by 3, 6 =9

n
2

+ 0 so that (¢? - ¢?)/(¢2 - ¢g) + 0. The left hand side of

Since ¢ € I, is a unique global minimax optimum |¢2 - ¢g| + const # 0 if

“n “n
[0y = &1

(29) can converge to a value different than zero ohly if ag + 0 if
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2

|¢? - ¢?| > 0. But this means that there is a local minimum of at

least one of the functions e{ (¢) or e} (¢) of value equal to the local
2

2
minimum value at ¢1min € I? So that ¢ e Ig is not the unique global
minimax optimum. Otherwise, since A?/Ag + 0 the algorithm will select

the second interval according to (6).
V. CONCLUSIONS

We have studied the convergence properties of the minimax algorithm
of Abdel-Malek and Bandler in some detail. The global convergence was
verified. Furthermore, under mild conditions it was shown that the rate
of convergence is at least of second order. The rare case when the
minimax solution is defined by functions whose derivatives vanish at

that solution has been considered. Minor modifications to improve the

minimax algorithm have also been suggested.

2 The left hand side of (29) can converge to a value different than
zero also when b? + o, But this means that the.pole of every function
e;(¢) 1 =1, 2, ..., m exists at the point ¢, ., so $ cannot be the

unique global optimum point. Moreover, since we consider error

functions as magnitudes of network functions this case is of no

interest.
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APPENDIX

In this Appendix we investigate the particular case when the

intersection point Omi is the minimizing point of both the functions

n
e§(¢) and e£(¢) so that én + 0 and én + 0 if n »+ . We show that ;n/én
» const # 0 and examine the rate of convergence of the algorithm.

Let us consider a sufficiently small neighbourhood of ¢min in which
both ei(¢) and e{(¢) are convex (n > N). Using Taylor's expansion at

the point ¢min we have

1

n Lol _ oy n_ 2
8 = ei(¢ ) = ei(¢min) + 3 ei(¢) (¢ ¢ in

~/on R 1_ " ~ “n 2

= ej(0) = eflop; ) + 5 e5(0) (o7 = opp)s

~
~

where ¢ ¢ 1% and ¢ € 1", Because ey (¢

1 COnin ) we get

) = eAi(¢min
= e (o) (4" - o
1

)2 )2.

(o) (4" (30)
ei ¢ o - ¢min min

‘ n "~ n o=
Since the second derivatives e1(¢) and e£(¢) are positive and bounded we

have
“n
2 [+~ ®uinl A n _ u
0 <o’ < =a <o <= (31)
lo ¢min|
where
"
mi? ei(@)
¢€IN
.2
(a0 ) = )
U
max ei(¢)
°N
¢el

and
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1]
max ei(¢)

N
(au)2 i del

mig e§(¢)

¢€IN

In order to simplify the remaining notation 1let us consider

subsidiary functions

[1]>2

. AL ]
f1(¢) = ei (¢ + ¢min)’ f2(¢) ei (¢min - ¢)

so the minimizing point of f1(¢) and f2(¢) is at the origin.

corresponding boundary points are

1]
© >
1
<

n
¢1 min >0,
n _ _in
¢2 - ¢min o= > 0.
According to (31) we have
£ .n n n .n u .n
a ¢2 S_¢1 =a ¢2.$ a ¢2.

Since f1(¢) and f2(¢) are biquadratic functions of the form

2
Ai + 2Bi ¢ + Ci ¢

fi(¢) = , 1 =1, 2,

2
1+ 2Di ¢ + Ei ¢
|
the derivatives fi(¢) can be expressed as

: 2
(Bi-AiDi) + (Ci-AiEi) o + (CiDi-BiEi) ¢

1
£.(¢) =2
i 2,2
(1 + 2D, ¢ + E, ¢ )

(32)

The

(33)

(34)

(35)

(36)

1
Because fi(O) =0, i = 1, 2 and under the assumption of irreducibility

of fi(¢) we find
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Bi - Ai Di = 0,

A
Gi =2 (Ci - Ai Ei) £ 0, (37)
H 22 (. D, -B E)=G, D, £0
i~ : it A M R it | ’
for i = 1,2.
According to definitions (32) we have
n n,2
. Gy ¢y + Hy (o)
gn =
- n n,2,2 "’
(1+2D1¢1+E1(¢1) )
(38)
n n,2
. G, ¢, + H, (¢2)
g = .
n n,2,2
(1+2D2¢2+E2(¢2) )
1
The first derivative f1(¢) is strictly decreasing if ¢ -+ o*. Thus, (34)
gives the estimate
' % .n “n ' u .n
£, (a7 05) £ 8 L f, (a” 0,). (39)
Using (36) and (39) we find
. G1 gn . G1
o |57 Llim (Tl Lo |G (40)
n+*e g 2

From (37) and (40) we come to the conclusion that it is always possible

to find y such that
(41)

for any n. Thus, according to (10) we have proved that |¢n - ¢nl + 0

A

when g" + 0 and g" + 0.
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Now, we note that using the notation of (31) we can write

A v a v

n n_ n_ _n
o -0 = (o ¢min) * (¢min ¢)
n “n
= (1 +07) (65 - ¢ ). (42)
Similarly, for the (n+1)th iteration we have
~ v #
¢n+1 _ ¢n+1 = (1 + an+1) (o _ ¢’n ), (43)

min

which can be expressed as

A

n+1 “n+1
¢

v

(s ™) og,, - 6 = 67 - oM

n n+1
-8 n 1 + O An vn
= |, - ¢ 7 (67 = ). (uh)
g n -g
(1+a ) |1 + ~
g

Using (30) and checking the second derivatives of the functions of (35)

we can find the limit

(45)
Since
_gn GZ/G1 G2
lim —=T = =g (46)
nte g lim o 1
n*«

it is obvious that the second factor of (44) converges to the finite

limit

/5

%+ /5,

But the sequence in the square brackets of (44) approaches zero.

Intuitively, this sequence converges at least linearly with (¢n - ¢n).

To prove this let us consider the expression (-gn/gn - «") in terms of
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(38), (33) and (34)

n n n n.2,2 n
5P i G, 6, (14D50,) (142D, 6+E, (6 )7) oy
“m_ =0 = -

n n n n n.2.2 n
g G1 ¢ (1+D1¢1) (1+2D2¢2+E2(¢2) ) ¢
n n
Gy 0y 0y -
S ¢n-;r-1- +¢2 P(¢2)
1M1 2

. : (1)
n
M(4y)

where M(¢g) = (1+D1an¢2)(1+2D2¢2+E2(¢g)2)2 and P(¢g) is a polynomial in
n
¢2-
In order to find the required relation between G1, G2, ¢? and ¢2 we

use the equality f1(¢?) = f2(¢g) and the conditions (37), i.e.,

n n,2 n n,2
A+2AD1¢1+C1(¢1) A+2AD2¢2+C2(¢2)
= (48)
n n,2 n n.2 '
1+2D1¢1+E1(¢1) 1+2D2¢2+E2(¢2)
where A = A1 = A2 since f1(0) z f2(0).
From (48), and using (34), we find
n n
Gy 05 &4 . % CBpmCoBy
5 oh  ohe 2D, ¢, - 2D, G, o, *+ 2 G, 4 o
1 1 2
n n
= 45 Qe5), (49)
where Q(¢g) is a polynomial in ¢;. Finally, we have
‘n P(6) + Q(e5)
-8 n n 2
=, - =4 - , (50)
g M(¢2)
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where M(0) = 1. Using (50), (42) and (44) we obtain

¥n vn
5 P(¢min o) + Q(¢min ¢ ) 1 4+ o*! A 5

n+1 n+1 - n n,2

[0} - = ( Vn) vn (¢ "¢),
MCo . =¢ -8

min (1+an)2 (1 + —= (51)

n
L g

where the sequence in square brackets has a finite limit. Hence, the
convergence of the algorithm is at least of second order when ¢min is
the minimizing point of the both functions e1(¢) and e£(¢).

The convergence of the algorithm can be improved, albeit for rare

cases, by adding the following Step 6a.

Step 6a

* " R
Set ¢ to the minimizing point of ey (o). 1If e (¢ ) 2 e (¢ ) and

#* J J J
b € Ij go to Step 10.

The above Step 6a excludes the case when gn + 0 and gn + 0 and the

case when only gn + 0. If we also want to exclude the case when only gn

+ 0 we should add the step

Step 6b
* . . R
Set ¢ to the minimizing point of e (o). If e} (6 ) 2 e; (¢ ) and
# . J J J
¢ € IJ go to Step 10.
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FIGURE CAPTIONS

Illustration of the behaviour of the one-dimensional minimax

algorithm [1]. Note that the algorithm switches from interval 1

to interval 2, based on predictions of the decrease in the

maximum.

Two functions which define the minimax optimum. The point ¢nL

-~

at which the 1linear approximation at ¢n takes the value of

o, n¥L
ei(¢ ) is indicated.

N

The case when e;(¢) is concave on the interval I'. The point

“nLg

® at which a linearization based on the gradient & of e;(¢)

#
at the optimum takes the value e£(¢n ) is indicated.
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