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SUMMARY

With the»advent of computer technology a whole new philosophy
has emerged in the applied sciences whereby the computer has become a
means of achieving certain goals. When this is viewed with reference
to the area of electrical engineering, computer-aided system modelling and
design is rapidly gaining iﬁportance. Automated design is not only
capable of reproducing results obtained from classical techniques, but
also replaces the classical approach when closéd-form solutions cannot
be obtained. The thesis attempts to present new ideas and concepts
which can be applied to engineering problems for realistic design
specifications.

Minimax objectives have been considered in most part, as it is
very praCtiéal and meaningful to choose such objectives. A minimax
optimization technique called the grazor search method has been proposed
and applied to a variety of electrical engineering problems. Ideas have
been presented to accommodate constraints in these problems. Most of the
engineéring designs attempt to achieve optimality in some sense both for
the sake of conserving costs and for improving the performance of such
designs. A practical way of investigating minimax optimality conditions
has been formulated and successfully applied to a number of problems.

The increase in complexity of systems has necessitated the lower-
order modelling of such systems so that the systems can be controlled to
meet desired objectives. Lower-order modelling of a high-order system has
been considered for minimax objectives, and the suggested ideas make it

practicable to design automated models for a variety of design specifications.
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Computer-aided system modelling and design for minimax objectives
have been considered in detail. A new algorithm for minimax approximation,
called the grazor search method, has been proposed and successfully used
on a number of network design problems to test the reliability and efti-
ciency of the method. A critical comparison of the method with existing
algorithms has shown the grazor search algorithm tobe reliable in most of
the problems considered. Practical ideas have been presented to deal with
constrained minimax optimization problems and to investigate a solution for
minimax optimality. Two user-oriented computer programs incorporating
these ideas have been included as part of the thesis. Lower-order modelling
of a high-order system has been considered for minimax objectives, and the

suggested ideas make it feasible to design automated models for a variety

of transient and steady-state constraint specifications.
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CHAPTER I

INTRODUCTION

Computer-aided design is now increasingly being accepted as
a valuable tool whenever classical design techniques fail to achieve
acceptable and realistic design criteria. This is especially true in
electrical network analysis and synthesis where classical circuit theory
restricts the nétwork configuration and the degrees of freedom that may
be demanded by the designer. Computer-aided network design has thus be-
come a state-of-art which tries to accommodate the design specifications
and constraints in a meaningful way so that design objectives, which
would have been considered difficult by classical designers have now
not only become feasible but are regularly being implemented on the
digital computer. Many optimization algorithms have now been tested on
a number of circuit design problems with the aim of improving circuit
performance and convergence towards an optimal solution. The algorithms
differ both in the way they generate downhill directions (directions of
decreasing objective function value) and the computational effort involved.

It is thus apparent that there are two steps which are rele-
vant to the circuit designer - the first one being that the design speci-
fications, constraints involving the model parameters, and the objective
function, have to be explicitly specified in advance, and the other be-
ing that a reliable and efficient algorithm has to be chosen for the op-
timization of the design variables. The emphasis of this work has been

to bring both the system modelling and optimization techniques into the

1



foreground so that the advantages and pitfalls encountered in the area
of computer-aidéd design can be well appreciated.

This thesis concentrates mainly on minimax objectives, and
Chapter II gives a brief review of existing minimax optimization me-
‘thods, such as tho;e by Osborne and Watson (1969), Bandler and Macdonald
(1969b), and Bandler and Charalambous (1972d).

A new algorithm called the grazor search method has been de-

veloped which is guaranteed to converge under certain conditions. See
Bandler and Srinivasan (1971) and Bandler, Srinivasan and Charalambous
(1972). The problem of function minimization subject to constraints
can now be formulated as a minimax problem (Bandler and Charalambous
1972a). This approach can be extended to tackle minimax optimization
problems subject to constraints (Bandler and Srinivasan 1973a). Once

a minimax SOiution has been achieved by the systems designer, it may be
required to investigate the solution for optimality, and suitable me-
thods are available for this investigation (Bandler and Srinivasan 1973c).
Chapter III considers the above mentioned approaches to the minimax
problem.

Chapter IV deals with the area of computer-aided electrical
circuit design for minimax objectives. The problems considered include
the design of lumped LC transformers and cascaded transmission-line
networks acting as transformers or filters. A critical comparison has
been made between the grazor search method and other optimization
schemes for reliability and efficiency in convergence towards the optima.

System modelling is an area which demands attention primarily

because of the complexity and computational effort involved when



considering the original system, and the introduction of judiciously
chosen models can not only reduce the complexity but also improve the
computation time. It is now possible to model a high-order system and
control this system on-line or off-line by dealing with the lower-order
models directly. Chapter V deals with lower-order modelling of high-
order systems for a variety of objectives and design considerations.
Minimax objectives subject to arbitrary transient and steady-state con-
straints have been considered, and a method suggested by means of which
the whole modelling procedure can be automated. See Bandler, Markettos
and Srinivasan (1972, 1973), and Bandler and Srinivasan (1973b, 1973e).

Discussions and conclusions on the proposed methods are in-
cluded in Chapter VI, while the Appendices A and B provide two computer
program descriptiohs for minimax objectives (Bandler and Srinivasan 1972,
1973d).

The adjoint network method of evaluating the first-order de-
rivatives was used for network design problems (Director and Rohrer
1969, Bandler and Seviora 1970). The CDC 6400 computer was used for the
numerical experiments.

The purpose of this work can be described as an attempt to fill
some of the gaps existing in the areas of approximation,optimization and

system modelling.



CHAPTER II

REVIEW OF MINIMAX METHODS
2.1 Introduction

Minimax optimization methods are assuming significance in the
computer-aided system design area and much effort has gone into the de-
velopment of suitable algorithms for minimax objectives. The methods
have been used to optimize electrical networks where the objective is
to minimize the maximum deviation of a network response from an ideal
response specification. This chapter gives a brief review of minimax

optimization techniques.

2.2 Function Minimization

The problem of unconstrained function minimization consists of

minimizing with respect to ¢ a real function
N

f A f(¢) (2.1
N
where

0 878y g o O] 2.2)
n

is a column vector consisting of k independent parameter elements, T
denotes the matrix transpose and f 1is the objective function.

The constrained version of the above problem, also known as the
nonlinear programming problem, consists of minimizing f(¢) subject to

v
g;(¢) >0 i=1,2, ..., m (2.3)
N



where the g; are, in general, nonlinear functions of the parameters.

2.3 Least pth Approximation for Single Specified Function

2.3.1 The Error Function

Define

e(d,¥) A w) (F(¢,¥) - S(W)) (2.4)
" "

where

S(y) is a specified function (real or complex)

F(¢,¥) is an approximating function (real or complex)

w(z) is a positive weighting function

e(¢,y) is the weighted error or deviation between

"
S (p) and F(¢,y)
oy

] is an independent variable (e.g., frequency or time)

2.3.2 Continuous Approximation

Define the norm
v

. P gy l/P
ell, 2 (] lem P an'/® 1 <p <= 2.5)
by v

where vy and b, are lower and upper bounds, respectively, on the inter-

val of approximation. Minimization of ||e||p is called least pth approxi-

mation. For p = 2, we have the well-known least squares approximation.
Assume, for example, that ]e(i,w)l is continuous on a finite closed

interval [wz’wu]' The Chebyshev or uniform norm is given by

llell_ & max  le(o,w)] (2.6)



The process of minimization of ||e||°° is called minimax or
Chebyshev approximation.
It may be noted that

v 1/p

u
f le(o,v)|P dv 2.7
v, "

Ile|] =lim |—%
® ->00 b, -v
P u "%
The larger the value of p, the more emphasis will be given to the

maximum absolute error, and the optimal least pth solution should be

closer to the optimal minimax solution.

2.3.3 Discrete Approximation

In practice the various functions contained in (2.4) are usually
evaluated at discrete values b;. It is thus appropriate to consider
discrete approximation.

Define the norm

el & (£ le,@) PP 1 < pew (2.8)
N P iel N
where
(@) b [e,(4) ey(8) ... e (#)]" (2.9)
N o n n n,
and
1 é {1,2,... , n} (2.10)

The process of minimization of ]|e||p is called discrete least
. n
pth approximation. The discrete minimax norm may be defined as

[lell, & max [e; ()] (2.11)
n iel N



and minimization of ||e|lc° is called discrete minimax approximation.
Y]
As mentioned earlier,

[lel|, = lim |]e]| _ (2.12)
v pre A~ p

and the same comments hold as in the continuous case.
For a sufficiently large number of uniformly sampled values of
Y and with suitable weighting factors, the discrete approximation approach-

es the continuous approximation.

2.4 The Minimax Problem

Unless otherwise mentioned, the unconstrained discrete non-
linear minimax problem that is considered throughout this work con-

sists of minimizing

U($) & max y, (4) (2.13)
N iel "

where I, as defined in (2.10), is an index set relating to discrete
elements corresponding to the i, and the y; are, in general, nonlinear

differentiable functions. It is desired to find a point 5 such that

N
U A U(g) = min max yi(¢) (2.14)
Tooa ¢ iel "
N

v
where ¢ is a local or global minimax optimum.
N

2.5 Minimax Methods

Many methods use the direct minimax formulation of (2.13) which,



in general, gives rise to discontinuous partial derivatives of the ob-
jective function with respect to the variable parameters. Otherwise
efficient optimization methods may slow down or even fail to reach an
optimum in such circumstances, particularly when the response hyper-
surface has a narrow curved valley along which the path of discontinuous
derivatives lies.

Iﬁ direct search strategies, the minimax problem has been ex-
plored using pattern search and razor search (Bandler and Macdonald
1969a, 1969b). Of the gradient strategies, there are methods involving
the penalty function approach (Fiacco and McCormick 1964a, 1964b), linear
programming (Osborne and Watson 1969, Ishizaki and Watanabe 1968), quad-
ratic programming (Heller 1969), and a method proposed by Bandler and
Lee-Chan (1971).

Whenever efficient methods of finding derivatives are not avail-
able, direct search methods are useful. For electrical networks, in
particular, it is now possible to evaluate the derivatives of network
responses with respect to network parameters rather easily using the
adjoint netwofk approach (Director and Rohrer 1969, Bandler and Seviora
1970), and the gradient methods are thus more suited for such cases.

The quadratic programming methods are usually more time-consuming than
solution of linear programming problems, while penalty function methods

rely on suitable function minimization algorithms.

2.5.1 The Razor Search Method

The razor search method of Bandler and Macdonald (1969b, 1971)



essentially begins with a modified version of the pattern search (Hooke
and Jeeves 1961) until this fails. A random point is selected auto-
matically in the neighbourhood and a second pattern search is initia-
ted until this one fails. Using the two points where pattern search
failed, a new pattern in the direction of the optimum is established
and a pattern search strategy resumed until it too fails. This pro-
cess is repeated until any of several possible terminating criteria is
satisfied. Thus, the strategy tries to negotiate certain kinds of
"razor sharp'" valleys in multidimensional space. The method has been
compared with other direct search methods on some test problems, and
has been found to be reliable and computationally efficient in most of

the cases.

2.5.2 Sequential Unconstrained Minimization Technique

The nonlinear minimax optimization problem of Section 2.4 may
be transformed into a nonlinear programming problem (Waren, Lasdon and

Suchman 1967) of Section 2.2 as follows

Minimize Ore1 (2.15)
subject to
¢k+1 - yi(i) >0 iel (2.16)

The nonlinear programming problem may, in turn, be solved by
well-established methods such as the Sequential Unconstrained Mini-

mization Technique (SUMT) due to Fiacco and McCormick (1964a, 1964b),
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which is a development of the Created Response Surface Technique (CRST)
suggested by Carroll (1961). The problem of (2.15) and (2.16) mav be re-
formulated as follows. Minimize

W.

PUOOk1T) = by * T 3 W (2.17)
where

¢k+1'is an independent variable, and

r,w. >0 iel (2.18)

i

P(¢,¢k+1,r) is an unconstrained objective where points close to the
" v

constraint boundaries are penalized.

Define the interior of the region of feasible points as

0 .

R™ A {6,9,110,7 - v5(0) >0,  iell (2.19)
N N

where the region of feasible points is

RA {6,600, - ¥;0) >0, iel} (2.20)
N v

Starting with a point ¢’¢k+1 and a value of r, initially r

N

1’
such that ¢,¢k+leR0 and r1>0 the unconstrained function P(¢,¢k+l,rl)
Y] n

is minimized with respect to ¢ and ¢k+1'
'\l .

to expect that a minimum will lie in RO, since as any one of the

The form of (2.17) leads one

¢k+1
will depend on the value of Ty and is denoted by ;(rl),$k+1(rl).
n

- yi(¢) approaches 0, P approaches . The location of the minimum
v

This procedure is repeated for a decreasing sequence of r values

such that
Ty >T, > ... > rj >0 (2.21)
lim rj =0 (2.22)
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each minimization being started at the previous minimum. For example,
the minimization of P(¢,¢k ,T,) would be started at ;(r ) and ; (ry).
n K¥1772 ! k+1'1
Every time r 1is reduced, the effect of the penalty is reduced, so that
one would expect in the limit as j =+ « and rj > 0 that g(r.) - 5 and,

v Y] v
consequently, that ¢k+l(rj) +> U(¢), the minimax optimum.

V]
Conditions which guarantee convergence have been proved by
Fiacco and McCormick. It is important that the initial value of r

chosen is realistic, and r should be reduced systematically after

each iterative cycle of minimization of P.

2.5.3 Algorithm due to Osborne and Watson

This minimax algorithm (Osborne and Watson 1969, Watson 1970)
deals with minimax formulations by following two steps - a linear pro-
gramming part that provides a given step in the parameter space, follow-
ed by a linear search along the direction of the step. This algorithm
is very similar to the one proposed by Ishizaki and Watanabe (1968)
and works very well for many minimax problems. 1In cases where the
linear approximation is not very good in the vicinity of the optimum,
the method may fail to converge toward the optimum for successive it-
erations.

Consider the problem of minimizing ||e(¢)||_ in (2.11), where e
consists of real elements. Linearizing ei(¢)ma: some point ¢j the pro;-

V) Y

lem may be stated as

Minimize ¢k+1
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subject to

brap-e; 7)) - Ve (0h)aed > 0
n N n N
iel (2.23)
bopte; (07 + Ve, (671807 > 0
N v N V)
where
T
K.} P 3
Ve |l S L (2.24)
n [3¢1 %, ¥k ]
n >k (2.25)

V is the first partial derivative operator with respect to the
” parameter vector ¢,
A denotes incrementzl changes, and
n is the number of elements of I.
Noting that the variables for linear programming should all be
nonnegative, and imposing a rather practical constraint that the ele-

ments of ¢ should not change sign we have the linear programming prob-

v
lem in
T
: A [x1 Xp veo xk+1] (2.26)
as follows.
Step 1
Minimize Xe1 (2.27)
subject to (2.25) and
j T J j J :
i(ei(¢ ) + V ei(¢ ) ¢1 Xy - ¢1 ) < X1 iel (2.28)
) N n
65'%; - o)
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x>0 , (2.29)
L4V N
where .
A¢23
X, A 5 + 1 L =1,2, , k
L (2.30)
Xer1 & Pxa1
The solution produces a direction given by A¢J.
4V}
Step 2
1%
Next we find YJ such that
max|ei(¢J + yIaey| (2.31)
iel n v
is a minimum with respect to YJ. Set
. . - .
AR TR (2.32)
n, n ny

and return to Step 1.

The convergence of the method holds under certain conditions
(Osborne and Watson 1969). This approach is directly applicable to lin-
ear functions such as polynomials, for which k+l1 equal extrema results at

the optimum.

2.5.4 Method due to Bandler and Lee-Chan

The nonlinear minimax objective given by (2.13) is minimized
here by exploiting the gradient information of the local discrete maxi-
ma of the functions yi(¢) to get a downhill direction by solving a set
of simultaneous equatio:s. The method works very well, except that in

the case of linear dependence of the equations, some problems may arise

in the convergence toward the optimum. See Bandler and Lee-Chan (1971).
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2.6 Near-Minimax Methods

As is well-known to network designers, least pth approxi-
mation for sufficiently large values of p can result in an optimal
solution very close to the optimal minimax solution (Temes and Zai
1969, Temes 1969, Bandler 1969a, Seviora, Sablatash and Bandler 1970).
When appropriate error functions are raised to a power p given
by

£9) = I le; (0[P | (2.33)
N iel N

and f(¢) is minimized, ill-conditioning may result for nominal values
of p m(usually greater than or equal to about 10). The objective func-
tionb of the form (2.33) has been used by a number of authors (Temes
and Zai 1969, Temes 1969, Bandler 1969a, Bandler and Seviora 1970).
Bandler and Charalambous (1972c, 1972d) have given a unified
approach to the least pth approximation problems, as encountered in
network and system design, having upper and lower response specifi-
cations'e.g., as in filter design. The ill-conditioning ié removed
by proper scaling, and least pth optimization has been carried out for
extremely large values of p, typically 103 to 106. This approach has
been used extensively in a variety of computer-aided network design
problems (Bandler and Bardakjian 1973, Bandler and Charalambous 1972d,
Bandler, Charalambous and Tam 1972, Bandler and Jha 1972, Popovié
1972, Charalambous 1973).
The least pth approximation problem can effectively be tackled

by efficient gradient minimization techniques such as the Fletcher -

Powell method (1963), Jacobson - Oksman algorithm (1972), and a more
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recent method due to Fletcher (1970). These methods have been com-
pared critically for near-minimax approximation problems in the area
of lower-order modelling of high-order systems (Bandler, Markettos
and Srinivasan 1972, 1973).

The discrete nonlinear minimax approximation problem of Section
2.4 can be formulated as a least pth approximation problem (Bandler 1972).

Suppose at least one of the functions yi(¢) is positive. Then, since
N

u(¢) > 0,
n

w.y. (¢) 1P 1/P
U($) = lim U($)| ¢ |22 (2.34)
" p>> ~ |iel | U(¢)
n,

where
(0 for Y; < 0
W=y (2.35)
11 for Y; 2 0
Suppose all the functions y; are negative. Then, since U(¢) < O,
N
1
wiyiQQ) P /p
U(¢) = 1lim U(¢)| I |——— (2.36)
N pr-> ~ {iel| U(¢)
N
where
w, = 1 for all Y; < 0 (2.37)
Therefore, the minimization function is chosen as
1
f(¢) = U(@)| Z |——— (2.38)
N

~n |iel | U(¢)
"
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where
u(¢) (}<p<m for U>0
q A —— p - (2.39)
[u(e) | }\}fp<w for U<0
n

A number of interesting features of f(¢) can be stated. For
n
1<|q|<=, q having the appropriate sign, and for appropriate values of

P in accordance with (2.35) for U(¢) > 0 and (2.37) for U(¢) < O,

n N
we have a continuous function f(¢) with continuous derivatives with re-
, n :
spect to ¢ so long as U(¢) # 0. When U(¢) > 0, f(¢) is like penalty term
Y N ") N

including violated constraints, in this case only positive Y;o» which it

is desired to make feasible (or acceptable). If min f(¢) > O, the con-
N

straints remain violated. In least pth approximation this indicates

that the specifications have not been satisfied. When U(¢) < 0 the speci-
' N

fications are satisfied and f(¢) is like a penalty term designed to move

n
a solution as far from the boundary of the feasible region as possible.



CHAPTER III

NEW APPROACHES TO THE MINIMAX PROBLEM
3.1 Introduction

In this chapter a new gradient algorithm for minimax object-
ives called the grazor search (or gradient razor search) method is in-
troduced (Bandler and Srinivasan 1971, Bandler, Srinivasan and
Charalambous 1972). As the name suggests, the method attempts to follow
the path of discontinuous derivatives when encountering razor-sharp
valleys in multidimensional parameter space. The method is especially
suitable for nonlinear minimax optimization of network and system re-
sponses. This algorithm uses the gradient information of one or more
of the highest ripples in the error function to produce a downhill
direction by solvihg a suitable linear programming problem. A linear
search follows to find the minimum in that direction, and the proce-
dure is repéated. This type of descent process is repeated with as
many ripples as necessary until a minimax solution is reached to some
desired accuracy. Unlike the razor search method due to Bandler and
Macdonald (1969b), the present method overcomes the problem of dis-
continuous derivatives characteristic of minimax objectives without
using random moves. It can fully exploit the advantages of the adjoint
network method of evaluating partial derivatives of the response func-
tion with respect to the variabie parameters (Director and Rohrer 1969,
Bandler and Seviora 1970).

The problem of constrained minimax optimization is considered

17
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next. This problem has been reformulated as an unconstrained minimax
problem by two methods, one extending a recently proposed method due to
Bandler and Charalambous (1972a, 1973b) and the other using weighting
functions. The reformulated problem can then be tackled by efficient
unconstrained minimax algorithms. The method has a number of appli-
cations, including high-order system modelling and control system de-
signs, where constraints have to be imposed on the pole-zero locations
of the models chosen. Appropriate constraints can also be imposed
on the upper and lower bounds of the parameter values. See Bandler and
Srinivasan (1973a, 1973e).

Investigation of optimality conditions of a proposed or a design
solﬁtion is of great practical importance to the system designer wish-
ing to approximate a desired response by a system response. Conditions
for optimality in the minimax sense in conventional synthesis problems
involving polynomials and rational functions are fairly widely appre-
ciated. However, with the ever-increasing need for network designs con-
taining elements not conducive to the rational function approach, e.g.,
a mixture of lumped and distributed elements, and the application of
automatic optimization methods involving least pth and minimax objectives,
some means of testing for convergence to an optimum for more arbitrary
problems is highly desirable. Depending on the optimization method em-
ployed, a satisfactory minimax solution may be obtained for a problem
after a‘number of iterations of the algorithm on the computer. It may
then be required to investigate the solution for minimax optimality
(Bandler 1971) so as to verify whether the solution is optimal or not.

Though the necessary optimality conditions may seem to be straightforward
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to verify, they are both tedious and difficult to implement in practice.
A practical way of implementing them is considered in detail. See Bandler

and Srinivasan (1973c, 1973d).

3.2 The Grazor Search Strategy
3.2.1 Theoretical Considerations

The grazor search algorithm is a generalization of the method
due to Bandler and Lee-Chan (1971), and is basically of the steepest
descent type. The nonlinear minimax optimization problem is the one
already stated in Section 2.4.

Define a subset JCI such that

33, edy o i) ud) - y. )< I, ieD (3.1)
" = " 1 " -

el > 0 (3.2)

where

¢J denotes a feasible point at the beginning of the jth
Y

iteration, and
j

€’ is the tolerance with respect to the current

max yi(¢J) within which the Y; for ieJ lie.
iel N :

Linearizing Y at ¢J, we can consider the first-order changes
v

6y; (49) = 7'y, (67109 ic3(47,¢7) (3.3)

N N N Y N

A sufficient condition for A¢J to define a descent direction
n



for,U(¢j) is
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N
T . . ‘ ..
vy, (071867 < 0 ieJ (¢7,e)) (3.4)
N N n n
Consider
p? = - T advy o)) (3.5)
~ ied n n
I aiJ = 1 (3.6)
ied
j .
a; ) > 0 (3.7
(3.4) may now be written as
T . . . . .
Wy, )z oJvy ¢ < 0 ieg (97 ,eh) (3.8)
N Nvooied " N "
which suggests the linear program:
Maximize
j JoJ
ak +1(¢ s€7) > 0 (3.9)
T n
subject to
9y 6z ad vy ) < -0 ied (97 ,¢)) (3.10)
i . i i k_+1
N Nooied N Y r v

plus (3.6) and (3.7), where kr denotes the number of elements of

J(¢J,EJ). Note that if
n .

Apd = 0 for eJ = 0
n,

v

the necessary conditions for a minimax optimum are satisfied at ¢J
Y



21

(Bandler 1971). Observe that J is non-empty and that if J has only
one element,‘we obtain the steepest descent direction for the corres-

ponding maximum of the yi(¢).
N

3.2.2 Proof of Convergence

Before proving the convergence of the algorithm it may be worth

restating the following lemma due to Farkas (Lasdon 1970).

Let {po, Pis ++- s pn} be an arbitrary set of vectors. There
N n

n
exist
Bi > 0 (3.11)
such that
n
P, = .L. B.p: (3.12)
NO i=1 i1

if and only if
T
Pp 4 >0 (3.13)
N

for all q satisfying

N
T .
P. q>0 i=1,2, ... , n (3.14)
e T
It is, therefore, possible to find nonnegative values of aiJ in
the expression for (3.5) if and only if
T j

(-8¢°) " (-4¢7) > 0 (3.15)

N N
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for all A¢J satisfying

N
7'y, (7) (-a09) > 0 ied (o7 ,¢)) (5.16)
N 4 n N

where (3.13) and (3.14) correspond to (3.15) and (3.16), respectively,
and —A¢3, Vy.(¢J), —A¢J take the place of Pg» Py Q-
N ’\Jl’\: n v ’\;1’\;
Now (3.15) is always satisfied, though it may not be possible to
satiéfy (3.16) if € is too large. By suitably decreasing EJ, (3.16)

may be forced to hold.

3.2.3 Practical Implementation

Fig. 3.1 illustrates how the different subroutines are called
and their relative hierarchy. Flow charts of subroutines GRAZOR, SELEC
and GOLDEN appear in Figs. 3.2 - 3.4. See Appendix A for further de-
tails and definitions. The objective function U(¢j) is calculated by
subroutine LOCATE. | v

As given by linear programming (see, for example, Subroutine

SIMPLE), A¢J is normalised to

N
. A¢j
Apd = (3.17)
W [ ae? |
n

by subroutine NORM. Starting at ¢J, a step aJA¢nJ is taken for o’ = aOJ'
n n
if no improvement in U results, o) is reduced by factors of B until a

. . . i v j * . .
better point is obtained or o < o. Let ol produce the first improved

point from ¢J. Then - .
, " : 2° = ol np ? (3.18)
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Subroutine GRAZOR

i A I A i A
, ki
Subroutine Subroutine Subroutine Subroutine
NORM GOLDEN SELEC SIMPLE
1 A i
Y
Subroutine Subroutine
LOCATE TGSORT
i y
Function Y
Subroutine ANAL
Fig. 3.1 Block diagram summarizing the computer program structure

and illustrating the relative hierarchy of the subprograms.
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Fig. 3.3 Mathematical flow diagram of subroutine
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N
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is defined.
Next a method based on golden section search (Temes 1969) is
1%
used to find y’ corresponding to the constrained minimum value of

max yi(daJ + YJA¢J). The jth iteration ends by setting

iel N o
1 5 e o
R Y (3.19)
n n n
and
. e s
a03+1 P M (3.20)
In Fig. 3.4,
T = %- (1+/5) (3.21)

is the factor associated with the golden section. Subscripts £ and u
denote lower and upper limits, respectively, and a and b denote interior
points of the interval of search. An attempt to bound the minimum is
made. Then golden section search is used to locate the minimum to a de-
sired accuracy. The search is terminated when the resoluticn between
two interior points falls below a factor n of the initial interval.

In Fig. 3.3 the maxima implied by the functions Yi» sampled in
a certain order, are located and sorted out in decreasing magnitude
(by, say, Subroutine TGSORT).

Fig. 3.2 shows the grazor search strategy. Note that in setting
up

Ax = b (3.22)

v N

slack variables (x o Xpp +1) are introduced. We try to
T

’x >
kr+2 kr+3

generate a descent direction based on the gradient of the maximum
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funttion (kr = 1), proceed to‘the minimum of U in that direction, and
repeat the process. If, at any stage, this process or the linear pro-
gram does not yield a direction of decreasing U, or does not provide an
improvement greater than e, the procedure is repeated after including
the function corresponding to the next largest of the current n dis-
crete local maxima (i.e., ripples) if one exists. When all local maxi-
ma have been included and U can still not be reduced or improved satis-
factorily by a value greater than e, we repeat the procedure with kr
functions corresponding to the first kr largest of the candidates, be-
ginning with kr = 1, in another series of attempts to reduce U. The
algori;hm terminates only when there are no more suitable functions left
and when there are either no improvements or improvements less than €'

over one complete cycle of kr’ starting from 1 and ending with n.

3.2.4 Example

The design of a two-section 109 to 12 quarter-wave transmission-
line transformer network over a 100 percent bandwidth centred at 1GHz
is considered (Matthéei, Young and Jones 1964) as an example for testing
the grazor search strategy. This problem has already received atten-
tion from the optimization point of view (Bandler and Macdonald 1969a,

1969b). The lengths £ are fixed at lq, the quarter-wavelength at

1°%2

centre frequency, and the impedances Z are varied.

1’Z2
Table 3.1, in association with Fig. 3.5, illustrates how the
grazor search strategy effectively follows the path of discontinuous

derivatives to locate the optimum in the course of minimax optimization
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TABLE 3.1

SUMMARY OF IMPORTAI.‘IT STEPS IN THE EXAMPLE
ILLUSTRATING THE GRAZOR SEARCH STRATEGY

é = (2.23605, 4.47210),U'(§) = 0.42857

Iteration Points of - Starting Point Values of Scale Factors
Number Iteration of Iteration k
’ Point Scale Factor T
£1=(1.o, 3.0)
32 a*=1,00
- t(ply= R 4 =
1 1-5 U (3 )=0.70954 $ y=l+1 1
$°=¢2 Y*=1.000
» LV, )
$5=(1.99996, 3.00893)
35 a=1.00
2 | 5-12 U'($5)=0.63086 37 a*=0.10 1
$12 Y*=2+1
n .
212=(1.69865, 3.20921)
$13 a=0.1(t+2)
| ¢l 0=0.01(7+2)
3 12-20 U'(412)=0.48073 A 1
v _ 315 a*=0.001(1+2)
$20 y*=141
N
$20=(1.70806, 3.20821)
4" -
$7! @=9.472x10" 3
4 20-26 U' (¢29)=0.47843 $22 a*=9,472x10"% 1
n n
$26 vy*=1.000
n,
$26=(1.70723, 3.20865)
"N
$30 a*=1.0x10"6
5 26-35 U' ($26)=0.47794 v . 1
n
335=(1.7o723, 3.20866)
' $36 a*=9,472x10"%
6 35-64 U' (635)=0.47794 v 2
v $64 y*=1.096x103




TABLE 3.1 (continued) 30

SUMMARY OF IMPORTANT-STEPS IN THE EXAMPLE
ILLUSTRATING THE GRAZOR SEARCH STRATEGY

§ = (2.23605, 4.47210), U'(}) = 0.42857
", n

Iteration Points of Starting Point - Values of Scale Factors

Number Iteration of Iteration
Point Scale Factor

35“=(2.05489, 4.18669)

7 64-72 U'($5“)=0.44084 A Y*=142
4"
372=(z.09028, 4.17411)
8 72-78 uv(272)=o.43199 278 Y*=1.000
378=(2.09380, 4.17280)
9 78-96 U'($78)=0.43146 £96 ¥Y*=60.69
¢96=(2.18832, 4.38018) ¢98 a*=2.279x10-3
10 96-103 b v
U'($95)=o.42929 2103 Y*=1.000
$1°3=(2.1904o, 4.37924)
11 103-117 U'(£1°3)=0.42886 6117 . vy*=30.03
_ N
3117=(2.22029, 4.44082)
12 117-126 U'($117)=0.42864 $126 Y*=10.47
£125=(2.23088, 4.46221)
13 126-132
U'(2125)=0.42862
2133 - $126
| ¢134 a*=2.279x10-3
13 133-136 U'(g133) = U(y126) . |
~ $136 y*=T42
~N
3159=(2.23595, 4.47237)
18 169-176 1v(3169)=o.42861 2‘75 : Y *=1.000

169
=2
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1

| : 1 | .
\émcx Ip!
S5 /
.50
/

optimum

/

iteration 1
1 [ i

Fig. 3.5 Example illustrating how the grazor search strategy follows the

narrow path of discontinuous derivatives.
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of the network (see Fig. 3.6). Let

y; (¢) = %1o(¢,wi)|2 (3.23)
N n
and define
U'(¢) = m§X|0(¢,wi)| (3.24)
v 1 N

where ¢ = [Z1 ZZ]T; and p is the reflection coefficient on 11 uniformly
Y

spaced frequencies by in the band 0.5-1.5 GHz.

The grazor search strategy starts at

¢1 = [1.0 3.0]T
n

u' (o1) = 0.70954
n

and the values of the parameters used are a = 1 (at start),

¥ =10 8=10, n=0.5, €=10%and e = 107°°.

The first iteration extends from ¢1 to ¢5; ¢2 is the new point
: n n n

obtained when taking a unit step along the direction suggested by the

negative gradient. Since ¢2 is a satisfactory improvement, a golden
N
section search is initiated, yielding ¢3(y=1+1) which is not an im-
» N
provement over ¢2. The interval of search is thus found. ¢4(Y='r)
4" Y
is found to be no improvement over ¢2. The golden section search is
N
now terminated, since the current resolution between two interior points

of search falls below the minimum allowed value. ¢5 = ¢2 is thus the
N

n
best point attained at the end of iteration 1. At the end of itera-

tion 5, U(¢26)—U(¢35)<e, so kr is increased from 1 to 2 in the next
n n
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iteration. For a similar reason, kr is increased from 2 to 3 for‘itera—
tion 12, and reset to 1 from 3 for iteration 13. During iteration 18,
the parameter values remain the same to 5 significant digits, and the
improvement in U at the end is less than e'; all successive attempts

to achieve a better point with an improvement greater than e'(by con-

sidering 1, 2 and 3 ripples) fail, and the procedure is terminated.

3.3 Constrained Minimax Optimization
3.3.1 Statement of the Problem

The constrained minimax problem considered may be stated as

follows.
Minimize
U(¢) = max y. (¢) (3.25)
N iel N
subject ‘to
g.(¢) >0 jeM (3.26)
I T
where
I A {1,2,...,n} (3.27)
M A {1,2,...,m} (3.28)

(see Sections 2.2 and 2.4)

It will be assumed that the functions Yy and gj are continuous
with continuous partial derivatives, and that the ineqqality constraints
(3.26) are such that a Kuhn-Tucker solution exists (Lasdon 1970, Zangwill

1969).

Let y2(¢) for %2€eL be the largest local discrete maxima (ripples)
Y
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of yi(¢) for iel, in decreasing magnitude, where
n

La{1,2, ..., n} (3.29)

3.3.2 Formulation 1

The constrained minimax problem of (3.25) and (3.26) can be

formulated as a non-linear programming problem as follows.

Minimize bpe1 (3.30)

subject to (3.26) and
Spe1 ~ Y1(0) 20 iel (3.31)
N

The above problem can then be reformulated as an unconstrained

minimax problem as follows.

Minimize with respect to ¢ and ¢k+1
n

\' (¢’¢k+l’°‘)= max ¢k+1,¢k+1'0¢1(¢k+1')’1(¢)),
"N N iel

. (3.32)
jeM _ L
¢k+1 o‘j+1gj(i")
where
a A [a, a o 17 (3.33)
N s 1 2 "7 Tmel .
aj >0 j =1, 2, ..., m+l (3.34)

For a large enough value of a one can obtain, in principle, the
n
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exact optimal solution for the original problem by minimizing this re-
formulated objective function.

When implementing this scheme one can, for the problem defined
earlier, slightly modify the formulation in order to save on computation-

al effort, so that the minimization function chosen is

V! (¢’¢ ,0,) = max ¢ :¢ - Q (q’ _5\' (¢)))
k17 el k+1°>"k+1 1Vk+1 78 "

jeM : (3.35)
¢k+l - aj"‘l gJ (;t)

3.3.3 Formulation 2

In this formulation, weighting functions are used to convert

the original problem into an unconstrained minimax problem as follows.

Minimize with respect to ¢

n,

W(o,w) = max [y; (6),-w;g; ()] (3.36)

nony iel n n

jeEM
where

A [w. w 1T (3.37)
X wl 2 Wm .
Wy > 0 jeM (3.38)

For purposes of practical implementation, as long as U(p) >0
N

and onc wishes to apply nonzero weights only to violated constraints of

(3.26), the minimization function may be chosen as

W'(¢p,w') = max [9¢(¢).—W! g.(¢)] (3.39)
LYY " el n 3 a,
jeM
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where

cw '] (3.40)

wj' > 0 for gj(¢) <0

v jeM (3.41)

'=0f . 0
Wy or g5 (¢) >

v

The advantage of this formulation is apparent when U > 0 implies
that certain specifications are violated and U < 0 implies that they are
satisfied. In this case, comparison with violated and satisfied con-

straints seems appropriate.

3.3.4 Comments

By proper choice of the elements of a, w, or w', the reformulated
NN n
functions V, V', W or W' can be minimized by a suitable minimax or near-
minimax algorithm. In case of parameter constraints, upper and lower

specifications can be considered as follows.

82118 = 03 7 44, 20

i=1,2, ...,k (3.42)

v
o

gzl(i) = -(d)l - ¢1u) z
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g'j ($) >0 j = 2k+1, 2k+2, ... , m (3.43)
N

3.4 Practical Investigation of Minimax Optimality Conditions

3.4.1 Introduction

In recent paper (Bandler 1971), the conditions for a minimax
optimum were derived for a general nonlinear minimax approximatioﬁ prob-
lem from the Kuhn-Tucker (1950) conditions for a constrained optimum in
nonlinear programming. See also Dem'yanov (1970), Medanic (1970). The
minimax optimality conditions have also been derived from conditions for
optimality in geheralized least pth approximation problems for p->« by

Bandler and Charalambous (1971, 1972b, 1973a).

3.4.2 Conditions for a Minimax Optimum

The minimax problem considered is thé unconstrained version of
the problem stated in Section 3.3.1 (i.e., when (3.26) is ignored).
The necessary (Theorem 1) and sufficient (Theorem 2) conditions for a
minimax optimum are stated as follows.

Theorem 1

At an optimum point ¢° for the minimax approximation problem
N

there exist
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u >0 L =1, 2, » ko (3.44)
such that
k
T )
Iou, V4% =0 (3.45)
=1 N N
k
r
hX uz =1 (3.46)
=1
where §2(¢°) for £ =1, 2, ... , k_ are the equal maxima.
N
Theorem 2

If the relations in Theorem 1 are satisfied at a point ¢° and
Y
all the functions yi(¢) for iel are convex, then ¢° is optimal.

n N
Theorems 1 and 2 have been proved by Bandler (1971), and the
optimality conditions as derived by Curtis and Powell (1966) follow

immediately from these theorems.

3.4.3 Practical Implementation

Once a proposed or a design solution is obtained for a minimax
problem, it may be necessary to investigate the necessary optimality

conditions. If the point ¢, corresponding to a selution, is to be tested
N
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for optimality, an attempt is made to solve

T ’ .
u vy (¢) = 0 (3.47)
2’\, L n, n,

k
L
=1
plus (3.44) and (3.46) for kr =1, 2, ... until for a value of k; (fnr),
(3.44), (3.46) and (3.47) are satisfied. If fhis is not possible, the
necessary conditions are not satisfied.

A computer program has been developed which can test a solution
for the necessary conditions for a minimax optimum by two formulations.
One uses a linear programming approach, and the other the solution of a

set of linear independent equations. See Appendix B, Bandler and

Srinivasan (1973c, 1973d).

3.4.4 Method 1

(3.44), (3.46) and (3.47) are solved here by minimizing
ukr+1 >0 (3.48)

such that (3.44), (3.46) are satisfied and

T 3?2

K
I ou i=1,2, ...,k (3.49)
g=1 ¥ 99

<u
=1 -kt

Linear programming ensures that

u_ >0 L=1, 2, ..., kr+1 (3.50)
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3.4.5 Method 2

Here, we solve a set of linearly independent equations

392

k
T u .
L = 0 ieK! (3.51)
g=1 ¥ %3

=1
and (3.46), where K'is a suitable subset of {1, 2, ..., k}.
There is no guarantee, however, that (3.44) will hold. When
kr-l is greater than the number of elements of K',the system of equations
(3.46) and (3.51) have more unknowns than equations, and we use Method

1 to get the u,.

3.4.6 Comments

Appendix B contains a program description incorporating the ideas
of the previous two sections. The program package can be called from the
user's main program and either of the two, or both the methods can be used

to test the optimality conditions. The user can either specify the value

~

of kr or a tolerance £ relative to 91 within which some of the 92,...,yn
T

lie. The necessary conditions for optimality are satisfied when the

norm ||r|| of the residual vector
n

m
ra oz Y9, (3.52)
N =l "

falls within a user-specified value e, and (3.44), (3.46) hold, for a
value of m, starting with 1. If the conditions are not satisfied for mr=1,
m. is incremented by 1 and the procedure is repeated. The investigation

ends as soon as the conditions are satisfied for a value of m, < kr’ or
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the conditions are not satisfied for m_ = 1, 2, ""kr‘ The user-
specified definitions of ||-]| and the value of e should be realistic
so that the program may give meaningful results.

The importance of this investigation cannot be underestimated
‘especially when there may be a number of solutions obtained by the same,
or different optimization methods for a given problem and one wishes
to test these solutions for optimality so as to be able to detect local
optima, and to compare the methods for convergence towards the optima.
This program may be used in such a way that it is possible to investi-
gate the solutions after a certain number of iterations of the algorithm,
or when a certain convergence criterion is reached, so that one may de-
cide whether to carry on with further optimization, or to terminate
altogether.

The program also makes it possible to find the maxima which
are active in the vicinity of the optimum, so that the user may gain

insight into the various scaling factors associated with the problem.

3.4.7 Example

The problem chosen was the lower-order modelling of a ninth-
order nuclear reactor system when the operating reactor power level
is in the 90-100 percent range of the full power (Bereznai 1971). A
second-order model was chosen and the step-response of the system was
approximated by that of the model for 2 minimax objective over a time-
interval of 0-10 seconds. A solution was obtained for this problem

and the program described in Appendix B was used to test the solution
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for optimality.

The relevant input parameters are: k = 2, n = 4, € = 10,

g = 0.01, and the norm chosen is given by :
[lel] = max x|
N 1<i<k
V y is given by
n v
- -3 - -1
.38711013 x 10 -.29632883 x 10
,\7)}1 = 3 ’ZYZ = 1
|-.14208087 x 1077 | .10876118 x 107"
[ 79840875 x 107> [ .17968278 x 107 %]
Zy3 = V . ,Zy4 = 5
| .68487328 x 10 "] | -.14014776 x 10 |
and y is given by
N
* -2 A -2
Yy = .29234162 x 10 s Yo = .29234034 x 10
N -2 A -3
Yz = .23141899 x 10 s Yy = .62431057 x 10

Corresponding to £ = 0.01, the value of kr is equal to 2. Both the methods
were used to test the solution for optimality, and the results obtained
are shown below.

i) m, = 1

Both the methods give the same result as there is only one func-

tion under consideration.
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r = [0.38711013 x 107> -.14208087 x 10™>17T

n
||z|| = 0.38711013 x 107>
n

(3.44) and (3.46) are satisfied, while ||r|| is not less than e. Thus
n

the conditions are not satisfied for mr = 1.

.(ii) m = 2

Method 1
u = [0.98710491 0.12895086 x 10_1]T
n
-9 -9.T
r = [-0.25789922 x 10 0.25789922 x 10 7]
n

Ilz|| = 0.25789922 x 107>
n

Method 2
u = [0.98710492 0.12895077 x 107197
n,
r = [o. -0.35255563 x 107217
n,
||r]| = 0.35255563 x 107
n,

(3.44)and (3.46) are satisfied and ||r||<e for both the methods. The
v

necessary optimality conditions are thus satisfied for m, = 2. It is

also observed that due to the type of formulation of the problem in

Method 1, the elements of r have equal magnitude.
N
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3.5 Conclusions

A new minimax algorithm called grazor search has been pro-
posed. Conditions which guarantee the convergence of the algorithm
have also been stated. The spectrum of problems that can be accémo-
dated has been extended to include constrained minimax objectives, and
any efficient unconstrained minimax method can suitably be used for
this purpose. The practical investigation of a solution for necessary
optimality conditions has been implemented on the computer, so that it
is now possible to check solutions at any stage of the opfimization
process. The subject matter of this chapter makes it. possible to tackle
unconstrained and constrained minimax problems by a new gradient algorithm,

and to test intermediate or final solutions for optimality, on line.



CHAPTER IV

COMPUTER-AIDED CIRCUIT DESIGN
4.1 Introduction

This chapter primarily concentrates on applying the ideas
presented in Chapter III to computer-aided design of electrical net-
works. Minimax designs are of special interest to the designer
mainly because they attempt to achieve an equiripple behaviour of the
response error function, which is useful in many cases. The prob-
lems considered include the design of LC transformers and cascaded
transmission-line transformers and filters. Appropriate constraints
have been incorporated whenever necessary, and the grazor search
algorithm has been compared with the Osborne and Watson method and
razor search strategy for reliability and efficiency (See Bandler,
Srinivasan and Charalambous 1972, Bandler and Srinivasan 1973a). Un-
less otherwise mentioned, the objective function to be minimized is

chosen as (2.13).

4.2 Lumped LC Transformer

The problem considered (Hatley 1967) is the design of a 3-
section lumped-element LC transformer to match a 1Q load to a 3Q genera-
tor over the angular frequency range of 0.5 - 1.179 radians/sec. Fig. 4.1

shows the structure of the network, and the objective is to minimize

U($) = max [o.(6) | (4.1)

N 1 N
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where p.(¢) = P(¢,¥.) is the reflection coefficient over 21 uniforml
i, LA y

spaced frequencies wi in the passband, and

i = [L1 C2 Lg C4 Lg C6]T (4.2)

The six parameters were optimized by the grazor search strategy
and the Osborne and Watson method, and Fig. 4.2 shows a typical graph of
objective function against fuﬁction evaluations for the two methods for
identical starting points. As can be seen from the graph, the Osborne
and Watson method fails to reach the vicinity of the optimum, while the
grazor search algorithm achieves an optimal solution. Table 4.1 shows
the number of function evaluations needed to get within 0.01 percent of
the optimum for different values of n, the factor of resolution between
two interior points of the golden section for the grazor search, and it

is clear that the value of n chosen need not be very small.

4.3 Quarter-Wave Transmission-Line Transformer

The problem considered is the design of 2-section and 3-section
10Q to 1Q transmission-line transformers over a 100 percent relative
bandwidth centred at 1 GHz(Matthaei, Young and Jones 1964, Bandler and
Macdonald 1969a, 1969b). The objective is to minimize mgxlp(¢,wi)| on
11 frequencies wi in the band 0.5-1.5 GHz for the networ; sho;n in
Fig. 4.3, where CH is the reflection coefficient of the network at wi.

The grazor search method and the Osborne and Watson algorithm

were used for minimax optimization. For both the methods, the objective
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TABLE 4.1
COMPARISON OF THE NUMBER OF FUNCTION EVALUATIONS REQUIRED BY THE
GRAZOR SEARCH METHOD TO REACH WITHIN 0.01 PERCENT OF THE OPTIMUM

FOR DIFFERENT VALUES OF n FOR IDENTICAL STARTING POINTS

Function Evaluations n
1316 0.01
880 0.10

561 _ 0.50
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function is given by (2.13) where
1 2 '
y; (@) = 5]e; (9)] (4.3)
N N

In the 2-section examples, the 11 frequencies were uniformly spaced. In
the 3-section examples, the frequencies were 0.5, 0.6, 0.7, 0.77, 0.9,
1.0, 1.1, 1.23, 1.30, 1.40, and 1.50 GHz. The progress of the algorithms
from identical starting points with respect to the number of function
evaluations (one corresponding to 11 evaluations of p) is recorded in
Figs. 4.4 and 4.5. The points shown mark the successful end of a linear
search or the beginning of linear programming.

A comparison was made between the grazor search, Osborne and
Watson, and razor search methods, as shown in Tables 4.2 and 4.3. From
Table 4.2, it is clear that the grazor search algorithm is, in general,
faster than the razor search technique for the 2-section case when the
lengths are kept fixed and the impedances are varied. From Table 4.3,
it is clear that the grazor search algorithm is the best. The Osborne
and Watson algorithm, though fairly fast initially, may in some cases
fail or slow down near the optimum.

The grazor search method and the Osborne and Watson algorithm
were further compared on the 3-section transformer problem when the
lengths were fixed at quarter-wavelength values and the impedances were

varied. For a starting point of Z, = 3.16228, Z, = 1.0 and 23 = 10.0,

2

the former took 184 and 218 function evaluations, while the latter con-

1

sumed 151 and 219 function evaluations to reach within 0.01 and 0.001

percent of the optimum value of the maximum reflection coefficient,
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