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ABSTRACT

This thesis addresses itself to two main veins of computer-
aided design of electrical networks, namely, simulation and
optimization. A critical review of the state of the art in
simulation approaches to networks for analysis and sensitivity
evaluation, design concepts and optimization algorithms, 1is
presented. A new approach for the simulation and design of lumped
networks in the time domain is presented. The approach is based
on the transmission-line matrix method of numerical analysis. The
exploitation of general simulators which can be used as a tool in
the integrated design process of electrical networks is given with
specific examples. A new approach for the analysis and design of
cascaded networks has been developed. This approach proves to be
efficient and very useful for sensitivity and tolerance analysis.
The approach has also been generalized to 2p-port cascaded

networks.
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CHAPTER 1

INTRODUCTION

Methods of analysis and sensitivity evaluation for
electrical circuits in the time domain and cascaded circuits in
the frequency domain are the subjects of this thesis. Analysis
and sensitivity evaluation form an integral part of any computer-
aided circuit design scheme.

The circuit design problem can be classified into two
types. The first- is the classical type, used during the last
decade, from which we obtain one set of circuit parameter values.
This set of parameter values let the desired circuit response (or
responses) meet optimally the given specifications. Converting
the results obtained to the real world can be either very
difficult or very expensive especially if mass production is
anticipated. This is due to the high price of elements, if they
are available, with very precise values. This suggests the second
type which considers the problem more seriously from the
manufacturing point of view. In this case tolerances on design
parameters, post-production tuning of certain components and yield
maximization can be considered. This in turn leads to a more
sophisticated problem where a nominal set of parameters and their
associated manufacturing tolerances (and/or tuning) are the

outcomes. Both types of design have these steps in common
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a) numerical circuit analysis,
b) first-order sensitivities (needed for the optimization
process),
¢) large-change sensitivities.

This thesis addresses the time-domain analysis of 1linear
lumped networks and the sensitivity of the response w.r.t. design
variables, the use of general simulators to obtain the quadratic
approximation of a circuit response which is further used in the
design procedure, and the response and sensitivity analysis for
cascaded networks in the frequency domain.

Chapter 2 presents a review of existing methods of circuit
analysis, sensitivity analysis and optimization. Different
problem formulations are also given. A section in the chapter is
devoted to the presentation and formulation of the problem with
practical considerations. Similar problem formulations and
methods, which were not developed by electrical engineers but
which deal with the same type of problem, are briefly discussed.

A new approach for time-domain analysis and first-order
sensitivities of lumped networks is presented in Chapter 3. The
lumped elements are modeled by transmission-line sections or stubs
and the modeled network is analyzed by the transmission-line
matrix (TLM) method, which provides an exact solution to the
model. Compensation of errors arising in modeling the network
elements 1is discussed in this chapter. Sensitivities of the

model's response w.r.t. design variables, time and time step are
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derived. Advantages of this method over existing methods are
mentioned.

Chapter U4 deals with the use of general simulators and
their exploitation to obtain the response (of any general network)
at different points in the parameter space. These response values
are subsequently used to obtain a multidimensional polynomial
approximating the response function within an interpolation
region. The design is then performed using the polynomials
instead of the real response. For this approach the sensitivities
w.r.t. design variables are obtained from the polynomial
approximation directly. Two specific examples are given in this
chapter.

An exact and efficient approach to network analysis for
cascaded structures is presented in Chapter 5. It is very useful
for differential and large-change sensitivity evaluations. It
facilitates the exploitation of symmetry to reduce computational
effort for the analysis. Algorithms for evaluating first- and
second-order sensitivities, the effect of a multiple of
simultaneous large changes in the variable parameters, and the
evaluation of the response, as well as the sensitivity of the
response, at the vertices of a tolerance region are given in this
chapter. It is also shown how responses at different loads in
branched networks, which may be connected in series or in parallel
with the main cascade, can be obtained analytically in terms of

the variable elements. The approach has also been generalized to
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deal with 2p-port cascaded elements.

Appendix A includes a finite difference formula used to

approximate the first-order derivative of the time-domain response

w.r.t.

time needed in Table 3.7.

The data supplied to the general simulator SPICE2 for the

analysis of the current switch emitter follower example in Chapter

4 is shown in Appendix B. Appendix C includes the derivations for

the formulas in Chapter 5, Section 5.6, for the branched circuits.

(1

(2)

(3)

(4)

(5)

(6)

Original contributions claimed for this thesis are:

A complete exposition of the design problem of electrical
circuits and suitable methods of formulation.

A critical review of optimization methods, used in the
design of circuits, developed by electrical engineers.

The development of a new method for analysis and
sensitivity evaluation of lumped 1linear circuits in the
time domain.

The illustration of efficient exploitation of general
circuit simulators in the design procedure.

A new approach to the analysis and sensitivity evaluation
of cascaded networks.

Algorithms which employ this new approach and their use in

the design of cascaded networks.



CHAPTER 2
SIMULATION AND OPTIMIZATION OF ELECTRICAL NETWORKS:

A CRITICAL REVIEW

2.1 Introduction

The classical computer-aided circuit design problem can be
stated as follows: after choosing the appropriate circuit
topology (configuration) with known components, find a single set
of designable parameter values which let the circuit response or
performance optimally meet some given specifications.

The problem may be reformulated as a nonlinear programming
problem (minimizing an objective function subject to constraints)
where the objective and constraints embody the design criteria.
The objective function itself is usually of the least squares,
least pth or minimax form.

The evaluation of a suitable objective function involves
the evaluation of the response function F(¢, ¢), which is a
function of the network parameters ¢ (resistors, capacitors,
inductors, emitter area of integrated circuits transistor, ete.)
and of other independent variables ¥ (frequency, time,temperature,
tunable network elements, etc.). The function F(?, ?) is usually
assumed to be continuous in the ranges of ? and Y of interest.

Performance specifications are usually functions of ¢ only,

whereas design constraints are generally functions of ¢.



This chapter reviews the methods and techniques of each
step involved in the design procedure, namely the response
evaluation (or —circuit analysis), derivative evaluation
(differential sensitivity), large-change sensitivity, objective
formulation and design specification, and optimization approaches
used in the design of electronic circuits.

The last section deals with optimal design when certain
additional practical engineering problems are considered. The
centering problem formulated in a nonlinear programming form is
presented. Further practical considerations such as tuning,
tolerance assignment under model and environmental uncertainties
are discussed.

The difficulties facing the designer wishing to avail
himself of efficient nonlinear programming aids are elaborated on.
Further development of available algorithms and problem
formulations which can improve the state of the art are suggested

in Chapter 6.

2.2 Methods of Analysis

2.2.1 Linear Networks in the Frequency Domain (the A.C. Case)
A linear network is described by a set of linear equations
of the form

b, (2.1)

-~

[
1R g
"

where A is the matrix describing the circuit (with complex



coefficients) and can be the nodal admittance matrix ¥, the mesh
impedance matrix % or the tableau matrix (Hachtel, Brayton and
Gustavson 1971). x is the unknown vector consisting of voltages,
currents or both, P is a Kknown vector consisting essentially of
sources exciting the circuit. An important feature of the matrix
A is that it is sparse for large networks. The sparsity of the
matrix increases with the size of the network. Sparse matrix
techniques (see Duff 1977) for storing the matrix A and for the
near-optimum ordering of the equations, are usually used. The
reordering of the equations is performed so as to preserve the
sparsity and to reduce the number of fill-ins (created nonzero
elements which were formerly zeros) during the LU decomposition,
which is often used to solve these équations. At each frequency
point of interest the matrix é is rebuilt and the set of equations
resolved. Only the numerical values of the entries of the L and U
matrices, where é = }q, are changing but their structures remain
fixed.

For certain circuits special methods may be more efficient
than general methods of analysis. As an -example, cascaded
networks, such as the one shown in Fig. 2.1, are analyzed by the

transmission or chain matrix, where each element is considered as

a two-port subnetwork described by a 2x2 matrix of the form

= , (2.2)

which relates the input to the output of each two-port subnetwork.
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O—— —¢—O—— —O0- — — —-0—— —0

Vi Vo

o o ——0— — — -0—— t—o0
input output

Fig. 2.1 A cascaded network, consisting of two-port subnetworks
connected in cascade, with conventional directions of

currents and voltages.

The analysis 1s carried out by assuming a current through the load
with a value of one (hence the voltage across the load can be
known) and by successive matrix multiplication we can obtain the
information at the input (the source) end. Suppose that the
computed voltage at the source end is VSc and the actual source
voltage is VSa' Since the network is linear, the actual values
for all voltages and currents are found by multiplying the
computed values by the factor Vsa/VSc (Bandler, Rizk and Tromp
1976, Bandler, Popovié and Jha 1974, Green 1969, Parker 1969).

A special case of the linear A.C. analysis is the D.C.
analysis of resistive networks. The equations, which are real in
this case, are set up in the same way as in the A.C. case and then

solved once.



2.2.2 Linear Networks in the Time Domain

In some problems we are interested in the transients of the
circuit and the analysis has to be carried out in the time domain.
The network equations describing the linear network, using the
state-variable approach (Chua and Lin 1975) which is commonly

used, are
x = Ax + Bu, (2.3)
y = Cx + Du, (2.4)

where A is a coefficient matrix relating the state vector X
(capacitor voltages and inductor currents, for example) to its
time derivative }:c, and I§ is a coefficient matrix coupling the
effects of the independent source vector u. Equation (2.4) gives
the output vector y, where g and P are coefficient matrices.

Equation (2.3) is a set of first-order differential equations

whose solution is given by

t A(t-t )
x(t) = ef¥ 5 BT B u() dar+e” O x(t), (2.5)
to
and the output vector is
A(t-t ) t
y(t) = §e~ ° g(to) +{ C eét s e-éT Bu(t)dt + Pg(t)}. (2.6)
t
o

Different approaches to evaluating eét and the integrals in (2.5)
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and (2.6) exist (Calahan 1972, Chua and Lin 1975, DeRusso, Roy and
Close 1966).

A new method for analyzing lumped, linear networks in the
time domain has been developed by Bandler, Johns and Rizk (1977).
The lumped elements are modeled by their equivalent distributed
transmission-line models. The transmission-line network is then
analyzed using the TLM (transmission-line matrix) method. This
approach avoids the formulation of the state equations of the

original network and the evaluation of eét or any integrals.

2.2.3 Nonlinear Networks: the D.C. Case
In the nonlinear D.C. case the network -equations are

expressed in the form

These equations are usually solved by the Newton-Raphson algorithm
(see Table 2.1).

Another method, which is equivalent to the Newton-Raphson
method, is to linearize the equations describing the nonlinear
elements of the circuit. The 1linearized formulas are then
represented by linear elements, called the discrete or the
companion elements (Calahan 1972, Chua and Lin 1975) and the
resulting 1linear circuit is analyzed successively until
convergence is reached.

Piecewise-linear analysis is also used in solving nonlinear

networks (Chua 1971). Other approaches dealing with circuits with



11

£ x x X X Jeautuou

X X X X
. 93BJNSUBWWOD  PaINQTJISIP
wJaojsueay soetde] £q X X X X X X -uou pue Foieue
pajeTaJ sJe sutewop Aousnbauy xa1dwod pue swrg X X X X X 99'JNSUBWWOD
JBBUTT
§40730NpuT JBAUTTUOU JO/pue X X X oTweukp
X
SJoj1oeded JesulTuou suTequod ‘aBedoqs AJuasus X X X X Jesutuou
§J4093STSad X 9ATYSTSOU
JeauTTuou sutrejuodo ‘agdedoqs ABasus ou X X X X Jesutjuou paduny
waojsuedq soeyde] £q pejeIaJd ade surewop X X X oTweudp doteuE
Aousnbaay xs1dwoo pue suwry ‘sFedoss LJasus X X X X JBBUTT
: 9AT]STSad
afedoqs A£Juasus ou X X X X 198
JeautT
(%] ™ c - = o = (7] [} 'O = o =z [ [%2] -3 g o
g [ m "3 m G o T [y n o = o [t cr "3 . .
o w I [§] X [ c " =] o] 3 3 o o a (@]
0 ¢ 9 3 0 0O o o w a  ® - o [ T .
I | ® u o] ® o ® 4] o @ - o o
[T T < Y = Y S-S - [ <] S < B~ A~
[ o] [l Q -, 1 [0] Lad [0] [ ® w Q.
= 8 [] n 7] P-4 0 [and ') o [ Y 7] =) (e [
he el o 2] Lad (] o = [ (=% 3 . e — t ct cr 3
c (23 a s 1 o Y o8 o 0 1] ® o
"3 o () o - [l j= t n ) o . Iy [¢] cr - o
el "3 Lad 3 s [l 7] [l [\ L) . ™ = o (0] o] ct
2 fs 8 88 8o T % g B oo
o ) p A I
() 3 B 0 (o] 1%] o [ m mH I [o8 o= aumnyoon
worqodd siskTeue - 8 2 8 7 S5 s © & 3 STY3 UT pojeOIpur Sde
(0] 3 . .
5Uj JO aJnjeu TeOTJaWNU pUE TEOTJEBWAYIRW o o = o b b 6 o} 3 SUOTJBRTOTJISSBIO Y.d0Mj0U
o ) [0 [e] ot (]
‘Teorsfud oyj3 09 BuTjerad opew dJde SJUSWWOY 5 3 g B = 5 N 1BOTJ}DI [0 pEody
g 3 (&) @
0 o 5 0 ®
[ Q. c o}
) n o
[2] cr ~
N
(o)
3
0
saJdnqesay UOT3NTOS JO spoyjzal suotjenby jaomgay sTsATeuy odA] yuomisN

NOILNTIOS 40 SAOHLAW TVOTHAWAN NV SHYOMLAN TVOTHIOATIA 40 SHAXL

L'¢ @1qel



- 12 -

multiple solutions are described in Branin (1972), Chao, Liu and

Pan (1975), and Chua and Ushida (1976).

2.2.4 Nonlinear Networks in the Time Domain

Nonlinear transient networks may be analyzed by different
methods. One method is to formulate the state equations of the
network, which are ordinary differential equations in the normal

form
x = £(x, t), (2.8)

where x is the vector of state variables. Equation (2.8) is then
solved by a numerical integration scheme. Stability of the
integration and its ability to deal with stiff equations (Gear
1971) are some criteria for choosing the integration scheme for
the analysis. The tableau approach (Hachtel, Brayton and
Gustavson 1971) is another method for solving nonlinear networks.
The method discretizes, at the circuit component (branch) 1level,
the derivative operator d/dt, obtaining nonlinear algebraic
difference equations solved by the Newton-Raphson algorithm. The
process proceeds in two loops, one for solving the nonlinear
algebraic difference equations and the next for the time
iteration. In the Newton-Raphson iteration a set of 1linear
equations are repeatedly solved and the sparsity of the
coefficient matrix of these equations should be taken into

consideration.
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The nonlinear network problem in the time domain may be
reduced to a sequence of D.C. analyses. This is achieved by
discretizing the time derivative operator, then replacing the
nonlinear elements by their corresponding companion (linearized)
elements and solving a D.C. network. The tableau approach and the
companion approach have advantages over the state-space approach
in the case of large networks. The reason is that formulating the
state equations of a large network requires tremendous effort.
The TLM method when used for analyzing nonlinear networks shares
this advantage with the former two approaches.

This presentation of different types of networks and

methods of solutions is summarized in Table 2.1.

2.3 Response Function Derivatives

It is well known that optimization techniques which wuse
derivatives are superior to nongradient techniques if first-order
sensitivities are readily available. In order to get the
derivatives of the response function F(¢, ¥), which is a function
of certain voltages and/or currents of the circuit, sénsitivities
of these voltages and/or currents with respect to the variable
parameters have to be evaluated. One of the most commonly used
approaches to evaluate these sensitivities is the adjoint-network
approach (Director and Rohrer 1969a). In this approach an adjoint
network is constructed, having the same topology as the original

network, and analyzed. The results of both analyses are used to
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evaluate the required sensitivities.

As an example, in the frequency domain, if the network is
represented by its admittance matrix Y at a frequency point and
the equations are Y V = I, then the equations representing the

adjoint network are

¢ <3
"
CHD

(2.9)

[

where
T denotes transpose,

is the vector of node voltages of the adjoint network,

CHDY <]

is the current excitation vector of the adjoint network.

Y and ?, for example, are substituted into some derived formulas
to evaluate the sensitivities (Bandler and Seviora 1970, Director
and Rohrer 1969b).

Branin (1973) demonstrated that the sensitivities, in
general, can be obtained by matrix manipulation without the need
of defining what is termed the adjoint network. Note also that at
each frequency two sets of equations are solved. Using the LU
decomposition we can achieve some saving by avoiding the
decomposition of the matrix transpose (Director 1971). For
cascaded networks, an analysis approach newly developed, described
in Chapter 5, provides, with little additional computational
effort all the information needed to evaluate the required

sensitivities. In the linear D.C. case the adjoint network is



- 15 =

linear and both original and adjoint networks are analyzed once to
calculate the sensitivities. A nonlinear D.C. network will have
an associated linear adjoint network which has to be analyzed.

In the time-domain case sensitivities are much more
difficult to evaluate because the equations are in the form of
ordinary differential equations. Hachtel and Rohrer (1967) used
variational techniques to get an adjoint set of equations which,

when solved along with the original set, allow sensitivities to be

evaluated. In the adjoint-network approach, if the original
network is analyzed in the interval t = [0, tf], the adjoint
network is analyzed in the interval v = [O, tf], where 1 = [tf -

t]. The integration involving the adjoint network is backward on
the time axis. The formulas for the sensitivities are integral
formulas, i.e., in evaluating the sensitivities with respect to k
variables, k integrations have to be performed after analyzing the
original and adjoint networks. Other methods can be used to
evaluate the sensitivities (Parker 1971) but they do not appear
easier or more efficient than the adjoint-network approach.

The TLM method can, in parallel with the response
evaluation, provide the sensitivity of the time response w.r.t.
all the design variables (as is shown in Chapter 3).

An approach developed by Bandler and Abdel-Malek
(Abdel-Malek 1977, Bandler, Abdel-Malek, Johns and Rizk 1976,
Bandler and Abdel-Malek 1978a) avoids the evaluation of the exact

response function derivatives. Multidimensional polynomial
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approximations of the response functions are performed using a
minimal number of evaluations of the actual functions within an
interpolation region. The approximations are used in the
optimization process instead of the actual functions. The
derivatives of the approximations are efficiently and rapidly
obtained. During optimization the approximation is updated in
different regions in the space or in smaller interpolation regions
as indicated by the optimization or to obtain higher accuracy,
respectively.

In some cases the rgsponse derivative is evaluated as a
second-order sensitivity. An example of such a case is the group
delay which is obtained by finding the sensitivity of the output
voltage w.r.t. frequency. An approach which makes use of the
ad joint-network concept to find the exact group delay seﬁsitivi-

ties is described in Rizk (1975) and Bandler, Rizk and Tromp

(1976) .

2.4 Large-change Sensitivity

Large-change sensitivities are important in the centering
and tolerancing problem described in Section 2.7. Here, we are
interested in large changes in the variable parameters which often
result in a considerable change in the response function.

Fidler (1976) and Schwarz (1977) explored the relationship
between large-change and differential sensitivity for bilinear

networks (where the network function is a ratio of polynomials).
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They showed that two analyses of the network, with the variable
element perturbed, in addition to the analysis of the nominal
network are required to evaluate any large-change and differential
sensitivity of different network functions w.r.t. this element.

Singhal, Vlach and Bryant (1973) expressed the network
function (the bilinear function) in terms of the variable
parameters explicitly. The approach requires the solution of the
network with at most k+1 different excitations (where k is the
number of variables), evaluation of some of the principal minors
of a matrix of order k+1 and the solution of two triangular
systems of equations. Once the coefficients of the bilinear
function is obtained any large change can be easily evaluated.

Gadenz, Rezai-Fakhr and Temes (1973) used the adjoint-
network concept for evaluating large-change effects. This
approach requires k+1 analyses of the adjoint network and the
solution of a linear set of equations of order k. For any set of
large changes the linear system has to be resolved.

Goddard, Villalaz and Spence (1971) replaced the large
change in an element by a current source whose value is identical
to the current initially flowing through the change of the
element. If the nodal admittance matrix is used for the analysis,
only the r.h.s. of the matrix equation is changed. Since the
inverse of Y (or its LU factorization) is obtained previously for
the original analysis, only matrix multiplication by the new

current vector (or forward and backward substitution) is required
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to obtain the new network response.

Leung and Spence (1975) used matrix inverse modification
methods (Householder relations) to evaluate the change in response
due to multiparameter large changes.

The new approach presented in Chapter 5 for cascaded
networks provides 1large-change sensitivities without any
additional effort (than the analysis). The reason is that the
variable parameter can be related explicitly with the network
function and hence any change in this function due to a change in
the variable can be easily evaluated.

We have to note that the aforementioned approaches are for
linear systems in the frequency domain. Rezai-Fakhr and Temes
(1975) partitioned the nonlinear network into two parts. The
first is the 1linear nominal circuit described by its pulse-
response matrix and the second consists of all independent
sources, all element increments and all nonlinear elements pulled
out of the network. Combining the circuit relations a reduced set
of nonlinear equations is obtained which has to be solved
iteratively, at each time step, for each set of large changes.

In the quadratic approximation approach (Bandler and
Abdel-Malek 1978a) once the coefficients of the polynomial are
obtained (after (k+1)(k+2)/2 analyses), any large-change
sensitivity can be easily obtained by substituting in the
multidimensional polynomial the perturbed parameter value. This

value has to lie within the limits of the approximation region,
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where the approximation of the response function is assumed to be
valid. This approach is approximate but its advantages are that
it is very fast and can be applied in the frequency and time

domains (Bandler, Abdel-Malek, Dalsgaard, Elrazaz and Rizk 1978).

2.5 Design Specifications and Error Functions

The problem where the response function has to meet a
single specification function S(V), assuming we have one
independent variable V¥, can be demonstrated by an amplifier
example. Consider Fig. 2.2(a), in which V1(jw) is the input
voltage (voltage of the source) to the amplifier at frequency w
and V2(jw) is the output voltage at the same frequency. The gain

of the amplifier, which is a linear circuit, is usually given by

Vz(jw)
F(o, v) = G(o, w) 2 20 Logyo V(30| (2.10)
1

~ ~

The problem is to obtain ¢ which results in a gain as close as
possible, in some sense, t; a desired gain, for example, such as
the one shown in Fig. 2.2(b).

Another situation which is frequently encountered in
practice is the problem defined by upper and lower specifications.

In filter design, for example, we are generally interested in two

band types (consisting of intervals of frequency w), namely the
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L O +

V, (jw) amplifier V, (jw)

(a)

response specification S(w)

(b)

Fig. 2.2 An amplifier design problem indicating (a) an applied
voltage Vl(jw) and output voltage Vz(jw), where w is the
frequency and j = v=1, (b) a possible gain specification

for the amplifier.
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stopband and the passband. In the stopband the signal is to be
prevénted from passing through the filter by making the losses as
high as possible. This can be ekpressed by a lower specification
(or bound) of large value. In the passband the situation is
reversed and it is expressed by an upper specification (or bound)
of avsmall value. Figure 2.3 shows the upper and lower
specifications of a bandpass filter and a response function
violating these specifications on the interval [wz, wu].

A suitable objective for a problem with upper and lower
specifications will reduce the amount by which the actual response
fails to meet the specifications, or increase the amount by which
the circuit response exceeds the specifications (Bandler 1969).

In electrical circuit design more than one response
function might have to meet given specifications. As an example,
a circuit can be designed to meet desired specifications in both
frequency and time domains. In this case we have more than one
independent variable ¢, namely w1, wz, ceey wn, where n 1is the
number of these independent variables. Accordingly, we have n
2(

response functions F1(¢, w1), F (¢, wz), ceny Fn(¢, wn) and n

specifications S1(w1), Sz(wz), ceey Sn(wn). The corresponding

error functions are given by

ed(s, ¥9) = wi(y)) (Fj(g, o = sdIn, 5 =1, 2, o.om, (2.11)
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SN . stopband
stopban
/
Sy’ £ ' passband
7 Yy

Fig. 2.3 The response function of a bandpass filter

violating upper and lower specifications.
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for the continuous case with wj as a positive jth weighting
function. It is necessary in practice, on a digital computer, to
consider a discrete set of samples of ?, such that satisfying the
specification at these sample points implies satisfying them
almost everywhere. Thus, for the discrete case, taking Ij as the

index set for the jth functions,
J 4 3 Jy - depd _dy s J
ei(?) = e (g, wi) = wi(Fi(?) Si)’ iel (2.12)

is the jth' error function evaluated at the ith sample point along
the wj axis.

In genéfal, we can have upper and lower specifications for
each wj. In the design of a lowpass filter, for example, we can
have upper and lower specifications in the frequency domain, and a
single specification in the time domain. The error functions will

be of the form

elo, vy =l e, vh - sl (2.13)
u -~ u ~ u

1 1 _ 1,1 1 1 1,1

e, (¢, ¥ =w (b)) (Fi(e, ¥) =5 (1)), (2.14)
(o, ¥¥) = wP(WD) (FP(e, D) - SPVP)), (2.15)

where the subscripts u and & are for upper and lower
specifications, respectively, w1 is the frequency w and ¢2 is the
time t. Figures 2.4(a) and 2.4(b) show the specifications in the

frequency and time domains, respectively.
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F1,S1 F1(¢5‘i’1)

, 1 1
77777 S¢v)

(a)
Sgh
L
0 —y'=w
F2s?
l
2,7
N\
/N
(b) \
b Y \iz(xpz)
0 A

Fig. 2.4 An example of multiple objectives in filter design,
(a) the insertion loss specification in the frequency
domain of a lowpass filter, (b) an impulse response

specification in the time domain of the lowpass filter.
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In the preceding discussion we considered that each
response function and each specification is a function of one
independent variable wj. In some cases wWe are confronted with
response functions and specifications which are functions of the n
independent variables. These variables can for instance, be time
and temperature; frequency and a tunable circuit parameter; or
frequencies in a two-dimensional frequency response of a
two-dimensional digital filter. The response function and the

specifications will be F(¢, ¥) and S(v), respectively, where

LRSS
ne>

(2.16)

q)n

The frequency response function of a two-dimensional
lowpass digital filter, for example, of a symmetrically
constrained finite impulse response (zero phase) is given by

Rabiner, McClellan and Parks (1975), namely,

. . . n. n
Jwg Juy -J(n1w1+n2w2) 1 72
H(e ',e ") =e I a(k,s) cosku, COSLw,, (2.17)
k=0 2=0

where the a(k,&) are the filter coefficients, and the specifica-

tions are
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S(w.l, m2) = (2.18)

where w and ws are the edges of passband and stopband,
respectively. In the discrete case the response function

evaluated at the ith sample point is denoted by

A
Fi(¢) = F(¢, ¥5), (2.19)
for
v
i
2
vy
Ty o . , ie I, (2.20)
n
where wl, wi, N w? are the values of the independent variables

at the ith sample point in the index set I.
In general, where we have upper and lower specifications,

the error functions are generalized to

A 1 - .
e,i(9) = e (o, ) =w,. (F.(¢) -5.,), ie¢I, (2.21)
e 1(0) = e (o, v =w, (Fi(e) - 5,0, 1 eI, (2.22)

where Iu and Il are index sets, not necessarily disjoint. These
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can be used in a suitable objective for the approximation problem.

Figures 2.5(a) and 2.5(b) show two possible cases
dimensions.
Suppose
[euj, je I,
f, = i ie I,
i
-€x’ k e IL’
where
Iu = {1, 2, .y nu},
I, = {1, 2, ..., n},
I =1{1, 2, ..., n, + nl},

in two

(2

(2
(2

(2

and according to a numbering scheme where the error functions

upper specifications are

j =

Let

considered first:

i

A
Mf(g) = max fi(g).

iel

(2

(2

Then the sign of Mf(¢) indicates whether the specifications

satisfied or violated.
>0

0

Me(9)

That is, if

the specifications are violated,

the specifications are just met,

the specifications are satisfied.

.23)

.24)
.25)
.26)

for

.27)

.28)

are
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(a)

(b)

frequency

Fig. 2.5 Multidimensional specifications, (a) a possible

specification for a two-dimensional digital filter,
(b) upper and lower specifications for an amplifier

to be designed to operate over a specified tempera-

ture range.
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2.6 Optimization Approaches in Circuit Design
Optimization approaches which have been used in circuit
design are quite numerous. In this section we review the ones

which we feel have been the most significant.

2.6.1 Nonlinear Programming Approach

Optimal design of filters has been treated as a nonlinear
programming problem by Lasdon and Waren (1966). By defining an
additional independent variable ¢k+1’ where k is the number of
variables, Waren, Lasdon and Suchman (1967) formulated the problem

as the nonlinear program

minimize ¢k+1
subject to
¢k+1 Z'eui’ ie Iu’ (2.29)
¢k+1 _>_ -eli’ i € Il’ (2-30)

plus all other constraints. At least one of the constraints has
to be active at the optimum, otherwise ¢k+1 could be further
minimized withdut violating any of the constraints. If the
optimum ¢k+1 is negative then the specifications are satisfied,

while if it is positive the specifications are violated. Lasdon
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and Waren applied the interior penalty sequential unconstrained
minimization technique by Fiacco and McCormick (1968) along with
the Fletcher-Powell variable metric method (Fletcher and Powell
1963) to solve this type of problem. This technique has been
applied to the design of cascade crystal-realizable lattice
filters, linear arrays (Lasdon, Suchman and Waren 1966), planar
arrays (Waren, Lasdon and Suchman 1967), and acoustic sonar
transducer arrays (Lasdon, Waren and Suchman 1973).

Other penalty functions can also be used along with the
Fiacco-McCormick method like the Zangwill penalty function
(Zangwill 1967)

m

Py, 1) = U(g) + (/1) T [x, (C, (62117, (2.31)
i=
where
X;(C;(¢)) = [min(0, C,(¢))], if C;(9) = g3(¢), (2.32)
and
X;(C;(¢)) = C,(¢), if C,(¢) = hy(¢),  (2.33)

(2.34)

m=n, + ng,
which has the advantage of not requiring an initial feasible point
and the ability to handle equality constraints. The method is
sensitive to the initial choice of r, and ill-conditioning arises
when r approaches zero.

Another penalty function is the Powell extension (Powell

1969) to the Zangwill transformation
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2
LGy (8))4s))f
P(?y E’ f) = U(?) + 2 (235)

. r.
i=1 i

where s:.L and ry are constants during each sequential optimization
and Xi(Ci(¢)) is as defined by (2.32) and (2.33).

The value of s, is updated by (Powell 1969)

A (2.36)
where j is the present iteration number, and the values of ry form
a decreasing set approaching zero.

(The ill-conditioning problem which arises in penalty
function methods when r tends to zero has been studied by
Charalambous (1975a), where he extended the work by Powell. The
approach is based on the simple idea of perturbing the constraints
outwards for the interior penalty function, and inwards for the
exterior penalty function by a certain amount so that the r para-
meter does not have to tend to zero at the optimum. The factor by
which the constraints are perturbed and the updating formula are
similar to the S; factor and its updating formula in Powell's

transformation.)

2.6.2 The GRG Method
Waren et al. (1977) developed a generalized reduced

gradient (GRG) algorithm for solving the nonlinear program
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minimize U(¢)

subject to
hl(?) = 0, i= 1,2, » Do (2.37)
gi(f)‘z 0, i=1,2, ... ng, (2.38)
by converting it to
minimize U(¢)
subject to
hi(?) - ¢k+i = 0, i=1,2, ..., n,, (2.39)
gi(g) - ¢k+nh+i =0, 1i=1, 2, ..., ng, (2.40)
bps £ 05 L byso i=1 ..., k+n, (2.41)
¢R,i=¢ui=o’ i=k+1, ..., k+mn, (2.42)
¢k+nh+i 2> 0, i=1,2, ..., ng, (2.43)

where

nh is the number of equality constraints,

ng is the number of inequality constraints,

k is the number of variables,

¢k+1’ ceey ¢k+nh+ng are nonnegative slack variables.

At each stage of the optimization process the variables are

separated into dependent and independent variables. The number of

natural dependent variables is the number of active constraints
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n,. The slack variables of the nonactive constraints are the
additional dependent variables. All the remaining ones are taken
as independent variables. The active constraints are then solved
for the natural dependent variables n, in terms of the natural
independent ones k - na. This reduces the objective function to a
function of k - na variables only. The generalized reduced
gradient algorithm solves the original problem as a sequence of
reduced problems. The reduced problems are solved using a
variable metric gradient method.

Waren et al. used the GRG method in the design of
dielectric interference filters. The problem, defined by
inequalities, is reformulated as a nonlinear program (as in
Section 2.6.1). The numbers of variables and constraints are
considerable. The GRG method apparently handles this large

problem efficiently and yields satisfactory results.

2.6.3 Least pth Optimization

Temes and Zai (1969) generalized the least squares method
of Marquardt (1963) with appropriate damping in the spirit of
Levenberg (1944) to a least pth method.

They suggested a simple objective of the form

U= 1 [e.(6)17, (2.44)
. 1l ~
jel

where the ei(¢) are special cases of (2.12) when the number of
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independent variables is equal to one and p > 2 is any even
number. The method was applied to the optimization of a

four-variable RC active equalizer, where p was equal to 10. The

maximum deviation from the desired specification for p = 2 was
found to be 33 percent higher. They also demonstrated the
nonuniqueness of the optimum in that particular problem. They

obtained different solutions with different starting points.

For large values of p in (2.44) accuracy and convergence
problems arise due to very large and very small numbers involved
in the calculations. Bandler and Charalambous (1971) alleviated

this ill-conditioning by considering the objective

ei(g) p|1/p
Up = M(¢) ifl M(e) , for 1 < p < =, (2.45)
where
M(¢) £ max e (o)]. (2.46)
ieI

The error functions, in general, can be real or complex functions.

Hebden (1971) employed this type of scaling in some related work.

2.6.4 Generalized Least pth Objective
Very recently, Charalambous (1977b) proposed the following
generalization of the original generalized least pth objective due

to Bandler and Charalambous (1972c¢) (Charalambous and Bandler
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1976)

for M # 0,
U = 1K (2.47)

0 for M = 0,

@.J ql1/q

where the @i are related to n real, nonlinear functions (assumed

differentiable), identified by an index set I, such that

(bl = fl - gy (2.48)
and where
M = max ¢., (2.49)
. i
iel
u, 20,1i=1,2, , 0, (2.50)
and
if M> 0 then K = J and q = p,
if M< 0O thenK =1 and q = -p,
where
J={i | ¢, > 0}. (2.51)
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When minimizing (2.47) the values of usy and p are Kkept
fixed. At each optimum point reached a change is made to one or
more of Uy £ and p, such that the sequence of optimum points of
Up tend to a minimax optimum. Depending on which of the

parameters we change at each optimum point of Up, different

algorithms can be generated, such as the following.

Algorithm 1 (Bandler and Charalambous 1972c) Here, we keep u; = 1,

i=1,2, ..., n, and let £ = 0 and strictly increase the value of

p at each optimum point of Up w.r.t. ¢ such that p + . It should

be noted that if fi(?) >0, i 1, 2, ..., n, this algorithm turns
out to be the well known Polya algorithm (Cheney 1966).

Bandler and Charalambous (1972a, 1973) considered necessary
and sufficient conditions for optimality in generalized least pth

optimization for p + « and related them to the conditions for

minimax optimality (Bandler 1971, Dem'yanov and Malozemov 1972).

Algorithm 2 Here, we keep u; = 1, 1 = 1, 2, ..., n, with p
constant and, at each optimum point ovap, change the value of ¢
such that it tends to Mf(¢), where 5 is the solution of the

minimax problem. Charalambous and Bandler (1973, 1976) considered

the following two variations for changing ¢.
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Algorithm 2.1

L Mf($r) + ¢ (2.52)

-~

where %r is the solution point of Up at the rth optimization and ¢

is a small number.

Algorithm 2.2 This method updates £P as in Algorithm 2.1 if

Mf(;r, Er) < 0, otherwise

SRR C I I U ' (2.53)

where
0 <A < 1. (2.54)

In both algorithms, for the first optimization the margin
51 is min [O, Mf(¢0) + ¢], where ?O is the starting point. For r
> 1 the first algorithm will let all the @i be negative and be
considered in the objective function and the maximum is to be
moved away from the margin. In the second glgorithm, g starts
with zero and increases approaching Mf(§). The small number e is
introduced to avoid M = 0. It is well known that the minimax
solution will not change if a constant is added to all the
functions fi. If this constant is greater than ]Mf(§)] the second

algorithm will be used throughout the whole optimization even if
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Mf(¢) < 0.

Algorithm 2.3 Charalambous (1975b) and Bandler et al. (1976a,

1976b) took €r+1 to be the lower bound on the maximum predicted
under convexity assumptions after each optimization. The constant
Er is used as a lower bound for the (r+1)th optimization so that
all the functions less than this constant are discarded and
considered inactive. The associated algorithm is called the &
algorithm. Any combination of Algorithm 1 and Algorithm 2 can, of

course, be used.

Algorithm 3 Recently, Bandler et al. (1976b), Chu (1974) used
extrapolation to p = =, after performing least pth approximation
with different values of p, with ui =1, i=1, 2, ..., n, to
obtain the minimax solution.

The main drawback of the above three algorithms is that the
unconstrained objective function becomes more and more

ill-conditioned as we get closer to the minimax solution.

Algorithm 4 (Charalambous 1977b) Very recently Charalambous
introduced the parameters ui into the least pth objective function
to overcome the ill-conditioning problem. Any of the foregoing
three algorithms can be used in conjunction with the following

updating formula for ui after each optimum point of Up is reached,
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namely ér. Initially, we set u; = 1, i = 1, 2, ..., n.
Subsequently,
1
u, « — v,, (2.55)
i n i
I v, ’
j=1
where
Qi(ir’gr) q-1 o 1
o KRS
LICR -
v, o« - (2.56)
0 ie Ko e")

From the theoretical and numerical results presented by
Charalambous (1977b), it is clear that this algorithm is superior

to the other three algorithms.

2.6.5 Least pth Objective and Nonlinear Programming

Bandler and Charalambous (Charalambous 1973, Bandler and
Charalambous 1974) suggested that the nonlinear programming
problem could be solved using minimax techniques by transforming

the problem to minimizing w.r.t. ¢ the unconstrained function

M(¢, o) = max [U(¢), U(¢) - aigi(¢)], (2.57)
D 1gigng - - -

where
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%19
%2
a = . (2.58)
an
o g—
and
a,> 0, i=1,2, ..., Dg- (2.59)

(Equality constraints can be transformed to two i1nequality
constraints). They related the Kuhn-Tucker necessary conditions
for optimality of the nonlinear programming problem to the
necessary conditions for optimality of M(4, a). These conditions

require that the o parameters be positive and satisfy

n
1 — < 1, (2.60)

where the My are the Kuhn-Tucker multipliers (not known a priori).
Sufficiently large values should be assigned to o to ensure that
the inequality (2.60) is satisfied.

This minimax problem can be solved by least pth
optimization (Charalambous 1974a), with large values of p, by

letting

o, = U(e), (2.61)
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o,

j41 ° U(?) - a.gj, j=1 2, ..y n_, (2.62)

J

M= M(s, a). (2.63)

Ill-conditioning can arise when the minimax solution is
approached because of the tendency of the first partial
derivatives to be discontinuous. Charalambous (1977a) attacked
the problem by defining a sequence of least pth optimizations

where the objective function to be minimized w.r.t. ¢ is

~

U, = U, o’y £, (2.64)
where
up =1, 121,02, ., ng+1, (2.65)
o, = 0.(e, £7) = UCe) - €7, (2.66)
¢j+1 = ¢j+1(?' gr’ gr) =0, - uggj , J=1,2, ci., ng, (2.67)
M = Mo, of, £7) = M(s, o) -, (2.68)

where r is the optimization number. He proved that if
r' v
@z a = (n1 + 1) u, (2.69)

the point 5 is a stationary point of the function Up(¢, ar, 2

-~ ~ ~

for any p and &, where 5 is the optimum of the nonlinear
programming problem, ﬁ are the multipliers at the optimum E, n, is
the number of constraints with multipliers greater than or equal

to a certain small number €q-
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An approximation to the multipliers which is an estimate to
E (since L cannot be known beforehand) is used in updating a.
2.6.6 Minimax Approximation via Linear Programming

Ishizaki and Watanabe (1968) had the objective function M =
max]ei(?)}, i € I. They transformed the problem to a nonlinear
program of the form of (2.29) and (2.30), with the difference that
the upper and lower specifications coincide, and an additional

constraint

v
o

(&)
"

¢j/¢. 1, 2, ..., k. (2.70)

. O

The last constraint is to prevent ¢j from changing sign during the
iteration process. By taking the first-order approximation to the
constraints at a point ¢r’ the problem is reduced to a linear
program, which is given by

minimize ¥

k+1
subject to
K oF; (o") ,
[T TS .
LA} .Z ¢j 30 . X5 T X + ei(g ) 0, 1ielI, (2.71)
J=1 J
k aFi(?r) r
W, ji1 ¢j 3¢j X5 7 Xgyq T 61(9 ) L0, ieI, (2.72)
-x: £ 1, J=1,2, ..., k, (2.73)
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where

A

J
X5 = ¢, 1 Xge1 T Pk

and Fi(?) is the approximating function (or the response
function).

The superscript r denotes the iteration number of a
sequence of linear programming problems. The linear program is
solved by the simplex method. Some examples which include the
design of attenuation and group delay equalizers have been
presented. A discussion of this method is also presented by Temes
and Calahan (1967).

Bandler, Srinivasan and Charalambous (1972) developed the
grazor search method for nonlinear minimax optimization. The
method is based on a linear programming problem which uses
gradient information of one or more near maximum functions to
produce a downhill direction followed by a linear search to find a
minimum in that direction. They first define a subset J =1 such

that
38, e s Mo - eh <t e, @

ed > 0, (2.75)

where ¢J denotes a feasible point at the beginning of the jth

iteration and eJ is the tolerance with respect to the current
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Mf(¢3) within which the fi for i € J lie. Linearizing fi at ¢J

(gj) Agj , i J(gj, ). (2.76)

To get A¢J in the descent direction for Mf(¢J)

vai(¢J) A¢J < 0, ie J(¢J, ed). (2.77)
Considering
A¢j == 1 o vf.(¢j), : (2.78)
-~ - l~l~

ied

I el = 1, (2.79)
. i

ied
J .
oy > 0, (2.80)

(2.77) can be written as
- va.(¢J) £ ad VE, (¢9) < 0. (2.81)
~ 1 =~ . 1~ 1 ~
ieJ
This inequality suggests the linear programming problem

. J Jo_J
maximize akr 1 (g , €¥) 20
subject to
_ ol J J J _d
VE (oY) T ooy VO (eY) S map g (2.82)
ied r

and subject to (2.79) and (2.80). kr denotes the number of

elements of J(¢J, ed). A golden section search follows each

linear program to obtain ¢J+1.
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Madsen et al. (1975a, 1975b) developed two minimax
algorithms based on successive linearizations of the nonlinear
functions and the resulting linear systems are solved in the
minimax sense. At the rth stage of the first algorithm a minimax
solution A¢p to the linearized system is found subject to the
constraints

[1867]] = max |ae5 ] < AF, (2.83)
< 3 N
where A is automatically adjusted during the process to satisfy

the inequality
Ma(o" + 8¢7) < Mo(87), (2.84)

so that the new point becomes
¢r+1 - ¢r . A¢r. (2.85)

The choice of Al gives the flexibility of taking a large
step if the linear approximations represent the nonlinear
functions well enough. If the decrease in the maximum function
(the nonlinear one) does not exceed a small multiple of the
decrease predicted by the linear approximations (the maximum of

the linearized functions) then ¢r+1

remains ¢r.
The second algorithm is similar to the first one but does
not require derivatives. It uses the Broyden updating formula

(Broyden 1965) to approximate the derivatives, where the initial
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approximation is obtained by perturbation.

Comparison by Madsen et al. of the new algorithms with
existing ones has been reported. Design of microwave reflection
amplifiers was also carried out. Madsen and Schjaer-Jacobsen
(1976) treated common singularities in nonlinear minimax problems
by modifying the first algorithm. They developed an automatic
procedure to detect ill-conditioning and singularities in a given
problem which slow convergence. Intuitively, the reason for slow
convergence is that the upper bound on the step taken in each
iteration is very small when a narrow valley is reached. However,
a common feature of these algorithms is that they have a quadratic

final convergence (Madsen and Schjaer-Jacobsen 1978a).

2.6.7 Minimax Optimization of Constrained Problems
Bandler and Srinivasan (1974) suggested an unconstrained
minimax objective for a constrained minimax problem. The

constrained problem is to minimize Mf of (2.28) subject to

gj(g) > 0, J=1 2, «uc.y ng. (2.86)
The problem is reduced to
minimize ¢k+1

subject to

¢k+1 - fl(.?,) .Z O, ie I (2.87)
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and (2.86). The problem is then reformulated as an unconstrained
minimax problem. We may, for example, minimize M of (2.49) (with

£ = 0) w.r.t. ¢ and ¢k+1’ where

°, = Opq (2.88)
L =0, - a1(4>1 - fi(f)) , i=1,2, ..., n, (2.89)
® iie1 = %97 %44 gi(g) ) i=1,2, ..., Dg? (2.90)
where
a, >0, i=1,2, ..., ng + 1 (2.91)

and sufficiently large.

Dutta and Vidyasagar (1977) developed two algorithms for
solving the nonlinear constrained minimax problem. They are
principally a generalization of Morrison's least squares algorithm
(Morrison 1968) and are quite similar to Algorithm 2.3 as proposed

by Charalambous.

2.6.8 Other Methods

Charalambous and Conn (1975, 1978) proposed a minimax
optimization algorithm which overcomes the difficulty of
discontinuities in the minimax objective's first derivatives.
Their approach is direct, unlike the generalized least pth

approach.
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Einarsson (1975) employed the modified Lagrangians
(Rockafellar 1974) (augmented Lagrangians) in solving minimax
problems. In his formulation an assumed active function is to be
minimized w.r.t. ¢ subject to n-1 nonlinear constraints. If this

function is, for example, f1(¢) the constraints will be

fi(@) - f1(g) L0, i=2, ..., n. (2.92)

The Hestenes-Powell (Hestenes 1969, Powell 1969) method is used
for updating the multipliers. This method requires the
constraints to be equalities. The algorithms developed are thus

based on knowing the active set of constraints in advance.

2.7 Centering, Tolerancing and Tuning

In the classical design problem we are interested in
finding one single point in the feasible region. This kind of
solution is impractical from the manufacturing point of view.
Many other points (design outcomes) can also meet the required
specifications. The designer can take advantage of this fact and
assign tolerances on component values (Bandler 1974, Geher 1971,
Hersom 1971, Karafin 1971, Seth 1972) so as to minimize production
cost. The cost of a component may be assumed, for example, to be
inversely proportional to the tolerance associated with it.

The formulation of the design problem considering

manufacturing tolerances, post-production tuning and model
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uncertainties, besides the objective of reducing the cost, renders
the design more practical and tends to alleviate realization
problems.

In practice, during circuit fabrication components are
either specially made, chosen randomly or selectively from stock.
These components usually have statistical distributions which have
to be considered during the design process for electrical circuit
components. The aim of tolerance assignment is, consequently, to
obtain a region in which every point represents an outcome
optimally taking into consideration the aforementioned concepts.
All the outcomes, or at least a large percentage, have to meet the

specifications, after tuning if necessary.

2.7.1 Definitions

Consider the vector of nominal design parameters

b2 |, (2.93)

IR =4

defining a nominal point and a vector of associated manufacturing

tolerances
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e = | 2| , (2.94)

€k

described as the tolerance vector and let

1 &

o {1, 2, ..., k}, (2.95)

where k represents the number of network design parameters,
assumed independent for simplicity in the ensuing presentation.

A nominal point ¢O will have a tolerance region Re
associated with it defined, under the assumption of independent

variables, as

(2.96)

o
n
—~—
e
=S
1
‘o
I~
1o
I~n
le
+
™
[o——")

This region is a convex regular polytope of k dimensions with
sides of length Zei, i e I¢, and centered at ¢0. The extreme

points of the tolerance region, the vertices, are

A .
R = {f?' ’ ¢. = ¢, + Ei Uiy ui€ {'1’1}1 1 € I¢}9 (2-97)

and the index set of the vertices

1 %, 2, ..., 2%}, (2.98)

v
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Any point in the tolerance region is a possible outcome given by a
point ¢, which is

6 = ¢ + E yu, (2.99)
where

€1

"ue>

€2 (2.100)

(]

and u € Ru’ where

~

L1, 1c¢€ I¢}. (2.101)

Figure 2.6 depicts a tolerance region inscribed in the constraint

region for a two-dimensional case. In general,

A :
R, = 1o 1 g;(e) 20, 1¢e1}, (2.102)

where

4
Ic = {1, 2, ..., mc}, (2.103)

is the index set for the performance specifications (response
constraints) and other parameter constraints, mc being the total

number of constraints.
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Fig. 2.6 A tolerance region Re inscribed in the constraint region

Rc. If ¢ = 0 the conventional nominal design problem is

implied.
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2.7.2 Worst-case Design

In worst-case design the whole tolerance region has to lie

in the constraint region, i.e., it is required that

R =@ R . (2.104)

This is design with 100% yield, where the yield Y is given by

number of outcomes which meet specifications

ne

total number of outcomes

The 2k vertices of the tolerance region are usually the points
considered as candidates for worst case. There are two main
reasons. The first is that it is impractical, or even impossible,
to consider explicitly the infinite number of points contained in
the tolerance region. The second is that one-dimensional
convexity of the constraint region may be assumed. Bandler (1974)
proved, in this case, that it is sufficient for worst-case design
to require that |
RVC! Rc. (2.105)
Bandler and Liu (1975) investigated the validity of these
assumptions for networks which possess bilinear dependence on each
parameter. In their investigation they studied the behaviogr of

the modulus squared of the bilinear network function, which is a

biquadratic function given by
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c¢2 + 2d¢ + €

2 ’ (2.106)

¢ + 2a¢ + b
and they proved that the worst case assumptions they considered
are often valid in the frequency-domain case.

Brayton, Hoffman and Scott (1977) proved, for linear D.C.
networks, that if each parameter is at its extreme value the
currents and voltages of the network will be at their local or
global extrema. The investigation of this kind of problem in
nonlinear networks or in the time domain has not yet been

reported.

2.7.3 Fixed Tolerance Problem

In this problem we want to find ?0, the center of the
tolerance region, where the manufacturing tolerances on the
components are held fixed. The problem is basically a centering
problem.

Let us consider a problem with upper and lower performance

specifications. The error functions in this case are

Jy A iy . .
eui(g ) = wui(Fi(g ) Sui), ie Iu, j e IV, (2.107)
e ) dw (F.(od) -s.),ieI,, jel (2.108)

R AR ALY EE B/ 2i’? I v’ '

where j denotes the jth vertex contained in IV, and ¢J is this
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vertex. According to a specified vertex numbering scheme, each j
will have a corresponding u. Any suitable objective function can
be formulated to incorporate these error functions and then
minimized to 'obtain the optimal ¢0. We have to note that a
worst-case design, in this case, is not necessarily achievable
since we might not be able to inscribe the whole tolerance region,

with preselected fixed edges, in the constraint region.

2.7.4 Variable Tolerance Problem

In many cases the manufacturing tolerances are considered
as variables instead of fixed. The larger they are the cheaper
the circuit components will be. The design problem 1is
reformulated as a nonlinear program (Bandler 1974, Bandler 1977,

Bandler and Liu 1974, Pinel and Roberts 1972) as follows:

minimize C(¢O, €)

w.r.t. ¢0 and ¢ subject to

-~

b € Rc for all u e Ru’ (2.109)

where ¢ is as given in (2.99), and

~

o0, ¢ 2 0. (2.110)

The objective funétion C is directly related to the component

cost, and generally possesses the properties
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c (4°

-~

, €) = constant as e + =, (2.111)

c (°

~

, E) + @ as e, - 0 . (2.112)

A common form of this objective is

0
K 3
I e, ——, (2.113)
i=1 t %1
where the c; are constant weights. The number of variables for

the optimization is 2k, namely, k independent nominal variables
and k associated tolerances.

For large problems, with a large number of variables, the
number of vertices of the tolerance region becomes enormous.
Selection schemes which include purging (dropping of constraints
or vertices) as well as addition of vertices of the tolerance
region during the optimization process alleviate the need for
considering the 2k vertices.(Bandler, Liu and Chen 1975, Bandler,
Liu and Tromp 1976b). One of these schemes 1is based on the
iterative solution of necessary conditions for the worst vertex
derived from the Kuhn-Tucker conditions. Efficient selection
schemes relevant to the tolerance problem are still not well
developed.

The tolerance problem described here implicitly solves the
centering problem, in which we are interested in finding a
"center" of the constraint region. Other centering approaches

include the performance contours approach developed by Butler
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(1971, 1973), and the simplicial approximation approach (Director
and Hachtel 1977).

Madsen and Schjaer-Jacobsen (1978b, 1978c) extended their
earlier work on minimax approximation (see Section 2.6.6) to
minimax optimization with fixed tolerances and the maximization of
a single variable tolerance. (A single degree of freedom in
tolerances has also been considered by Bandler et al. (1975).)

Centering is implicit in these formulations.

2.7.5 Tolerancing and Tuning
Tuning some of the components after production is quite
common in electrical circuit fabrication. Considering independent

tuning in the design procedure, a tuned design will imply ¢ such

that
0
¢ = ¢  + Eu+Top, (2.114)
for some p € Rp, with
- |
t
t
T & 2 (2.115)
Ly
An example of Rp is
Rp = {g | -1 s_pl <1, 1€ I¢}. (2.116)
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The corresponding tuning region is defined as

O b Eu-t<o<o® +Ew+t), (2.117)

-~

Re(w) = 19 1 ¢

=

which is centered at ¢0 + E wu. Figure 2.7 illustrates the

constraint, tolerance and the tuning regions.
The design problem in this case is
C . 0
minimize C(¢ , e, t)
subject to (2.109), where, ¢ is as given in (2.114), and the
constraints
¢, e, £ 20 (2.118)

for all u ¢ Ru and some p € Rp. C is a function which represents

the component cost, for example,

0
k 2t
A :T + I ¢ T5 (2.119)
i=1 i i=1 ¢4

where the ey and ci are constants. These may be set to zero if
the corresponding element is not to be toleranced or tuned,

respectively. The worst-case solution of the problem must satisfy

R(w) 0 R, #0 (2.120)
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Fig. 2.7 An illustration of the constraint, tolerance and tuning
regions and a possible outcome ¢. If t = 0 we recover

the essential features of Fig. 2.6.
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for all u ¢ Ru’ where @ denotes a null set.

The problem can be reduced by separating the components
into effectively tuned and effectively toleranced parameters.
Bandler et al. (1976a),Liu(1975) proved that the solution of the
reduced problem is the solution of the original one under certain

conditions.

2.7;6 Uncertainties

The values of ¢ sufficient to give an acceptable design
depend on other uncertainties influencing design performance. In
the simulation of actual circuits models or equivalent circuits
are used, where uncertainties are associated with the model
parameters. In microwave circuit design, for example, parasitic
effects exist due to electromagnetic coupling. Models available
for common parasitic elements normally include empirical
uncertainties on the values of the model parameters. These
uncertainties are due to the fact that the model itself is
necessarily approximate and that further approximations often have
to be made in the implementation of existing model formulas.
Non-ideal terminations also alter the performance, i.e.,
mismatches at the source and the load of the circuit (Bandler, Liu
and Tromp 1976c).

In modeling abphysical circuit the vector of nominal model
parameters p0 will have a vector of model uncertainties associated

~

with it, such that the model parameters are described by (Bandler
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1977)
p=p (s) + ale) uy, (2.121)
where
-81 —
A 2 2 (2.122)
L Gn_
and for example
-1l L

where n is the number of model parameters with uncertainties and,
in general, n £ k. Although the model parameters and the
uncertainties are explicit functions of the physical parameters ?,
it is difficult to map the tolerance region from the ¢ space to
the p space in selecting candidates for the worst-case design.

Let g(v) denote a set of nonlinear constraint functions

such that

g(xg) zg (2.123)

represents an acceptable situation for a particular setting of .
The nominal performance of the design under ideal environmental
effects will be denoted by go(w). The measured performance might

be described by
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g. =g, (p, V) +u (py a5 V), i=1,2,...,m(y), (2.124)

where “g is the deviation from the ideal performance and q is a
vector of external parameters, e.g., ones affecting our ability to

measure the performance.

2.7.7 Design with Yield Less Than 100 Percent

In worst-case design the yield is restricted to 100%. This
may render the circuit very expensive due to tight tolerances.
The restriction of 100% yield may be relaxed in order to increase
the tolerances and reduce the cost of the elements. The overall
cost, in this case, although failing circuits are discarded, will
have to be lower than the one obtained by worst-case design.

The design problem with a restricted yield can be set up as

minimize C (¢0, e)
subject to

Y > X, (2.125)

where X is the specified percentage. For unrestricted yield the

problem might, for example, have the objective function

— /Y. (2.126)

In both formulations the yield has to be estimated.
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The yield when the parameters are statistically distributed

is defined by

Y = J P(¢) doq doy ... do, (2.127)

R
c

where P(¢) 1is the probability distribution function of the
variable parameters. This k-fold integration is not very
attractive, especially when the yield estimation is incorporated
in an optimization process. Karafin (1974) approximated the yield
by computing upper and lower bounds on Y using truncated Taylor
serigs approximations for the constraints. He assumed that each
constraint is normally distributed for all choices of component
tolerances. The yield estimation problem itself has been treated
largely by the Monte Carlo analysis (Elias 1975).

Becker and Jensen (1974) used pattern search for maximizing
the yield by finding a set of nominal variables which is optimal
for specified tolerances. A feasible solution search precedes the
yield optimization.

In the simplicial approximation approach (Director, Hachtel
and Vidigal 1978) while finding the center of the constraint
region an approximation to this region is also obtained. A crude
estimate of the yield can be obtained by performing the Monte
Carlo analysis directly in the parameter space. The yield
estimation procedure can be improved by testing a sample point (of

the Monte Carlo analysis) which lies outside the approximate
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region to determine whether or not it lies outside the actual
region. If it lies inside the actual region it can be used to
improve the approximate region.

Bandler and Abdel-Malek (1978a) derived exact formulas for
the yield and its sensitivities w.r.t. design parameters. The
formulas are based upon multidimensional 1linear cuts of the
tolerance orthotope and uniform distributions of outcomes between
tolerance extremes in the orthotope.

This approach has been generalized to estimate the yield
when components have arbitrary statistical distributions

(Abdel-Malek 1977, Abdel-Malek and Bandler 1978a, 1978b, 1978c).

2.7.8 Related Work and Extensions
Tromp (1977, 1978) has generalized the tolerance assignment
problem so that physical tolerances, model uncertainties, external
disturbing effects and dependently toleranced parameters can be
considered in a unified manner. In essence, the approach begins
0i

with the definitions of the kOi-dimensional vector ¢ ~, the

ki-dimensional vector ¢l and the kui-dimensional vector ul so that

?i is a function of ¢0i and ui for all i =1, 2, ... n, and ¢0i
itself depends on all ¢~ for i = 2, 3, ..., n.

Input parameters, e.g., the physical parameters available
to the manufacturer might be identified as ¢1, whereas ¢n would be

the output vector, e.g., the sampled response of a system or the

vector of constraints g, which defined Rc of (2.102). The
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quantities $2, ey ?n-1 can be identified, for example, as
intermediate or model parameters. The variables Ei, i=1, 2
., n, create the unavoidable or undesirable fluctuations and
generally embody the unknown or intangible.
The tolerance region in the ¢-space is obviously no longer
restricted to be an orthotope in this formulation.
Polak and Sangiovanni-Vincentelli (1978) recently

formulated the design centering, tolerancing and tuning problem as

a mathematical programming problem in the form

minimize C(¢0, €, t)

-~

subject to
min min max gi(g),z 0 (2.128)
ieIC EeRu geRp
and the constraints (2;118), where ¢ is as given in (2.114). They
demonstrated that their formulation is equivalent to the one of
Bandler, Liu and Tromp (1976a). They suggested a new algorithm
which deals with the nondifferentiable constraints (2.128). The
algorithm solves the problem as a sequence of approximating
problems with Rﬂ ] Ru as a discrete set. They showed that, under
certain conditions, the accumulation points of the sequence of
stationary points of the approximating problems are stationary
points of the original problem.
Bandler and Abdel-Malek (1978b) introduced a generalized

least pth function of the form of (2.47) to convert a tolerance
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and tuning problem to an equivalent tolerance problem. An
expanded constraint region, namely the tunable constraint region
Rct’ replaces the original region Rc' The region is given for p=~

by

ne

R {¢ | max min gi(¢ + Tp) > 0}, (2.129)

ct ~ .
peR iel
~ P c

where ¢ is given by (2.99). They based some definitions of yield
upon Rct and described worst-case design and worst-case centering.

Madsen and Schjaer-Jacobsen (1978b, 1978c) proposed the use
of interval arithmetic to determine the worst case within the
tolerance region. In this case the one-dimensional convexity

assumption is not required, and the worst case can lie at an edge

of the tolerance region instead of a vertex.
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CHAPTER 3
TRANSMISSION-LINE MODELING AND SENSITIVITY
EVALUATION FOR LUMPED NETWORK SIMULATION

AND DESIGN IN THE TIME DOMAIN

3.1 Introduction

The transmission-line matrix (TLM) method of numerical
analysis provides a new approach to the timé-domain analysis of
lumped networks. The method has previously been extensively used
for solving electromagnetic vector field problems in two and
three dimensions (Akhtarzad and Johns 1975). The technique has
also been used for solving the diffusion equation (Johns 1975).

In its application to lumped networks (Bandler, Abdel-
Malek, Johns and Rizk 1976, Johns 1976), the TLM method has some
advantages because it provides an exact solution to the
transmission-line networks used to model the actual networks.
This chapter demonstrates how the transmission-line models for
lumped networks can be obtained and how to compensate for modeling
errors in terms of additional network elements.

Unlike the methods mentioned in Section 2.3 the TLM method
provides exact sensitivities for the model w.r.t. design variables
with some additional effort. No integration schemes are involved.
A symmetrical LC lowpass filter has been optimized in the time

domain using TLM analysis, the required gradients being obtained
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from the sensitivities derived.

Sensitivities with respect to the time step are also
derived, from which an approximation to the time sensitivities is
obtained. Using these formulas and the TLM results, we can

extrapolate to the near exact impulse response.

3.2 Transmission-line Modeling

The time-domain response of a lumped network can be found
using the TLM method, after choosing an appropriate transmission-
line model for the network. Inductors and capacitors are

represented either by transmission lines or by stubs.

3.2.1 Link Modeling

First consider the modeling of a series inductor and a
shunt capacitor, each by a transmission line. To simplify the
analysis, certain assumptions must be made. We will let all the
transmission-line models have the same length, and let the time
taken by a pulse to travel along each transmission line be the
same, namely, T. The lumped inductor L shown in Fig. 3.1(a) can
have the transmission-line model shown in Fig. 3.1(b) with an

inductance per unit length Ld, where

L, s =0L. (3.1)



- 69 -

- yi -
oMM, o ' -
i L
= —_-— — error
o o) o : o)
(a) (b)
O O (o, LYt O
T2
C-—— s —C—- error
O O o, O
(c) (d)

Fig. 3.1 Lossless transmission-line models of a series

inductor and a shunt capacitor.
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The velocity of propagation on the transmission line may be

expressed as

—_— =7 (3.2)
T
I"d Cd
and hence the distributed capacitance Cd is given by
)2 1
cd=l L (3.3)

The basic parameter which determines how pulses are
scattered throughout a transmission-line network is the
characteristic impedance ZO, which for the model of inductor, is

obtained from (3.1) and (3.3). Thus,

(3.4)

The error associated with the model of the inductor is due
to the distributed capacitance given in (3.3). This may be
approximated in the lumped circuit by a lumped shunt capacitor Ce

representing the error, which is given by

T L T
C =¢C l:["]‘i‘:“:l_‘_. (3.5)
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This lumped capacitor is shown dotted in Fig. 3.1(b).
The characteristic impedance for a transmission 1line
modeling a lumped capacitor (Fig. 3.1(c)) may be derived in the

same way, the result being

T
Z, =% (3.6)

and the error this time will be represented by a series lumped

inductor Le (Fig. 3.1(d)) of value

(3.7)

It is clear that if T is small then for the model of the inductor
Z0 and Ld are large while the unwanted shunt distributed
capacitance Cd is small. On the other hand, for the model of the
capacitor ZO and the unwanted Ld will be small if T is small. So,
as T becomes smaller, the transmission-line model represents more
closely the lumped element.

Consider the lumped network shown in Fig. 3.2(a). It is
composed of M simple resistive networks with scattering matrices
S0 S e

pair of wires containing a series inductor or a shunt capacitor or

S

M connected either by a simple pair of wires or a

both. In the transmission-line model these connections are
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o~ o
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| 1 |
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—O——— 0 —-o—0—
(b)

Fig. 3.2 Lumped network and link transmission-line model.
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replaced by transmission-line sections of propagation time T as
shown in Fig. 3.2(b). In this case the model is called a link
transmission-line model (Johns 1976).

The numerical method operates by considering a pulse to be
injected into the input terminals of the whole network. The pulse
scatters on reaching the first subnetwork being partly reflected
and partly transmitted. This scattering occurs at every
subnetwork, pulses racing to and fro between subnetworks. The
output impulse function is the stream of pulses at the output
terminals.

If the mth network has N ports with incident and reflected

voltages given by (Johns 1976)

_Vin— _Vx!;1—
V= VI::-IZ : Vo= Vzl;z (3.8)
Vo Vo
then the scattering equation is
vwoos vt (3.9)

k.m -m k-m’

where the subscript k denotes the kth time step. If all the
incident and reflected pulses are assembled into the partitioned

vectors
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i r
! v
vl Ve
vt 2, voe | P (3.10)
1 r
M M

v s v, (3.11)

where S in this case is a block diagonal partitioned matrix with
81, §2, ceey SM on the diagonal.
The reflected pulses are the incident pulses at the next

time step and they are related by

vi-c v, (3.12)

where C is the connection matrix indicating the transmission of
reflected pulses from one subnetwork to become incident pulses on

a neighbouring subnetwork. The iteration equation is

i
=Cs V. (3.13)
The method will be unconditionally stable for a passive RLC lumped

network and, therefore, it will be wuseful for stiff networks

(Johns 1976).



- 75 -

3.2.2 Stub Modeling

A lumped network consisting of resistive, inductive and
capacitive elements may also be modeled by stub
transmission-lines. In this case, the time taken by a pulse to
travel to the end of the stub and back again is T. Following the
same procedure used in the 1link transmission-line models, an
inductor is modeled by a short-circuit stub with characteristic

impedance

2L
Z0 =T (3.14)
and the modeliﬁg error is a capacitor given by
T2
Ce = oL - (3.15)

A capacitor is modeled by an open-circuit stub with an impedance

T
Z, =755, (3.16)

L =-—. (3.17)
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The elements with these models are shown in Fig. 3.3.

Consider the lumped n;twork in Fig. 3.4(a), which is
represented by a resistive network with N pairs of terminals to
which all of the inductors and capacitors are connected as shown.
A transmission-line model for the circuit is shown in Fig. 3.4(b)
in which all of the inductors are replaced by short-circuit stubs
and all the capacitors are replaced by open-circuit stubs. The

reflected pulses

vi =] Y2 |, (3.18)

will be scattered instantaneously into the N stubs. These pulses
will travel to the ends of the stubs and be reflected or reflected
and inverted for capacitive or inductive stubs, respectively. The
pulses then return to the resistive network and become incident

pulses

Y’: 2| . (3.19)

If the scattering matrix of the resistive network is the N x N

matrix S then, at the kth iteration,
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Fig. 3.3 Stub models of an inductor and a capacitor.
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Vo= s v, (3.20)

Reflection of the pulses at the end of the stubs gives the
incident pulses at time k+1, obtained using the same formula as
(3.12), where C, in this case, is an N x N diagonal matrix with an
entry of 1 for a capacitive stub and -1 for an inductive stub.
The iteration routine is therefore exactly as (3.13).

To enable the incident pulses Vi to converge simultaneously
it is sufficient that the propagatiog time T be the same for all
the stubs. This propagation time is therefore the same as the

iteration time. This method is also unconditionally stable for a

lumped network of positive resistors, inductors and capacitors.

3.3 Discussion

It should be noted that the stub modeling leads to an
implicit routine. The reason is that the scattering matrix §
involves the entire resistive network. Thus, to calculate S it is
necessary to invert a set of simultaneous equations describing the
network. If the network is nonlinear, then this inversion is
required before every iteration. In link transmission-line
modeling, however, the iteration routine is explicit, the
complexity of equations being independent of the number of
subnetworks or nodes. The scattering matrices of the networks are
small enough to be calculated by simple formulas, for example, the

scattering matrix of the subnetwork in Fig. 3.5(a) is given by
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O V\ANA —0
R
Z, Z,
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C Y
Z, Z,
O O\
Z2
(b)

Fig. 3.5 Example of two simple subnetworks.
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R(R+Z1+ZZ)+ZZ1(Z2-Z1)

R + 2Z 2Z1
1 1
R+Z1+Z2 (3.21)
R(R+Z1+22)+222(Z1-22)
222 R + 22

2

and the scattering matrix of the subnetwork in Fig. 3.5(b) is

2223-Z1ZZ-Z3Z1 22123 22122
1
22,2 2,2.-2.2.,-2,1 22,2
2122+Z123+2223 273 173 7172 7273 172
22223 2Z1Z3 Z122-Z123—2322

(3.22)

In general, a network may be modeled by either one or both
types of model. The LC lowpass filter in Fig. 3.6(a) can have the
link model of Fig. 3.6(b) or the stub model of Fig. 3.6(c) or the

mixed model of Fig. 3.6(d).

3.4 Example

The following example illustrates the TLM routine for link
modeling. Consider the circuit of Fig. 3.6(a) (Bandler, Abdel-
Malek, Johns and Rizk 1976) and its link transmission-line model
in Fig. 3.6(b). Let the time step T be 0.1 second and the
component values L2 = Ll& = 1, C3 = 2 and R1 = R5 = 1. The
characteristic impedances 22, Z3 and Z” are 10, 0.05 and 10,

respectively. An incident pulse of value 0.5 is launched into the
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Fig. 3.6 LC lowpass filter and different types of
models (a) the filter, (b) link model,

(¢) stub model, (d) mixed model.
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transmission line representing the source resistance and hits the
first Jjunction at time t = 0. The pulse scatters producing
reflected and transmitted pulses. The transmitted pulses travel
towards the output, being scattered at the other junctions. The
pulses propagate forward and backward between the junctions.
Table 3.1 gives the incident and reflected pulses at the junctions

of Fig. 3.6(b) at different times.

3.5 Compensation of Errors

Errors in the TLM method arise only from how well the
transmission-line model represents the actual circuit. Errors do
not arise from the numerical solution of the model. In certain
cases the unwanted distributed elements are reduced when the step
size T 1s reduced. A distributed capacitor in modeling an
inductor is an example of such a case. We have to note that this
capacitor is known before any calculation is started, since T has
to be chosen. If the distributed error capacitor is taken to be
two lumped capacitors placed at each end of the transmission line,
each of these lumped capacitors will have a value of Cd /2. The
inductor and the two capacitors representing modeling errors are
shown in Fig. 3.7. To compensate for modeling error (to some
degree) we can subtract the error capacitor from the original
neighbouring network components. As T increases the amount to be

subtracted increases and it becomes obvious that there may be a

limit to such compensation.
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TABLE 3.1

INCIDENT AND REFLECTED PULSES OF THE CIRCUIT IN FIG. 3.6(b)

0.3 - -

t 1,1 1,1 2,1 2 24,1 2
(s) V1 Vz v V1 V1 V.2 V2
0.0 0.5 - 0.90909 - - - -
0.1 - - - 0.90909 -0.90004 - 0.00904
0.2 - -0.90004 0.73639 - - - -
0.3 - - - 0.73639 -0.71125 0.00895 0.01619
0.4 - -0.71125 0.58193 - - - -
0.5 - - - 0.58193 -0.54452 0.01589 0.02151

. r i r i r

t 3yl 3 3 3 y y 4 r
(s) V1 V1 v V2 V1 V1 V2
0.0 - - - - - - -
0.1 - - - - - - -
0.2 0.00904 0.00895 - 0.01800 - - -

- 0.01800 -0.01472 0.00327

0.4 0.01619 0.01589 -0.01472 0.04680 - - -

0.5 - -

- 0.04680 -0.03829 0.00851
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Fig. 3.7 An inductor with two capacitors representing modeling

error.

The impulse response of the Chebyshev filter shown in Fig.
3.8 (Matthaei, Young and Jones 1964) was found by Kutta-Simpson,
Euler, TLM and TLM with compensatioh. The results are shown in
Table 3.2. The advantage of compensation is clear from the table
comparing the percentage error between the Kutta-Simpson
integration method and other methods. The actual components and

the new components after compensation are given in Table 3.3.

3.6 Sensitivity Evaluation

One of the features of the TLM method is that simple
calculation of exact sensitivities w.r.t. design variables are
possible. Sensitivities are calculated iteratively in the same

iteration process for calculating the impulse response.
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TABLE 3.2
COMPARISON BETWEEN DIFFERENT METHODS OF INTEGRATION

AND TLM MODELING WITH AND WITHOUT COMPENSATION

Percentage Error for T = 0.1

t Kutta
(s) Simpson Euler Link Modeling Link Modeling
With Compensation
1.1 0.003981 - 38.5 - 8.3 - 6.9
2.1 0.035665 - 12.8 - 2.3 - 1.4
3.1 0.101499 0.0 - 0.9 0.1
4.1 0.160644 8.2 - 0.3 0.3
5.1 0.161516 13.1 0.3 0.2
6.1 0.094384 11.1 1.3 - 0.3
7.1 0.002772 520.3 48.9 -21.8
8.1 -0.054462 57.9 - 1.2 0.5

9.1 -0.051167 45.6 0.7 - 0.7
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L, L, Le
O O~
Fig. 3.8 Chebyshev filter with 7 elements.
TABLE 3.3
COMPONENT VALUES OF THE FILTER SHOWN IN
FIG. 3.8 BEFORE AND AFTER COMPENSATION
Component Values in Ohms, Henries and Farads
State R1 L2 C3 I..u 05 L6 R7
No Compen- 1.0 1.7058 1.2296 2.5408 1.2296 1.7058 1.0
sation
With Com- 1.0 1.7017 1.2247 2.5327 1.2247 1.7017 1.0

pensation
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3.6.1 First-order Sensitivities

Equations (3.11) or (3.20) describe the relationship
between appropriate incident and reflected voltages for the whole
network and the derivatives w.r.t. the x parameters of the whole

network can be written as

r i
K’ S 0 Ol &Y
r i
3y 3S 3V
8¢1 8¢1 § 9 3¢1
. . (3.23)
. . 0 " 0 .
r i
3,V 3S 3,V
n 0 S
_8¢K _J —3¢K ~ ~_ _?¢K |

The r.h.s. vector is obtained from an equation of the form of

(3.12) after differentiating it w.r.t. the jth parameter, viz.,

i
aky 9 Vr
=C K=-1~ (3.24)
9¢ . ~ 9 !
¢J ¢J

where C is constant.

It is clear that the matrix in (3.23) is very sparse since,
for example, a§m/a¢j vanishes if §m does not contain the jth
parameter. Although this matrix is sparse, the two vectors on the

left and right hand sides are full and all the information has to

be transferred in each iteration. So in calculating the
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sensitivities, we have to find the sensitivity of all the incident
pulses w.r.t. all the parameters. The sensitivity of the impulse
response wWill be the sensitivity of the stream of pulses at the
output port w.r.t. the parameters.

Consider a subnetwork which simply connects two
transmission 1lines having Z, and Z_, as their characteristic

1 2

impedances. The scattering matrix Sm is given by

1 2 1 1
S = . (3.25)
~m Z. +Z
1 72 222 Z1—22
Let
Z1 = ¢j’ 22 = ¢j+1' (3.26)
Then
3§m 222 -1 1
2. 2 ’
J (Z1+ZZ) -1 1
3§m ZZ1 1 -1
= . (3.27)
30 541 (z1+22)2 1 -1

The expressions (3.25)-(3.27) can be fitted into the scheme of

(3.23) for this subnetwork.
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3.6.2 Second-order Sensitivities
Differentiating (3.11) or (3.20) w.r.t. the jth parameter,

we get

r i
CAAN . 3y
—_— =z V + S — (3.28)
. 3¢, K~ N
3¢J ¢J ¢J
where akvl/a¢j is found from (3.24).
If we differentiate (3.24) and (3.28) w.r.t. ¢, we get,
respectively,
2 i 2 i
Y ¥ g1V
= C , (3.29)
2 ,r 2 i i 2 i
e Vv a3 . 35 g VT S g ¥ 3 Y
- Vo o+ + + S — . (3.30)
3¢£a¢j 3¢2’3¢j kK~ 3¢J 34)1 3¢2 3¢J ~ a¢£a¢j

Equation (3.30) holds for subnetworks when subscript m is applied
to both sides but some of the derivatives of Sm are zero.
3.7 Examples

The symmetrical LC lowpass filter shown in Fig. 3.6(a) has
been optimized in the time domain. Fig. 3.9 shows a specified

impulse response for L2 = LM = 1.0, C3 = 2.0. Taking 100 sample
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points, using TLM analysis, least U4th approximation yielded the
solution in 21 s (24 function evaluations) and 17 s (19 function
evaluations) from starting points a and b, respectively, with a
maximum error of about 3x10_7. The specifications of Fig. 3.10

were met with a minimax error of .00219992 after 37 s (46 function

evaluations) using 33 sample points for optimization. The
starting point was L2 = Lq‘ = C3 = 1.0 and the optimum point
reached was L2 = Lu = .76645547 and 03 = 2.3739403. The minimax

solution was reached using third-order extrapolation, after a
sequence of least pth optimizations where the values of p were 4,
16, 64, 256 and 1024. FLOPT2, a program described in Bandler and
Chu (1976), was used in these examples. The computer was a CDC

6400.

3.8 Sensitivities w.r.t. Time and T

Differentiating (3.11) or (3.20) w.r.t. T we get

r 1
%Y s A s Y
ST T <t TaT (3-31)

Usually the scattering matrix S includes the parameters ¢ which
are functions of T as obtained from the modeling.

The term 3S/3T can be obtained from
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5S 3 2%;
= .
oT . 9¢ . o7
i

(3.32)

Suppose ¢j is the characteristic impedance of a line modeling an
inductor. If ¢j = L/T then a¢j/aT = -¢j/T. For the capacitive
case, a¢j/aT = ¢j/T. The second term on the r.h.s. of (3.31) is

obtained from (3.12), where

i
aky 9 vr
=T - gﬁk-u. (3.33)

Note that the differentiation is at discrete time steps and the
information is transferred iteratively with the original iteration
scheme of the TLM method. Thus the above derivatives can only be
obtained at points corresponding to fixed numbers of iterations k,
i.e., at t = kT, where t is time. Let f(t,T) be an interpolation
to the approximation of the impulse response obtained at discrete

times t1, t2, t3, ... by the TLM method, where

tj - tj-1 =nT, (3.34)
where n is an integer. The parameter T is chosen arbitrarily,
although it is known that the smaller the T the more accurate is
the modeling.

Suppose that the analysis is done twice with two different

time steps T ahd T2, respectively. In the first analysis we will

1
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get f(t,T1) at points, in general, time nT1 apart,

second analysis f(t,T2) at points nT2 apart.
illustrates the situation.

A first-order change in f(t,T) is given by

af af

sf = ;g At + ;? AT,

where At and AT are changes in t and T, respectively.

§f af At af
AT = 3t aT ¥ oT °

From the relation t = kT we have
At = k AT

therefore, for a particular k,

§f of of of
— =—| =z k—+—.
AT AT»0 3T K ot oT
af - :
The term AT is obtained from (3.31).
k

and in the

Fig. 3.11

(3.35)

Thus,

(3.36)

(3.37)

(3.38)

Table 3.4 shows, for the circuit of Fig. 3.6(a), where

4

r
kV2/2T,

fj(T) z
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TABLE 3.4

—"w OBTAINED FROM THE TLM ROUTINE VERSUS

123f af

t k aT at Difference
(s) b (central differences) (%)

0.5 0.13999 0.14638 .56
1.1 0.13649 0.13771 .89
1.7 0.05300 0.05315 .28
2.3 -0.03086 -0.03101 .48
2.9 -0.08180 -0.08206 .54
3.5 -0.09538 -0.09569 .32
4.1 -0.08170 -0.08202 .39
.7 -0.05493 -0.05521 .51
5.3 -0.02705 -0.02727 .81
5.9 -0.00535 -0.00549 .62
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i'%% versus 38f/3t calculated by the central difference formula
k
given in Appendix A. There is a difference between the numbers in

1 af
k 8T

of calculating 9f/3t. However, it is clear that this difference

the two columns which we can attribute to and the inexactness
is very small.

Table 3.5 compares the results obtained for %% . obtained
from the TLM routine, and the ones obtained by perturbing T to
0.101 and 0.099 from its initial wvalue 0.1 (i.e., repeat the
analysis with these new values of T), and using central
differences.

Two analyses were performed with two different time steps,
namely, 0.1 and 0.07143, and 3f/3T at constant time was estimated

by perturbation as Af/AT. This Af/AT was used to extrapolate to

the exact response. The extrapolation formula

T Af

fextrapolated = fTLM - E' ZE.’ (3.39)

Table 3.6 compares the exact response obtained by the
inverse Laplace transform and the extrapolated response. Table
3.7, on the other hand, compares the exact response and the
extrapolated one, where 3f/3T was calculated using (3.38) for
which 38f/3t is calculated by the central difference formula given

in Appendix A.
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TABLE 3.5

A COMPARISON BETWEEN 3f/3T FOR CONSTANT k OBTAINED

BY TLM AND PERTURBATION

. £(t,T) of i Difference
T=0.101 T=0.099 3T 3T (%)
Kk k
(central
differences)
11 0.13581327 0.13281062 1.50132 1.50137 0.006
41  0.04989793 0.05659663 -3.34935 -3.34976 0.019
71 -0.01400295 -0.01576903 0.88304 0.88397 0.105
101  0.00345630 0.00371329 -0.12850 -0.129911  0.474
131 -0.00061299 -0.00057152 -0.02073 -0.02050 1.109
TABLE 3.6
USING Af/AT TO PREDICT RESPONSE FOR T=0
t £, 1) ﬁf f £ fext Diff.
(s) T=0.1 T=0.5/7 AT exac extra.  (q)
0.5 0.04255324 0.04333199 -2.72562x1o‘2 0.0LY141 0.043916 0.510
1.5  0.17926209 0.17938925 -4.21u35x1o‘3 0.179524 0.179473 0.028
2.5 0.19006031 0.18991132 u.51u65x1o'3 0.189777 0.189815 0.020
3.5 0.10754101 0.10727105 9.44860x1o‘3 0.106988 0.107069 0.076
4.5 0.02373052 0.02339983 1.15742x1o'2 0.023053 0.023152 0.429
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TABLE 3.7

USING 3f/3T TO PREDICT RESPONSE FOR T=0

(Z) fexact f‘ex‘\:r'apolated Diffﬁ;ince
0.5 0.044141 0.044152 0.014
1.1 0.134981 0.134992 0.008
1.7 0.193099 0.193111 0.006
2.3 0.198260 0.198272 0.006
2.9 0.162173 0.162183 0.006
3.5 0.106988 0.106994 0.006
4.1 0.052558 0.052561 0.006
4.7 0.011055 0.011054 0.009
5.3 -0.013432 -0.013435 0.022
5.9 -0.022686 -0.022690 0.017
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3.9 Conclusions

The TLM method is a new approach to the analysis of lumped
networks. The distinct advantage of the TLM method is that the
numerical procedure used solves the transmission-line model
exactly. Errors arise only from how well the transmission-line
model represents the actual circuit. To a certain limit the
compensation of these errors by additional elements can improve
the results.

Another advantage is that if the transmission-line network
is physically stable, which is true in the case of passive linear
networks, then the TLM solution will be stable. This means that
stiff networks which give rise to instability in most methods do
not cause instability in the TLM method. Different transmission-
line models can be obtained for the same network, some of the
models can be viewed as implicit methods and some as explicit.

The derived formulas permit sensitivity evaluation of the
impulse response with respect to design parameters and makes the
TLM method suitable for automated network design. Sensitivities
with respect to time and time step can be easily obtained and it
has been demonstrated how this information is used to improve
accuracy.

Possible developments in the method lie in improving the
accuracy by using more complicated transmission-line elements and
models and the investigation of limitations on modeling general

sets of coupled ordinary differential equations.
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CHAPTER 4
EFFICIENT USE OF SIMULATION PROGRAMS IN THE

ANALYSIS OF COMPLICATED NETWORKS

4.1 . Introduction

Several general purpose simulators have been developed in
the last decade. These simulators are designed to be as general
as possible, i.e., to handle any circuit configuration, as many
types of electrical elements as possible, to perform D.C., A.C.
and time-domain analyses. As a result, these simulators are
large, requiring a huge memory and CPU time to perform the
analysis of a circuit of a reasonable size. The inclusion of such
simulators in an optimization program, where it will be called
hundreds of times is an obsolete idea. Another handicap for these
simulators is that most of them do not provide sensitivities which
are needed for the optimization process.

The trend in circuit design is increasingly towards
consideration of production yield, design centering, optimal
assignment of component tolerances and post-production tuning in
an integrated fashion. The scope and size of the resulting design
problems have expanded immensely as a result. The c¢ircuit
designer confronting the design of a reasonably sized circuit
which he has to accomplish in a limited time will be forced to

avoid developing his own analysis program.
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With the use of the multidimensional approximation approach
developed by Bandler and Abdel-Malek (1978a) one can exploit
general circuit simulators to perform the design without the
explicit requirement of sensitivities. Knowing a nominal solution
and the associated tolerances, one run of the simulator at
(k+1)(k+2)/2 preselected sets of k parameter values lead to a set
of quadratic models of the response w.r.t. the parameters. Those
models are subsequently used to carry out the optimization
processes.

Problems also arise when the available simulator does not
handle (or does not include) one, or more, of the elements in the
circuit to be analyzed. This chapter is concerned with the
efficient use of these general simulators in the modeling approach
and how to overcome the problem of nonexisting elements in the
simulator. Two examples are given, one is an active filter and

the second is a current switch emitter follower.

4,2 The Use of General Simulators

Quadratic models (Bandler and Abdel-Malek 1978a) of the
circuit response w.r.t. the parameters at appropriate sample
points in the frequency or time domains permit the use of general
purpose simulators without explicit requirement of sensitivities.
These models are subsequently used to carry out the optimization
process. The models may be updated and the process repeated

depending on the accuracy required and the conditioning of the
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problem.

To minimize computational effort, the simulator should
provide responses at (k+1)(k+2)/2 base points, where k 1is the
dimension of ¢, suitably arranged within an interpolation region

described by Abdel-Malek (1977)

S -8< 6 < 6+ 8, (4.1)

where § is the center of the interpclation region and § defines
the size. Figures 4.1(a) and U4.1(b) depict suitable arrangements
of the base points for a two-dimensional and a three-dimensional
case, respectively.

The program SPICE2 (Nagel 1975), the available simulator,
has been used to obtain circuit responses at the base points
needed for the modeling and design of different networks (Bandler,
Abdel-Malek, Dalsgaard, Elrazaz and Rizk 1978). The program can
be run with different sets of parameter values. In order to
reduce the overhead time, and assuming that the circuit is not
very large, the program can be used only once by supplying the
data in such a way that the circuit is repeated with different
sets of nodes (where there is no interconnection between each set
of nodes except the ground node) with different sets of parameter
values. In the frequency-domain case the overall nodal admittance

matrix is, consequently, a block diagonal matrix with each block
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(a) ¢°

(b)

Fig. 4.1 Arrangement of the base points w.r.t. the centers
of interpolation regions in (a) two dimensions and

(b) three dimensiomns.
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representing a Y matrix of the circuit. Fig. 4.2 shows such an
example. The ré;rdering of the equations to reduce fill-ins, when
these equations are solved by LU factorization, would not affect
the validity of supplying the data in this way. We have to note
here that this can also be done for circuits to be analyzed in the

time domain if the companion network or the tableau approach is

used for the analysis.

4.3 Examples

4.3.1 An Active Filter

We consider here the analysis of an active filter (Fig.
4.3) to be designed in the worst-case sense everywhere in the
range of a tunable parameter, namely, RM' The active filter is
based on an active bandpass realization considered by Budak and
Zeller (1972). The operational amplifiers employed are taken as

nonideal, in particular, the one-pole roll-off model given by

A(s) = —/, (4.2)

5

where s is the complex frequency variable, AO = 2 x 107 is the

D.C. gain and wy = 121 rad/s the 3 dB radian bandwidth. A nonzero

output resistance R is assumed for the operational amplifiers.
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Replacing the operational amplifiers by their equivalent circuits
we obtain the circuit of Fig. 4.4. Since the program (SPICE2)
does not handle a frequency dependent gain of the form of (4.2),
the gain had to be represented by the transfer function of an
additional small circuit. The transfer function of a series RL
circuit driven by a voltage source of AO 0, can represent equation
(4.2). This is achieved by choosing a value of 1 H for the
inductance, (wa-1)9 for the first resistor and a value of 1 @ for
the output resistor. The voltage across the output resistor is
the output voltage of the first operational amplifier. The AV
term at the input to the second amplifier can be modeled by a
current leaving a node connecting two voltage controlled current
sources which are controlled by the voltages to be subtracted.
Figure 4.5 shows the equivalent circuit supplied to SPICE2 to
perform the analysis. Fifteen circuits connected in cascade were
actually supplied once to the program to obtain the response IVZI
at fifteen base points. The variables are R1, Ru, C1 and C2, and
R2 is equal to’26.5 kQ. The center base point and the sizes of
the interpolation region are given in Table 4.1. Figure 4.6 shows

the response of the filter with R, = 12.8214 kq, C_, = 0.74294 F,

1 2

C1 = 0.70106 yF and R)4 = 188 @ (a point in the interpolation

region) obtained by SPICE2 and exactly similar to the response

obtained by a specially written program.
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07+ v2° %

Ay,=2%10°

0.6~

1 1 ! 1 1
90 92 100 108 1O
frequency Hz

Fig. 4.6 Response of the active filter at a point in

the interpolation region.
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TABLE 4.1

THE CENTER BASE POINT AND THE SIZE OF THE INTERPOLATION REGION
FOR THE QUADRATIC APPROXIMATION OF THE RESPONSE OF THE
ACTIVE FILTER OF FIG. 4.3

R1 RM C1 C2

(k) () (wF) (uF)
Center Base Point 10 200 0.75 0.75
Size § 5 100 0.375 0.375

4.3.2 A Current Switch Emitter Follower

The circuit shown in Fig. 4.7 was employed by Ho (1971)
for time-domain sensitivity calculations, and for worst-case
design and yield optimization by Abdel-Malek and Bandler (1978c).
Here we will consider the analysis of this circuit by SPICEZ2.
Figure 4.8 shows the charge-control model to be used for each
transistor. The charge-control diode model corresponds to that of
the emitter-base junction. Table 4.2 lists the values of the
circuit parameters and model parameters, which were obtained from
a worst-case design of this network (Abdel-Malek 1977).

The program SPICE2 could not handle the nonlinear
capacitance in the form of the one given in the transistor model
of Fig. 4.8. 1In order to overcome this problem (assuming we want

to analyze the network with the given transistor model exactly and
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Fig. 4.8 The transistor model.
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TABLE 4.2(a)

CIRCUIT PARAMETER VALUES

R1 281
R2 75
R3 78
Ry 45
E2 y
E3 1
EM 1
CO 1

.33
.00
.24
.53
.03

.66

.25

pF

TABLE 4.2(b)

DIODE MODEL PARAMETERS

Isp diode saturation current 0.6 x 10774
CJD depletion layer capacitance 0.12 pF
TTD transit time 0.01 ns
) inverse of thermal potential 38.688 v!
ID = ISD(exp(eVD)-1)

dI
CD = CJD + TTD TN
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TABLE 4.2(c)

TRANSISTOR MODEL PARAMETERS

IS saturation current 0.6 x 10_9 A
a common base current gain 0.99
RB base resistance 50.0 &
CC collector junction capacitance 0.5 pF
CJE emitter junction depletion 0.12 pF
layer capacitance
TT base transit time 0.01 ns
6 inverse of thermal potential 38.668 T
Ip = Ig (exp(OVBE)-1)
IC = a IE
)
CE z CJE + TT dVBE
RB and CC are assumed zero for tfansistor T3

TABLE 4.2(d)

TRANSMISSION-LINE PARAMETERS

Z

T

characteristic impedance

delay time

92.004 @

0.25 ns
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not with any other model) the current passing through the
nonlinear part of the capacitance was represented by the current
i1 of a two-dimensional current controlled current source. The

currents controlling this source are i2 and 13 in two small
additional networks as shown in Fig. 4.9. The coefficients of the

polynomial representing i, are all zero except the coefficient of

1

the cross terms which has the value one. In the circuit where 12

is passing PO =-P1IS so as to let 12 be equal to P1IS exp( VBE)'

The current 13 will represent dVBE/dt. We have to note that the
zero valued voltage sources in the additional network have to be
introduced since the current controlled sources in SPICE2 can only
be controlled by currents passing through independent voltage
sources. The results were checked by the companionlnetwork
approach (Rizk 1978).

The analysis was also performed by SPICE2 using the built-
in models. The parameters of these models were fed in the data to
match the model as closely as possible to the given model (Fig.
4.8). Responses obtained by the companion network, by SPICEZ2 and
by the state equations (Abdel-Malek 1977) are shown in Fig. 4.10.
Note that the two responses obtained by SPICE2 were almost
identical.

The running time of SPICE2, where we modeled the nonlinear

capacitance, was 92 s, while using the built-in models the running

time was only 7 s. This difference is mainly due to the
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+

Fig. 4.9 Transistor model described to SPICE2.
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Fig. 4.10 1Input voltage and responses of CSEF with different methods

of analysis.
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additional elements we have introduced in modeling the nonlinear
capacitance which resulted in having 12 additional nodes and node
voltages. The data supplied to SPICE2 in the two cases is given

in Appendix B.

.oy Conclusions

The possible exploitation of general purpose simulators to
perform the analysis of circuits (even if they can not handle the
circuit directly) and obtain the multidimensional approximation
models to carry out sophisticated optimal design problems (design
centering, tolerance assignment, post-production tuning, worst-

case design and yield optimization) has been described.
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CHAPTER 5

ANALYSIS AND SENSITIVITY EVALUATION FOR

CASCADED STRUCTURES

5.1 Introduction

This chapter presents a new and comprehensive treatment of
computer-oriented cascaded network analysis. The analysis of
cascaded networks plays a very important role in the design and
optimization of microwave circuits, so that an attractive approach
which facilitates efficient analytical and numerical
investigations of response, first- and higher-order sensitivities
of response, simultaneous and arbitrary large-change sensitivity
evaluation is highly desirable. As 1is well-known, first-order
sensitivities, for example, are useful in network optimization by
gradient methods.

In tolerance assignment, the response and its first-order
sensitivity at the vertices of the tolerance region are needed.
This information is also very useful if a worst-case search
algorithm has to identify the worst vertex.

The approach we have developed permits efficient
(a) exact analysis of cascaded networks in any direction,

(b) exact evaluation of first-order response sensitivities at
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any location,

exact evaluation of the effects of any number of

simultaneous large changes in any elements,

the exploitation of network structure:

1. responses at different loads in branched networks
which may be connected in series or in parallel with
the main cascade, can be obtained analytically in
terms of the variable elements. Sensitivity and
large-change effects w.r.t. these variables can be
easily evaluatea,

2. symmetry can be taken into consideration to reduce
computational effort (Bandler, Biernacki and Rizk
1979),

evaluation of the exact effect due to simultaneously

growing elements in appropriate locations.

The conceptual advantages enjoyed by our approach and

applicable to 2-port elements are

all calculations are applied directly to the given network:

no auxiliary or adjoint network is defined,

all calculations involve at most the premultiplication of

two by two matrices by roy vectors or postmultiplications

by column vectors: no explicit matrix inversion is ever
required,

response functions, sensitivities or large-change effects

are represented analytically in terms of the parameters to
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be investigated: all parts of the network to be kept
constant are reduced numerically to a few two-element
vectors appearing as constants in the formulas,

(d) calculations can be carried out easily by hand, 1if
appropriate, or are readily programmed.
The approach is not confined to 2-port elements. It has

been generalized in this chapter to 2p-port elements.

5.2 Theoretical Foundation
Consider the two-port element depicted in Fig. 5.1. The
basic iteration, also summarized by Table 5.1, is y = Ay, where A

is the transmission or chain matrix, y contains the output voltage

and current and y the corresponding input quantities.

o YAy vy,
—_—> —>
+ O— —O +
¥s A Y4
- O— L O -

Fig. 5.1 Notation for an element in the chain, indicating

reference directions and voltage and current variables.
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TABLE 5.1

PRINCIPAL CONCEPTS INVOLVED IN THE ANALYSES

Concept Definition Implication
Basic iteration ; = Ay y ==> ;
Forward operation ETA uT uJy = ETAy = uTy
Reverse operation ; = Av y = ¢cv ==> ; = c;
A —1-
Voltage selector e, = e, ==> u, or v
=1 0 =1 =1 ~1
A —O_
Current selector e, = : e, ==> u, or v,
V-2 I, |
) S 7S7S T
Equivalent source y = ey = VS-ZSIS, ey = I
L I 1L S2d
L °S .
— VL -
Equivalent load y = y = Ve +( V -I)e
L < <1 L'L "L32
LV
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Forward analysis (see Fig. 5.2 and Table 5.1) consists of
initializing a 7% row vector as either [1 0], [0 1] or a suitable
linear combination and successively premultiplying each constant
chain matrix by the resulting row vector until an element of

interest, a reference plane or a termination is reached.

:forword -y’ v<—reverse =

o o 0 O—

L

- -+
|
| . |
o— Lo o Lo o -
1
: |
l |
] J
S 4
prd
Y,
5
|
|

Fig. 5.2 Forward and reverse analyses of a cascaded network with

source and load impedances assumed constant.
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Reverse analysis, which is similar to conventional analysis
of cascaded networks, proceeds by initializing a v column vector
as either [1 O]T or [0 1]T or a suitable linear combination and
successively postmultiplying each constant matrix by the resulting
column vector, again until either an element of interest, a
reference plane or a termination is reached.

In summary, assuming a cascade of n two-ports we have

(5.1)

and, applying forward and reverse analysis up to(Al, this reduces

to an expression of the form

i (5.2)

o
"
<
"
(@]
[«
-
[
i<

where

(5.3)

<
"
0
<

and ¢ and d relate selected output and input variables of interest
explicitly with A*.
The typical formula will, therefore, contain factors of the

form

function evaluation: Av ==>Q (5.4)

first-order sensitivity: A v ==> 8Q (5.5)
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— 3A
partial derivative: u ;;-v ==> Q' (5.6)
s s —T
large-change sensitivity: u™ AL v ==> AQ (5.7)

where the parameter ¢ is contained in A. A full reverse analysis

~

taking
[Vn Vn] 1 0
yields
. . . 10
[Vl v;] - A1+1 A1+2 AR
s - - - - 0 1

and a corresponding full forward analysis taking

T T 170
[G} E;] = [u? ug] =
T R 0 1
yields
10 X T
Al a? At o W
o 1|~ ~ - T

5.2.1 Reference Planes
In considering more than one element in the cascade we

divide the network into subnetworks by reference planes. These in



- 129 -

turn are chosen so that no more than one element is to be
explicitly considered between any pair of reference planes. In
Fig. 5.2 the element é is the only element whose effect is to be
considered. In Fig. 5.3 the elements Ak, Ai and Aj are considered
in the kth, the ith and the jth subnetworks, respectively. Note
that the superscripts of A here, and from now on, denote the
subnetwork and not the element. Forward and reverse analyses are
initiated at the reference planes. A forward iteration of the
structure of Fig. 5.3 is illustrated in Fig. 5.4, where equivalent
(Thevenin) sources are iteratively determined. Reverse iteration

is shown in Fig. 5.5, where equivalent (Norton) sources are

iteratively determined.

O o

I
I
Ak : Ai
o
|
|

|
!
o
. s 0 l---
|
) -0 O— Lo o —¢ o
|
|

Fig. 5.3 Subnetwork i cascaded with subnetwork k (at source end)

and j (at load end).
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, function of

‘ ] . . j
Vv ... forward iteration V ,
s ' S ! subnetwork i

| I

Fig. 5.4 Forward iteration for Fig. 5.3, transferring an
equivalent source accounting for design variables
from subnetwork k from one reference plane to the

other.

|
function of vk Ik reverse iterati Yi
subnetwork i - L eration L
q *
l

Fig. 5.5 Reverse iteration for Fig. 5.3, transferring an
equivalent source accounting for design variables
from subnetwork j from one reference plane to the

other.
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5.3 Network Functions in Terms of Elements Under Consideration
Performing forward analysis from the source of the ith
subnetwork to the input of A* and reverse analysis from the load

to the output of Ai we have

T i, i
~2) é (VL v

1 Z

i i i k
+ (YLVL - IL)XZ) = VL +

and the current through the voltage source of the ith subnetwork

i =T 34 iioi kok ok
Ig = ATVpves (V- I0vy) = V¥ - Iy (5.9)
From (5.8), letting Ii = 0 and Yi = 0, we have Ig = 0 and the
Thevenin voltage
i i
j 5 VS vS
VS = VL = ~ i_ T . = Qi +ZiQi ’ (5.10)
(ug+Zguy) Ay oS
where the Q terms have been defined in (5.4). Letting V; = 0 and
i . i .
YL = 0, we have IS = IL and the output impedance
vio(@ez )TAiv otz
j L ~1 S2° ~ 2 12 S 22
ZS ) ;E-= - i- T i ) Qi +ZiQi ’ -1
Lo (uyezguy) Ay 1S 2
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where, again, the Q terms of (5.4) are used to obtain a compact

expression. These” expressions for Vg and Zg permit equivalent

Thevenin sources to be moved in a forward iteration.

From (5.8) and (5.9), letting 11 - 0 and 71 - 0 we have 1K

L S L
= 0 and the input admittance
i -1 i 1 i
x I up Ay *Yva) U+t 12
L~ Vi - _ T, - Qi +YiQi ) ’
S u é (v +Y v ) 11 'LT12

Letting V; = 0 and Z; = 0, we have VE = 0 and the Norton current

) T .
1 1
= -Ig = -1t (Y Ly - u2) é v, = -1t (Y - Q22). (5.13)

[
!

These expressions for It and YE permit equivalent Norton sources

to be moved (if desired) in a reverse iteration.

The input current Ig for Ii = 0 is obtained via (5.12) as

T
N é (v +YL 2)
I3 = Vg/|Zg +4_ T
u 5 (v +YL~2)
15 Ty ) viat aviel))
s~ 2y si¥o1* 22
= = - — (5.14)
T Q +Y Q Ql ZlYlQl

(u +Z ) A (v +Y v 117 L 2" S 21 S'L 22

L~2)
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Tables 5.2 and 5.3 summarize the procedures and the effort
required in evaluating the different factors in the derived
equations.

Useful special cases of these formulas for IS and VL in

Fig. 5.2 are, from (5.14) and (5.10), respectively,

- T
u, Av, %1
IS = VS :TE——— = VS 6:: (5.15)
u, Av,
and
Vs Vs
VL =T = A . . (5.16)
u1 Av1 11

Table 5.4 gives some useful formulas which can be obtained for
variations in a particular element é. We note, for example, that,
since é is arbitrary and at most only one full analysis yields all
Q11, 6Q11, Q;1 and AQ11, the corresponding VL, GVL, aVL/a¢ and AVL
w.r.t. all possibie parameters anywhere in the cascade can be
evaluated exactly for one network analysis. This particular

special case is equivalent to the results of previous researchers

(Bandler and Seviora 1970, Therrien 1974).
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TABLE 5.2

NOTATION AND IMPLIED INITIAL CONDITIONS

Initial Conditions

Factor Identification Forward Reverse
T *
uy (%) v, (+)44 voltage voltage
u, (*) N (1')12 voltage current
-—T

*

U, (%) v, ('I')21 current voltage
GT (*¥) v (+) current current
~2 2 22

(¥) denotes either A, §A, 3A/3¢ or AA

(+) denotes Q, 8Q, Q' or AQ, as taken from
(5.7), respectively

(5)4)9 (5~5)9 (56) or
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TABLE 5.3

ANALYSES REQUIRED BY CERTAIN TERMS

Term Analysis Required

uly Forward and reverse (conventional) cascade

- analysis to any corresponding reference plane,
whichever is convenient

u.v, u2v Preferably one reverse analysis to source
reference plane (avoiding calculation of u, and
u,) -

T T .

u 21, u'v, Preferably one forward analysis to load
reference plane (avoiding calculation of N and
Vo)

u v One forward analysis to input of A and one

¥ reverse analysis to output of é

=T . :
u1 v, u2 One full forward analysis to input of A and one

u * u
4 " Ve Yy
. ol
4 " Vi U

reverse analysis to output of A

One full reverse analysis to output of A and
one forward analysis to input of é ¥

One full forward analysis to input of A and one
full reverse analysis to output of é
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TABLE 5.4
FUNCTIONS OF INPUT CURRENT I AND OUTPUT VOLTAGE V. FOR
CHANGES IN A ONLY
Variable Input Output
Q v
21 S
A I v, — V. = —
~ S S QT‘I L Q11
vsan-ISsQ11 VE
sA §1 Q GVL = - V— GQ.H
- 11 S
v.Q -I.q v v2
2 o1 s%1715% L Ly
¢ EYS Q11 3¢ VS 11
V. 8Q, . -I1.4Q v2
AA AT s°¥21778%%11 o= - L
~ L VL+VS/AQ11

Q+4Qy,




- 137 -

5.4 First- and Second-order Sensitivities
The first-order sensitivity of VL w.r.t. a variable

parameter ¢, is given using (5.16) by

aVL S 364
= . (5.17)
6 2
1 Q11
Differentiating (5.17) w.r.t. 0, we get
2
37V, , 3Q, ,
—_— .y — | —
30,304 S 3¢, | 804 gl
2
8°Q, s 3Q,, 2Q,,
11 30,30, 36, 8%,
z - vL Qz . (5.18)
11

The evaluation of 8011/3¢1 and 8Q11/3¢2 is straightforward
(see Table 5.4). For the evaluation of the term 32Q11/a¢23¢1, we
assume that the variables are numbered consecutively from the
source end to the load end so that this term is expressed, for

example, by

W) 72 v, (5.19)
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Note that Ef is a function of a certain chain matrix which

contains the variable ¢1, A is the chain matrix containing ¢2 and

~

v, is evaluated at the reference plane following A.

5.5 The Evaluation of V. and its Sensitivities w.r.t. Design

L
Parameters at all Vertices of the Tolerance Region
Algorithms concerned with finding worst vertices of the

tolerance region need the value of the response at the vertices

(Leung and Spence 1975) as well as the sensitivity of this reponse

w.r.t. the design parameters (Bandler, Liu and Chen 1975, Tromp

1978).

Assume that we have ﬁartitioned the network by reference
planes into subnetworks such that each subnetwork contains one
chain matrix containing a variable parameter. Each reference
plane is chosen to fall immediately after a variable element.

The Thevenin voltage/impedance of the ith subnetwork is
considered as the source voltage/impedance of the (i+1)th
subnetwork, given by (5.10) and (5.11), respectively, where j =
i+1. We have to note here that the terms Q%1, Q;1, Q?Z and Qéz
are as defined in (5.4) with v, and v, set to e

-2 ~1

respectively, since the appropriate reference plane immediately

and e2,

follows the element At. The number of pairs of terms V§+1 and
Z;+1 to be evaluated is 21, since each subnetwork contains one

variable element with two extreme values (assuming that each At

contains only one variable parameter).
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Differentiating (5.10) w.r.t. ¢., where ¢, does not belong
h h

to Al, but V; and Z; are functions of o (i.e., ¢h is in a

subnetwork h before the ith subnetwork) we get

i i
. . oV VA .
. S i S i
iel (QF 425 Q@) - Q
oV 11778 "217 ae, ~ S 3¢, 21
- . — (5.20)
3¢ i i A1 \2 ’
b Q) + 25 &)
and differentiating (5.11) w.r.t. ¢h’ we get
Y PYS
. i i i S i i i i S i
azé+1 (Qqq+2g5 Qq) ™ Qp - (Qq+Zg Qpp) 20, Q4
30, = ot 2 ol )2
11 * 28 *21
i 9,4 Ai i i
3Zg (Q,Q, - Q%)
= - — . (5.21)
90 i i i 2
b (Qpy + 25 OGy)

On the other hand, the derivatives w.r.t. ¢i which 1is

contained in At (Z; and Vé are not functions of ¢i), are

i i
. i 29 5 3%,
i+1 -V, ( + Z )
aVS S 30 S 305
= - — (5.22)
90 . i i i 2
* Q7 + 25 Q)
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and
et L add Y SO Yo
. 21 i 22 i i A1 11 i 21
i+ QY +Z% QI ) (S 427 —=5) - (Q_+Zg Q5,) ( +Z )
aZg 11708 T21" ae; TS ey 127%s “22"ae; TS B0y
3, i i 1.2 ’
1 (Qy + 25 Q5y)
(5.23)
aCﬁ1 aQ;_,1 aQi2 3Qs
where R R and correspond to (5.6) and Table 5.2.
a¢i 3¢i 8¢i 8¢i

This sensitivity information is carried out through the analysis
for each subnetwork. The number of variables for which
sensitivities of V§+1 and Z§+1

i so that Zloi sensitivity calculations are performed. Having YL

exist at the (i+1)th subnetwork is

and IL as zeros, the expression relating VL and the last sets of

Vo and Z

S is given by (5.10), so that 2k values for VL and its

S’
sensitivities can be obtained from appropriate values of VS, ZS

and A.

5.6 Branched Circuits

Consider, as an example, the cascaded circuit shown in Fig.
5.6, which has two branches, one connected in series and one in
parallel. In the series and parallel branches we highlight, for
example, the elements B and C, respectively. The series branch

can be thought of equivalently as an element consisting of a

series impedance connected in cascade with the main circuit as



Fig. 5.6
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+VBL- + VCL-
U S

load load

__ﬁ}~i-q?__ﬁc
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An example of a cascaded circuit with a branch
connected in series and a branch connected in
parallel. Branches are represented in the cascade
by their equivalents. Reference planes where

different analyses are initiated are labelled.
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shown in Fig. 5.6. This impedance Z may be taken as the inverse

of the input admittance derived in (5.12) and is given by

—T
Wy B Vg

Z = :‘T"T— ) (5.24)
Yo 2 Ui

where the subscript B distinguishes terms associated with the
branch from that of the cascaded main circuit. The forward
analysis is initiated at reference plane d and the reverse
analysis is initiated at reference plane b. (See Fig. 5.6.)
Similarly, the parallel branch can be thought of
equivalently as an admittance Y connected in shunt in the cascade.

The admittance Y (as in (5.12)) is given by

~T
YLe & Vic

Y = o (5.25)
e & Vi

where the forward analysis is initiated at reference plane e and
the reverse analysis is initiated at reference plane c.

Different formulas relating the load voltages of the
branches to the variables can be derived. The load voltage of the

series branch can be derived (Appendix C.1) as a function of B as



where

where
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T

e Yz Vs
VBL(§) = P ) (5.26)
GT Bv u \
2B - 1B 12 L1z
Lo 1
ﬁfz is the result at reference plane f of a forward
analysis initiated at the source,
Vig is the result at reference plane g of a reverse

analysis initiated at the load reference plane a.

It can also be obtained (Appendix C.2) as a function of C

_r 10
- Uiyl v o) Y Vs

as
—T
[uyye
V.. (C) =
B B
Y1B 2

=T

u1Y is the result at
analysis,

Y1Y is the result at
analysis,

at is the result at

1Y
analysis initiated

-T .

%1Yg is the result at

analysis initiated

The load voltage of the parallel branch can also

V1B

’
uT {1 0} ,
1Yy )~

reference plane h of
reference plane k of

reference plane h of
at reference plane f,
reference plane h of

at reference plane g.

(5.27)

a forward

a reverse

a forward

a forward

be derived
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(Appendix C.3) as a function of C as

~

T
e

&1 Yy Vs
V~ (C) = , (5.28)
SR AP
2ic 2 Vi Yy Y1y
Y 1
and (Appendix C.4) as a function of B as
T
el Viy Vs
V. (B) = . (5.29)
- wocv.. ut b v
~1C 2 1C 21z 0 1 ~1Z

5.7 Algorithms
5.7.1 Two Algorithms for Evaluation of Large Changes

The two following algorithms are used to obtain responses
at the base points for the multidimensional quadratic
interpolation (Bandler and Abdel-Malek 1979). The first is used
when one parameter at a time is perturbed and the second is used

when pairs of parameters are perturbed simultaneously.

Algorithm 1 Multiple One-at-a-time Changes
Step 1 Initialize U and v.
Set i « 1, m+« 1, j <« n.

Comment n is the total number of elements in the cascade and

m is a counter for the variable elements.



Step 2

Comment

Step 3

Step U

Step 5

Comment

Step 6

Step 7

Step 8

Step 9

Step 10

Comment

- W5 -

If i = Lm go to Step 5.

lm is an element of L, an index set containing
superscripts of the Kk matrices containing the k
variable parameters and ordered consecutively. It
is assumed that each matrix contains only one
variable.

il « gt al.

i<«i+ 1.

If i = Lm go to Step 5.

Go to Step 3.

Let x® « G.

If i = L, 80 to Step 7.

x1, x2, eey xk are working arrays to store the u

~ ~

vectors required in the evaluation of the large
changes taking place.

m<m+ 1. Go to Step 3.

If n = lk go to Step 10.
V:Aq‘V
J+J-1

If j= lm go to Step 10.
Go to Step 8.
Evaluate Q using the stored xm, v and the perturbed

Ad. If j = %, stop.

Positive and negative extremes of the variable in Ad

are considered simultaneously.
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Step 11 m<«m-- 1. Go to Step 8.

Algorithm 2 Multiple Pairwise Changes

This algorithm is for evaluating the response at the
k(k-1)/2 base points where two parameters are perturbed at a time.
At the first k-1 points following those considered in Algorithm 1

the parameters indicated by the subscripts
1,2 1,3 ... 1,k

are changed; at the next k-2 points the parameters indicated by

the subscripts
2,3 2,4 ... 2,k

aré changed, and so on, until the final point at which parameters
k-1 and k are perturbed. Figure 5.7 serves to i1llustrate the

analyses involved.

0 1 1

ces s -0 = - -
Step 1 Initialize U,y Uy, Uy and u,.
Set i « 1, m+« 1, q+0, r+« 1and s «k ~ 1.
Comment u} and u; are vectors to be initialized as uO and

~ ~

1
ug, respectively. They have the same role as u? and

ug in the forward analysis initiated at a reference

plane immediately following the first variable

element.
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Fig. 5.7 1Illustration for a cascade of 6 two-ports of the principal
stages in the calculations involved in the multiple pairwise
changes algorithm. Three variable elements are considered,
hence three sets of simultaneous analyses are effectively

performed.



"Step 2

Comment

Step 3

Step 4

Comment

Step 5

Step 6

Step 7
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If i = lm go to Step 4.
lm is an element of L, an index set containing
superscripts of the k matrices containing the k

variable parameters as indicated in Algorithm 1.

0T 0T ,i
u,n Uyt AT
LT . 0T i
L ot o

If m = 1 go to Step 5.

u1T . u’IT i.
<1 ~1
G1T o T 45
<2 o 2

x>

un « un Ai.
~1 ~1 -~
qT . qT ,i

4 u A

This step is not performed until we reach a variable
element, since the analyses involving the gj do not
begin until the jth variable element has been
considered.

Set 1 « i + 1.

If i = zm go to Step T.

Go to Step 3.

If m = k go to Step 9.

Calculate the Thevenin impedances and voltages
Zs(m,1), ceey Zs(m,s),

Vs(m,1), ceey VS(m,s).

s+« s - 1.



Comment

Step 8

Step 9

Comment

Step 10

Comment

Step 11

Step 12

Step 13
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For the first variable element k-1 sets of ZS and VS
have to be evaluated since changes in this element
will be coupled one at a time with changes in the
next k-1 variable elements. For the second variable
element k-2 sets of ZS and VS are‘calculated and so
on. See Fig. 5.7.

Ifm=1go to Step 13.

Set p « 1.

p is an internal counter.

r p

X <« u.

If p q go to Step 12.

When the analysis has reached a reference plane
immediately preceding an element containing a
variable whose change is to be associated with any
previously encountered variable a snapshot of the
appropriate u vectors is taken and stored in the X
arrays. JSee Fig. 5.7.

Set r «r + 1.

p<«p+ 1.
Go to Step 10.
Set r «r + 1.
If m = k go to Step 16.

oT 0T i.

U, Yy

uOT . uOT It
=2 <2 -~

[ =



Step 14

Comment

Step 15

Comment

Step 16

Comment

Step 17

Comment
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If m =1 go to Step 15.
1T 1T ,1i
u -«

44 u,” A
1T 1T ,1i
U e uy A
un « un Ai.
~1 ~1 -~
qT qT i
u,” «u, AT

In Step 7 we calculated sets of ZS and VS accounting
for variations in Ai. In Steps 13 and 14, however,
we carry forward the analyses for which Ai is
considered fixed.

Set i « 1 + 1.

m<m+ 1.

q <+« q+ 1.

Initialize U?T and ugT and go to Step 6.

u?T and ugT are initialized to start a forward
analysis at a reference plane immediately following
a variable element éi.

Set r «r - 1.

m<+m-=- 1.
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