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Abstract

This report deals principally with two problems: postproduction
identification qf' network parameters and fault detection for 1linear
analog circuits. A number of different approaches are discussed and
several methods proposed. The methods are based on measurements of
voltage using mainly current excitations. The capabilities and
limitations of these approaches are investigated and partially solved.
Some unsolved problems are also indicated. Finally, some topics related

to postproduction tuning are briefly discussed.
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1. INTRODUCTION

Computer-aided circuit design, which has become one of the most
powerful tools in the design of analog electrical devices [2], enables
us to deal with, for instance, manufacturing tolerance and tuning
problems. Bandler, Liu and Tromp [3] formulated the design problem
taking postproduction tuning into account. This work was extended by
Polak and Sangiovanni-Vincentelli [17,181]. Although the algorithms
proposed, for the time being, are computationally extravagant, there is
hope for better and more efficient ones in the future. These methods
are employed before a circuit is manufactured in order to assign the
appropriate values of circuit parameters. A practical design, however,
does not stop at that stage. The use of computer aids in further stages
can also be helpful. Testing and tuning problems are of special
interest.

Although there is a number of papers which deal with testing
problems, only a few of them concern analog circuits [14—6, 9-11, 13-15,
19~-25]. The main objective of testing is to check whether the circuit,
which is already manufactured, meets the required specifications or not.
If not, it should detect the source which causes the network to be
wrong, principally, to indicate the element(s) which is (are) at fault.
Then the elements or subnetworks which contain these elements éan be
replaced or repaired.

Another objective of testing is related to postproduction tuning.
So-called deterministic tuning requires not only khowledge as to which
elements have to be altered, but it is also necessary to know the actual
values of network parameters in order to be able to calculate the amount

of tuning to be carried out. This 1is the subject of the actual



parameter identification which is based on measurements of the netwerk
already manufactured. Mdst authors dealing with tuning problems assume
that actual values of network parameters are available [1,7,8,12,161].
Nevertheless, since the elements can not usually be taken out of the
network this can not be done directly. Therefore, appropriate methods
of identification should exist.

The two objectives of testing are both subjects of fault analysis.
However, it is felt that the term "fault analysis" is better suited to
the situation when only a few elements are at fault and all remaining
elements are correct. Then we want to locate the faulty elements.
Thus, the situation when wé are interested in actual values of all (or
some) network elements can be better described by the term “parameter
identification".

The solvability of the all parameter identification problem was
first considered by Berkowitz [51]. He introduced the concept of
accessible (and partly accessible) terminals where voltages and/or
currents (or only voltages) can be applied and/or measured, From the
theoretical point of view there is no difference as to which kind of
excitation is used. However, from a practical point of view the use of
current sources seems to be a little bit more reasonable. We will
consider ideal current sources because for any nonideal source the
soufce resistance can easily be treated as an additional element of the
network.

We assume that no existing connection can be broken, hence current
measurements are difficult to take. We may, however, consider that some
ports can be shorted and the currents in these shorts measured.

Therefore, voltage measurements are preferred over current measurements.



We will try to consider voltage measurements only and as :‘ew» of them as
possible.

The solvability of the all parameter identification problem was
later investigated by several other authors [10,13,241]. Mayeda and
Peponides [10] gave a topological characterization of the problem.
Navid and Wilson [13], using symbollic network functions, formulated
sufficient ‘conditions for this solvabilty. Trick et al; [22-24]
considered the problem of identification and showed how to formulate an
appropriate system of equations using the adjoint network concept. They
proved the very important result that, for linear networks, the problem
can be solved by means of linear equations. Their approach, however,
seems to be unnecessarily complicated, because many simulations of the
ad joint have to be performed in order to formulate the equations. They
formulate the equations using changes w.r.t. nominal values as unknowns,
Of course we can assume that the nominal values of network parameters
are known. This assumption is essential if we want to locate one or
more faults assuming that the other elements are at their nominal
values, For the purpose of identification this assumption is not
essential, i.e., there is no need to know these values if we are
interested in finding actual values of all parameters. The knowledge of
the nominal values is only a matter of formulation of an apprfopriate
system of equations (either actual values or actual changes can be
used) .

Although it is known how to check whether chosen tests are
sufficient for identification no paper solves the problem of how to
choose these tests to be independent (except the situation when we

measure everything poésible as in [13]). ‘There are some other papers



which investigate this problem from the test point selection point of
view [6,19,201].

Most papers on parameter identification assume tests to be
performed at a single frequency [5,10,13,22-24]. This is quite a
reasonable assumption since such identification provides the values of
passive admittances and control coefficients of controlled sources.
Repeating the identification at different frequencies enables us to
identify the compdnent values provided that there is a unique dependence
of element values on the frequency response (as for canonical
structures). Moreover, testing at a single frequency is essentially the
same as that for resistive networks.

As is known [5], parallel elements are not solvable, so we assume
that there are no direct parallel connections of elements or,
élternatively, we have to be satisfied with the knowledge of the
admittance of the whole connection. For instance, we can not determine
individual values of two parallel resistors (obviously, even if we use
measurements at different frequency points), so we have to satisfy
ourselves with the composite resistor.

There are a few papers dealing with fault analysis in the foregoing
sense, mostly to locate single faults. This can be done by censtructing
a fault dictionary using computer simulation of mainly single
catastrophic faults [4,25]. Another approach uses certain analytical or
geometrical invariants of element value changes [9,14,21]1. The latter
approach is worth developing since it enaﬁles us to deal not only with
catastrophic faults and the computational effort required is much
smaller than in the case of fault dictionaries.

This work deals with the two problems discussed above, namely, (a)



postproduction identification of network parameters and {(b) fault
detection. Analog linear and lumped networks are considered. Section 2
presents different approaches to the identification problem. Methods
for selected elements as well as for the identification of all
parameters are discussed. Section 3 includes methods for single- and
multiple-fault detection. Finally, in Section 4, problems related to

postproduction tuning are briefly discussed.
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2. IDENTIFICATION

2.1 Matrix Parameter Identification

To begin with let us consider a very simple example of a two-port
network. It is well known that any of the immittance, chain or hybrid
matrices can be obtained from two appropriate sets of measurements. For
instance, Fig. 2.1(a) shows the measurements giving us the chain matrix

1,1 2,.2
V,/V2 V1/I2
A = 1 (2.1.1)
~ 11 2,42
Ig/v2 18/12
where superscripts distinguish the two sets of measurements.
Using, preferably, current excitations and voltage measurements the

two sets of measurements are as in Fig. 2.1(b). These measurements

correspond directly to the impedance matrix, given by

visa! ve/12
18 1°8

7= ) (2.1.2)
~ 1,1 2,2
VIR i

Other matrices can be expressed using well-known relationships between

them and E. e.g., the chain matrix is

1,1 1.2 1.2, ,.2 1
A = . (2.1.3)
- 1,1 1,2 42,1
IS/VZ Igv2/Igv2



Now, consider the influence of a nonideal source and load
enviroment (see Fig. 2.2) on our ability %to make an identification.

The chain matrix of the whole network ét is, obviously,

(z.1.4)

[

gt
i

i

A, can be easily determined using (2.1.1) or (2.1.3). From (2.1.4) we

have

(2.1.5)

LR
i
=

We note that the matrix A can be found if YS and YL are known. We
also note that only A12 can be determined when YS and YL are unknownf
Moreover, no more information is available even if we use any kind of
port excitation and any kind of port measurement (including short
circuit currents). This is simply because these excitations and
measurements do not distinguish between parallel elements "within" the
two-port represented by Y11 and Y22 and external parallel elements YS
and YL' respectively. In other words shorting, for instance, the second
port causes YL as well as Y22 to be shorted. If we consider another
two-port network which replaces YL in Fig. 2.2 we note that, in general,
we cannot identify the matrix elements of the two unknown subnetworks.

The above discussion gives us quite obvious, but important

conclusions,

1. Two sets of measurements are required to identify all matrix
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parameters of a two-port network. The existence of impedance
matrix Z is crucial for the preferable current excitations and
open-circuit voltage measurements. This is, however, not a serious

limitation form a practical point of view.

The identification of a subnetwork placed within a known

enviromment is possible. In particular, we can use nonideal

sources provided that we know the source admittances.
In general, the identification based on port excitations and
measurements of a subnetwork placed within an unknown environment

is impossible. In particular cases, however, it may be done.

Now, consider a general n-port network described by hybrid matrix §

and the equation

where

v I
~a ~8
: = H , (2.1.6)
I Yy
A T
!a =‘ [v1 V2 so e Vk] v
A T
Yo = Vw1 Viwz === Vil >
A T
1 SRERN G P SO 5
A T
Tp = [Mepq Tpep oo Il



Because n ports are availsble for measurementis we can measure n
voltages (and/or currents) at a time. Se, in order to identify 32
unknewn elements of 8 we have to arrange for n =sets of independent
measurements., The simplest way to do it is to apply one source at a
time, sequentially to every port. Using the preferable current sources

and voltage measurements the ith set of measurements can be described by

{see Fig. 2.3)

5 S SR, S § i,T
za = iVj V2 o s Vk] 0
I N & i 15T - \
Eb = Wz{m Vk+2 vn} , (2.1.7)
i ) . . 5
Ij =20 for J=1, 2, «.., 0} JA4 i
with the excitation
et (2.1.8)
- &

Values {(2.1.7) and (2.1.8) satisfy equation (2.1.6). =n systems of

t

equations of the form (2.1.6) for i 1, 2, <., 0 can be written as a

single matrix equation

v v I Q0
~5a ~ab ~3a ~
= i:g ) " (2.1.9)
Q Ioo L‘i’ba Yob
where
I N - K
faa - Ega Ha e Ya]'
v, Byt R Dy,

~ab ~8 ~3

Y
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8 1 42 k
Yba = [Up ¥p +- Ul

L

e

kel ke2 n
Yo £ 05 BT e VR

ne

1.2 k
I. diag(Ig Ig ces Ig),

A

kel k+2
Ebb = diag(Ig 1

n
8 LY Ig)y

and Q denotes zero matrices of appropriate orders.

From (2.1.9) we find the solution

-1 -1 -1
VaaVablobiva'laa  Yablob

H = . (2.1.10)

1y = -1
“IobYbbbalaa TooYbb

Note that existence of the inverse V;1 is essential for the solution.

b
Of course, the inverse I;; exists and is given by

-1 1 1 1
Eaa = diag( 11 12 cee Ik ).
g8 8 8
Using exactly the same excitations, namely,
1 2 A '
I = S ees = o le
g Ig Ig (2.1.11)
(2.1.10) can be simplified as
~ i
1 -1 -1
I, Vaa=Yabloblba’ VabYbb
H = . (2.1.12)
~ -1 _1
i “pbYba LYo




§
X
i

Observe that, as before, the preferable current excitations and voltage
measurements require the existence of the impedance matrix of the
n-port. In the case when H is to be impedance matrix (k=n) and under
the assunption of (2.1.11) the solution is simply equal te the left hand
side of the equation {(2.1.9%) divided by Ig,

A number of similar methods based on different excitations and
measurements can be developed, But any one c¢f them requires n
independent sets of mezsurements unless additional information on the

network is given (e.g., symmetry and reciprocity).

2.2 1dentifiecation of Selected Parameters

Consider the identification of a single two-terminal element within

a known enviromment. The surrounding network can be replaced by the

Thevenin equivalent as shown in Fig. 2.#., Assuming that the voltage Vx
across the unknown element Zx is known we find Zx from

(v

™ " Vx)Zx = vxZTH’ (2.2.1)

Observe that the assumption

0)

ZTH # 0 (2.2.2)

is crucial for the identification. We also note that the knowledge of a
single voltage may be sufficient for identification of a single element.
The above approzch can be generalized as follows, Consider n
unknown elements of a network. The situation can be represented as an

active n-port being terminated by unknown elements Y1, Y2. so ey Yﬁ (Fig.
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2.5(a)). Assume that there exists a hybrid equivalent of the active
n-port shown in Fig. 2.5(b). The equivalent is described as follows.

The vector of port voltage sources is

SaA .S .S S.T '
~a - [v1 V2 LI Vk] 1] (2.2.3)
the vector of port current sources is
S A 43S S S.T
Zb had [Ik+1 Ik+1 LN In] 1] (2.20 n)

and the hybrid matrix E' of the n-port without independent sources is

defined by
- 'q  ad —
I
~a -~a )
]
? = H 1] (2.2-5)
~b !b
L- - - -
. where
Eaa gab
T
H = . (2.2.6)
Hya Hpp

According to Fig. 2.5(b) we have



T
Lo = 5o = Yop Y (2.2.7)
%a - "Xaa Vas
where
8 Giag(Y. Y. ... Y
~28 12 K
and

b aic
Ebb dldeYk+1 Yk+2 . Yh).

Substituting (2.2.7) into (2.2.5), and after sScme manipulations we

obtain
- ©ou . -
Y v gt ol v® ! H'H v
~88~2 ~3a ~1} ~a ~a# ~ad-~ab ~&8
—IQ = 1 o B3 1 1 9
~ - N1 - _ T
fopdp Boafaa 11 Ip B T

(2.2.8)

where l is the identity matrix of an appropriate order and E is the
vector of currents through the unknown elements. From (2.2.8) it is
seen that the existence of the inverse g;; is necessary to obtain the
solution. This is equivalent te the existence bf the admittance matrix
of the ne-port {observe that the matrix in the last part of (2.2.8) is
actually the admittance matrix). On the other hand we have cconsidered
anothear assumption! i.e., that the hybrid equivalent exists., It can be

shown that the existence of a hybrid matrix is sufficient for the
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existence of the corresponding hybrid equivalent. Therefore, if we
assume that the admittance matrix exists we can consider a Norton
equivalent and, according to the above discussion, we can find the

solution. This leads to the following theorem.

Theorem 2.1

Identification of n elements based on voltages across those
elements (Fig. 2.5(a)) is possible if and only if there exists the
admittance matrix of the corresponding n-port (after shorting
independent voltage sources and open-circuiting independent current
sources) .

The solution can also be obtained directly without looking for a
hybrid equivalent. According to Theorem 2.1 and using a representation
of the network of Fig. 2.5(a), which is shown in Fig. 2.6, there exists

a matrix § such that

amd j g
I v ]
.I.v = 11 Yv . (2.2.9)
\'} I
~1 ~I
. L -

where 311 is the admittance matrix of the n-port of Fig. 2.5(b). From

(2.2.3) we have

V, + H,, I (2.2.10)

I=H + Hyp ¥y + Hyg 1ge

11 !
Once we know I then we can easily find the values of the unknown

elements, since
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Y, = wIi/Vi or Zi = »Vi/Ii (2.2.11)

for 1=z 1, 2, suey N

Now, conéider that the measurement ports sre different from the
ports of the elements which are to be identified., Assume that there
exists a hybrid equivalant as shown in Fig. 2.7. According to Fig. 2.7
we have (m and x identify the measurement and identification ports,
respectively, and a, b, ¢, 4 identify ports of the same kind within the

two groups)

g % o
v - v L]
~a ~d ~a
S
I + I Y
A P e (2.2.12)
-3 ~lo
3
I v
e ~d e L-.~d..x
where
”H H ' H H A
~aa -ab ¢ .ac .ad
i i
Hoa HBop 1 Hpe Hpg Hex ﬁxm]
]
Hz (=77 """~ T = (2.2.13)
~ Eca §cb ? gcc gcd gmx %mmuj
i
]
Lﬁda gdb ; gdc Edd
and H H H H are n x n matrices., Cbserve that in order to

XX oxm® .mx® .mom
solve the system (2.2.12) for unknown vectors Ia' Eb’ Ya’ Ib we have to
know the inverse H;l. This corresponds to the existence of the
tranamission matrix linking ports of identification as the input with

ports of measurement &3 the ocutput. Assuming that there exists a mixed
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"transmission-hybrid"® representation of the network described by (see

Fig. 2.8)

~ m
v v
¥ ™
~ = % ~ » (2.2. 1")
Iy Yy
v I
we find, for I™ = 0,
X
v
~ A A3 Ay v
N v . (2.2.15)
I A |~ A A 1
~ ~21 ~23  ~2H4 ~I

The above discussion gives us the following theorem.

Theorem 2.2

Existence of the transmission-type matrix defined by (2.2.14) is
necessary and sufficient for identification of n unknown elements based
upon n voltage measurements if ports of measurement are different from
ports of identification.

The requireents of Theoren 2.1. can easily be verified. The
admittance matrix exists if and only if no port can be shorted by
shorting alllthe remaining ports. In contrast, verifying the conditions
of Theorem 2.2 is more difficult. This is simply because the elements
of a general transmission matrix of a 2n-port network (unlike a 2-port)
cannot be defined as ratios of single input and single output in the

presence of shorts and openings of other ports. Moreover, the existence
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of the transmission matrix is not related toc the existence of any
particular hybrid matrix. Hence, Theorem 2.2 is not very useful in
practice and one should look for another and simpler criterion.
Nevertheleas, we cbserve that in both cases there exists a limit to the
number of elements which can be identified. Usually, Theorems 2.1 and
2.2 are satisfied as far as the identification of one or two elements is
concerned. The more elements we want to consider the more unlikely it
is t§ satisfy the corresponding theorem, The number of elements which
can s8till be identified strongly depends upon topology and elements
chosen . But in any case, for a particular network, there exists a
maximum number of elements which can be identified by methods described
in this section and this number is less than the total number of
elements in the network. 1In the next section we deal with the problem
of identification of all elements since this cannot be done by the above

methods.

2.3 Identification of All Parameters

We now consider the situation when all network elements are
unknown. We assume that voltages across all elements are available,
Since Kirchhoff's voltage law is satisfied (i.e., we assume that
measurements are accurate enough) we can consider nodal voltages only,
Using the preferable current excitations we have a generalized branch
shown in Fig. 2.9. As is well known, a network with p branches and r

nodes can be described by the branch-node incidence matrix
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é = [Aik]’ (2-3.1)
where
+1, for the kth branch directed towards the ith node,
Ajg = -1, for the ktnh branch directed away from the ith node, (2.3.2)

0, for the kth branch not incident with the ith node,

i = 1. 2. LN ) !"—1 and k = 1. 2' LI ) po
Following the typical nodal approach we introduce the vector of

nodal current excitations as

.
I
S J2
I= A . . (2.3.3)
JP
- -
This enables us to write Kirchhoff's current law in the form
AL =-1°, (2.3.4)
where
18011 117 (2.3.5)
~ 172 °°" " p ‘ i

is the vecfor of branch currents.

Using the hotation

T
Y= [Y1 Y2 oo Yb] (2.3.6)



]
B
(]

§

for the vector of branch admittances, and

U= diag(u1 u Up) (2.3.7)

2 6 ® &

for the matrix of branch voltages, we can write Omm's law for all

branches of the networi as
I=-UY. (2.3.8)

Since Kirchhoff's voltage law is satisfied automatically we note that
equation (2.3.8) together with (2.3.4) are all the available equations
for the network. The current vector I is of no interest, so eliminating

it from (2.3.8) and (2.3.4) we find
2){ = E ° (2-309)

This is simply the system of equations which has been sought, It
contains r-1 equations with the p unknown values of Y1. Yz, ey Yp.
Matrix é consists of r-i linearly independent rows, so if branch
voltages are different from zero then the matrix (Q§> also consists of
r-1 linearly independent rows. Note that p can be equal to r-1 only if
the network graph is & tree. In this case all network elements can
easily be determined if the excitations chosen are such that there is a
nonzerc current in every branch of the tree. This is a rather obvious
result since, knowing the excitations, we know immediately all branch
currents. In other cases we always have p > r-1 and we are not able to

identify all elements Y1. Y ceey Yp based only on the equation

2’
(2.3.9). If some of those elements are known (at least p-r+1 of them)
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we can solve (2.3.9) for the remaining parameters provided that the
resulting system contains an appropriate number of linearly independent
equations. This is another approach to the problems considered in the
foregoing section.

Now, we are interested in the identif‘icatiop of all parameters of
the network. Since the number of equations in (2.3.9) is less than the
number of unknowns we have to find additional equations based on other
set(s) of measurements. According to (2.3.9) one set of measurements
gives us at most r-1 independent equations. This means that we need at

least m sets of measurements, where

p
m= int( —=) (2.3.10)

and int(x) denotes the smallest integer X such that x < X . Because
the number of branches p is between r-1 (for a tree-network) and

r(r-1)/2 (for a complete-graph network), i.e.,

r(r-1)

TR (2.3.11)

r-1¢p¢

we find that

1 <{m < int( ). (2.3.12)

s

For typical networks m is expected to equal 2 or 3. Every set of

measurements Ui provides the appropriate system of equations (2.3.9) as

1t S (2.3.13)

N
>
L X =
St
s
"
1)
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for i = 1, 2, ...y, M where M > m.

All of thcse systems give us the final matrix equation

T 11 (.51 ]
Ay !
2,2 52
. Y=, . (2.3.14)
LE S
S wapd L e

Usually, different sets of measurements are obtained only under
different excitations, while the network topology is not changed at all,

S0
A =2 A = ... = A, {(2.3.15)

However, if we can short certain nodes, different ones for different
measurements, then in general, we should consider different matrices éi.

The system (2.3.14) is required to contain exactly p independent
equations. Roughly speaking, the systems (2.3.13) should be "indepen-
dent® of each other. In other words, we have to arrange for M
"independent” measurements. How to arrange for these independent
measurements, however, is not known so far. Nevertheless, several
directions can be proposed.

It would seem to be optimal if the subsequent measurements provided
equations which formed an independent system along with all previously
obtained equations and, furthermore, if the final system was not ill-

conditioned. In other word}s, we want the rows of matrices



Py
>
f X =

2 2 (2.3.16)

>
F =
<@
>
E N =
-

¢ >
e

to be linearly independent. Assuming (2.3.15) holds we have M = m. Of
course if p/(r-1) is not an integer then the last system (for i = M)
contains a few more equations and the system (2.3.14) is overdetermined.
Alternatively, for the last set of measurements, we can make an
appropriate number of shorts such that the matrix ﬁ" consists of
p-(m-1)(r-1) rows and the system (2.3.14) has exactly p equations. For
this approach, we would propose to use different locations for the
excitations for the different measureménts. These excitations should be
as remote form one another as possible.

Now, as an important example, we apply the foregoing theory to

ladder networks.

Methods for Ladder Networks

Consider the ladder network shown in Fig. 2.10. The branch-node
incidence matrix A consists of r-1 = n+1 rows and p = 2n+l columns and

its structure is
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-1

Hj

(=

L.
Using only the input

measurements, i.e.,

01,

ot ol Iy ]

1 2 1

1 1 i
—U2 U3 Uu Y2
1 1 (! .
Uy Us Ug
® ® Q1 1

mUZn U2n+1 Y2n+1
e P ., -

According to (2.3.10) we find m
set of measurements.
exactly 1 short.

will discuss three of them.

A number of different approaches can be suggested,

(2.3.17)

of voltage

(2.3- ‘!8)

(2.3.19)

2, 80 we have to arrange for another

Since we need exactly n more equations we can make

We
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1. We use the same excitations, i.e.,

S2

152 . 181

(2.3.20)

and the output port is shorted. The appropriate matrix 52 is

obtained from (2.3.17) by dropping the last row.

2. We use only the output source Ign+1 for the second set of

measurements, i.e.,

s2 _ s2 T
=00 0 ... 01,1, (2.3.21)

and the input port is shorted. The appropriate matrix 52 is

obtained from (2.3.17) by dropping the first row.
3. We do not make any shorts, i.e., we use the same branch-node matrix

(2.3.22)

>
"
>

and the resulting system of equations (2.3.14) will be

overdetermined. According to the previous discussion we apply the

output source and the vector ISZ is in the form of (2.3.21).

Note that regardless of the method chosen, for any row of QZ we can
find an identical row within the matrix 31. Hence the linear
independence or linear dependence of the final system (2.3.14) consists
in the particular values of Qoltages U1. U1

2'
?. Ug. coey Ui. Because of this the first method is likely to be ill-

coss U; in comparison with

U
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conditioned. It can be caused by relatively insensitive behaviour of
voltages across the elements located close to the input w.r.t. a change
of the output load. Using the same excitation for the two measurements
we can meet the situation that the corresponding equations in both
subsystems are "nearly" the same. From this point of view it is obvious
that we are looking for quite a different excitation for the second set
of measurements. The second and the third methods satisfy this
requirement., These two methods are similar and we can discuss both
simultaneously. The only difference is that the second method provides
one less equation and that the values of voltages are a little different

(in particular, U? = 0 and Uz = —UZ). Therefore, we will discuss the

2 3
third method and most of the following results will be applicable to the
second method. Now, the second subsystem of equations (2.3.13) is
similar to (2.3.19). The only difference is that superscripts ™" are
replaced by superscripts "2" and the right hand side of (2.3.19) is
replaced by 582 given by (2.3.21). The resulting system of equations

(2.3.14), after reordering, can be expressed in the form

A Y =B (2.3.23)
where
IS1
=~ |= [1?"’ 00 ... 012 47 (2.3.24)
~ 2n+1
52
I
L~

and
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1 1 7
Uy U
2 .2
Uy U
1 1 1
U, Ug Uy
2 .2 2
U3 03 U
- 1 1 1
A= U, Uy Ug . (2.3.25)
2 2 2
_UM US U6
1 1
on Uonet
2 2
-UZn U2n+1
e -

The particular sparse form of the matrix A enables us to find explicit

formulae for the solution of (2.3.23). It is more convenient to use

i

i
nodal voltages V1. ooy Vn+1.

i= 1, 2, such that

i i i i i
U2k-1 = Vk and U2k = Vk - Vk+1 (2.3.26)

for i= 1, 2and k=1, 2, ... . From the last two equations we obtain

S2 1 1
I2n+‘l (Vn - vﬁ+1)
Y2n+1 = An (2.3.27)
and
S2 1
I2n+1 vn+1

on = ry ' (2.3.28)
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where

A = v1 v2 2 v1

n n n+l . n o n+t’ (2.3.29)

Substituting an into the preceding two equations we can determine YZn-T

and Y2n-2’ In this way we find the recurrent formulae
¥
Ay
Y2k+1 Z; Y2k+2' (2.3.30)
Bret
sz Ak Y2k+2’ (2.3.31)
where
1 1
Ve Vied
A, = det (2.3.32)
ve g2
Kk k+1
and
1,1 1 1
, e Vit Vo1 Vke2
k+1 k k+2 k+1
From (2.3.31) and (2.3.28) we notice that
S2 1
Y2k Ak = 12n+1 vn*1 (2.3.34)

or
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S2 1

one1 Vnan
sz - Ak (203035)
for k= 1, 2, «eey N
Using (2.3.35), (2.3.30) and (2.3.27), we find Y,, 30 e Yén+1'
Finally, from the first equation of the system (2.3.23) we have
S1 1 1
1! -y - vy, |
Y = e (203036)
1 v1

1

Alternatively, since the system is overdetermined, we obtain from the

second equation

Y, = —s— ¥ (2.3.37)

and both solutions should be identical. Of course, this second equation
does not appear in the second method (because of shorting the input
port). The above solution may be described by the term backward
solution.

Similarly, starting from the first two equations we can derive the

forward solution as

Y1 = 9 (2.3-38)



S
RS
sz = Ak ? k = 19 2' e o ey n' (203'39)
'
"
Ya(+1 = A sz, k = 19 2’ e e o4 rl"’19 (2.3.1‘0)
ket
and
s2 2 2
Tonet = ner = Vn)¥op
Y2n+1 = vz ° (2.3.41)
n+1
or
1 1
Vo - Ve

n+1

For the second method, only the backward solution exists and Y1 is
expressed by (2.3.36). For the third method we can use the backward as
well as the forward solution and the two solutions.should be identical.
They can be different from each other if the measurements are
inaccurate. Then the question arises of how to take advantage of the
fact that the system (2.3.23) is overdetermined.

The solvability of the problem depends on the determinants
(2.3.32). They have to be different from zero. In other words any two
successive nodal voltages for the two tests cannot be linearly
dependent. Al so Vﬁ_ﬂ and V; should have nonzero values. From a
physical point of view we see that none ofAthe nodal voltages (except

1

vn+1 and V?) can be equal to zero. This is because if V; = 0 or Vi = 0



then V;” = V1 = ... = 0 or Vi_1 = Vi_z = ... = 0, respectively. Then
also &, = Ak+1 = ... = 0 or Ay = Ak-‘l = ... = 0 and the solution does
not exist. This corresponds, for instance, to the situation when the
frequency of excitation is the resonant frequency of a shunt element.
To remedy the situation we can change the frequency of excitation and/or
arrange for other measurements, i.e., use other ports of excitations.
Otherwise, if all nodal voltages are different from zero the solution is
likely to exist. For instance, for a resistive ladder network the
voltages V}. V;_,. ... and V§+1. VIZ]. V§_1. ... are consecutively smaller
and, as a consequence, the determinants (2.3.32) are different from
zero. The only exception occurs when two successive voltages are
ijdentical, i.e., a series element is a short circuit. In this case,
"although we can identify Y2k = =, we cannot identify Y, . and Y, .,
separately. Only the composite parallel connection of Y2k—1 and Yz<+1
can be determined. This corresponds to the assumption that the network
does not contain parallel connections of elements which are to be
identified.

The above example of the ladder network parameter identification
gives us some guidance as to how to arrange for independent tests of
measurements as well as some problems which can arise. However, these
are not satisfactory enough and more general and precise methods and
properties should be sought. 1In particular, methods for active networks

are of great importance. We deal with this problem in the following

subsection.



Active Networks

We now consider a network which consists of passive as well as
active lumped elements. - Control sources are taken into account as
models of active elements. We will consider only voltage controlled
current sources (VCCS) which are typical for the nodal apprcach. It is
sufficiently general for many practical cases.

The general formulation discussed at the beginning of this section
can easily be extended to identify unknown control coefficients besides
all other passive admittances. Of course, if the control coefficient of
a VCCS is known, we can treat this source as independent since the
controlling voltage is also known.

Consider a network with passive branches and s voltage controlled

current sources. The VCCS elements are described by the equation

c

Iy

c ,C
=Y, U (2.3.43)
for kK= 1, 2, «ce,y 8.

For our purposes we have to treat the controlled branches as
different from those which contain passive elements and/or independent
sources even if they are parallel. Hence, the branch-node incidence

matrix for the network can be expressed as
A= [ﬁp 'éa] (2.3.44)

where Ap is the (r-1) x p matrix described by (2.3.1) and A is an (r-1)
X 8 matrix constructed for all controlled branches in the same way as

Ap. Now, Kirchhoff's current low can be written in the form



A, T+ .1° = -{S, (2.3.45)
where
3° = s .. 0T (2.3.46)
Using the notation
U = diag(Uy Uy ... U UT UG ... UD) (2.3.47)
we finally find the equation
S

P =4
~
P
L}
2

(2.3.48)

S

where A is given by (2.3.44), I° is described by (2.3.3) and Y is the

vector of unknown parameters

- c T
Y=Y, ¥, .o T YT YD L YT (2.3.49)

c
1
The system (2.3."8) contains r-1 equations with p+s unknowns, As
before, in order to obtain an appropriate number of independent

equations we have to arrange for other tests. The number of tests which

we need is at least

p+S
m= int ( F:T ). (2.3-50)

The same approaches are valid as for the choice of independent

measurements.



3. FAULT ANALYSIS

3.1 Problem Formulation

Fault analysis is strongly related to the problem of
jidentification, which was discussed in Section 2. By a fault we mean
not only an unwanted short or open circuit but also, more generally, any
large change in the value of an element w.r.t. its nominal value. Since
the meaning cf the term "“large change" is not precise enough we will
consider any change in element value as a fault. Of course, we assume
that the network design, i.e., the topology as well as the nominal
values of the parameters are known.

Fault analysis consists of two stages: fault detection and fault
evaluation., Fault detection can be done by the method which identifies
all element Qalues and then comparing the nominal and actual values.,
Thus, fault evaluation is being done simultanecusly. This approach,
however, can be too general. It may also be too difficult if, for
instance, the network is not element-vaiue solvable. Usually, we look.
for one, two or several faults and there is no need to identify
everything as though we did not know anything about the network.

The fault detection should locate the faults, i.e., identify
elements which are 6ut of their nominal values, Once we know which
elements are at fault, the fault evaluation is simply equivalent to the
identification of selected parameters discussed in subsection 2.3.
Therefore, in this Section, we will mainly deal with problems of fault

detection.
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3.2 Single-fault Detection

Consider a network function f as a function of a single element Y.

For many cases it can be expressed as a bilinear function

(3.2.1)

The direct use of (3.2.1) for the single-fault detection is impossible
since f can be changed either by a change of Y or by changes of the
coefficients A, B, C, D which depend on values of other elements.

Now consider two different network functions f'1 and f2 of the same

element Y as

f (3.2.2)

1°¢C +D.¥

If the two functions essentially depend on Y, i.e., AiDi - Bici £ 0 for

i = 1, 2, then each of them can be solved for Y and the solution is

A1 - C1f1 Az - C2f2

----B1 + D1f1 —32 + D2f2

(3.2.3)

Y
From (3.2.3) we find the relation

(0182 - D1A2)f1 + (A1D2 - 8102)f2 = (A1B2 - B1A2) + (0102 - D1C2)f1f2.

(3.2.4)
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which holds for any value of Y provided that all other elements are
fixed., If the two network functions are of the same type (e.g.,
trans-impedances) the dencminators C1 + D1Y and 62 + D2Y are determined
by the same characteristic polynomial of the network. Hence, they can
differ only by a constant multiplier, so C1D2 - D102 = 0 and (3.2.4)

beccmes a linear relation
af‘1 + of. = ¢ {3.2.5)

) 4 _ ) 5
where a = 0182 - Dquv b = A1D2 B1C2 and ¢ = A182 D?AZo
Equation (3.2.5) gives us the relationship between values of f1 and

f. when all network elements except Y are kept unchanged. In other

2
words the coefficients a, b and c¢ depend only on nominal values of all
other elements. Similar relationships between f1 and f2 can be derived

for all other elements Y1’ Y2, eoes Yp. This is done for nominal

values of all elements. Therefore we obtain p equations
i i .
a f1 + b f2 =¢, 1z 1,2, ¢cos Ps {(3.2.6)

each of them corresponding to a certain element of the network.
Superscript i denotes the index of the element. We will use these
equations for the single-fault detection.

Based on measurcments, we find the actual values of f1 and fg. If
there is a single fault within the network, i.e., one of the elements
Y

Y Yp is changed, then the corresponding equation of (3.2.6)

1° 2 ©e o9

is satisfied since all other elements are at their nominal values. All

other equations are likely to be unsatisfied. To be able to identify
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uniquely the fault location it is required that

# 00 (3:2.7)

for any k, &, k # £. If these conditions are fulfilled then all of the

equations in (3.2.6) are satisfied only by the nominal values f? and fg

and no two equations can be satisfied by the same values f1, f2
0
2.
geametrical interpretation of this is given in Fig. 3.1. The equations

different from fo. f The two-dimensional (e.g., DC network)
(3.2.6) describe straight lines in the two-dimensional space f1, f2.
They all intersect at the point corresponding to the nominal values of
all elements.

Since the nominal values satisfy equétions (3.2.6) we can use the

changes

Aaf, =

0 -
j - - fj' j - 1. 2' (3-2:8)

J

instead of f1 and fa. Thus, we have homogeneous equations

ai Af. + b:l

1 Afz = 0, i = 1. 2' o020 9 po (3-209)

To use these equations we do not need to know the values ci, i=1, 2,
eses Py but we have to know f? and fg.

The actual values of the network functions f1 and fz are to be
identified by measurements. Using, preferably, current excitation and

voltage measurements the two network functions should be certain

impedances or trans-impedances
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f. = V»/I s (j = ‘g, 20 (312»10)

Thus, the equation (3.2.9) can be directly expressed using the measured
voltages v? and Vg instead of f‘1 and fz. If the excitation currents Igi
and IS2 are at different values then the coefficients at (or bi} have to
be rescaled. Otherwise, this is not necessary.

The two excitations 181 and Ig2 do not need to be applied to the
same port, but if they ars then the voltage measurements VT and Vg can
be taken simultaneously {(i.e., at the same measurement test)y. We now
derive a simple method which supplies the coefficients of equation
(3.2.9) for the latter case.

Consider the representation of the network shown in Fig. 3.2. Note
that the UY-port network consists of elements which are at their nominal

values, so it does not depend on any fault.

According to Fig. 3.2 we have

~ ~ -
m
V1 0
m
V2 0

V = =7 . (3.2.11)

VI Ig
Vi mViAYi

“iames s R ‘J

where V? and Vg are the voltages measured and Ig is the excitation

(i.e., we consider th: network functions fj = V?/Ig, j = 1,2). Since

the left hand side of {3.2.11) can be expressed as
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0

V=V + AV, (3.2,12)

where V0 is the nominal vector obtained for AYi = 0, we find

[~ b B 7
Av‘;“ 0
Avg 0
AV = =27 R (3.2.13)
AV1 JViAYi
L - - e
Thus
i v'ﬂ ) z i
8% 14
= Ii . (3.2.14)
m
AV2 zle
S R L st

Eliminating I1 from (3.2.14) we obtain

Z,y, AVY - 2,8V, = 0. (3.2.15)

Note that in order to.be able to eliminate Ii at least one of Z1u and

Zoy has to be different from zero. The equation (3.2.15) is one of the
equations (3.2.9). It corresponds to Yi' S0 ai = Zzu and bi = -Z1u.

In this way we can find all equations (3.2.9). But it would be

inconvenient to consider as many different U4-port networks as the number

of elements. We propose to use the adjoint network simulation for this

purpose. The method is explained in Fig. 3.3. According to Fig. 3.3(a)

we have
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. 1 [z,
. 0 Z
= ZT 0 = 212 (3.2.16)
- - 13
| Vi R RErs
so that
V11 = 215. (3.2.17)
Similarly, according to Fig. 3.3(b) we find
- 4
Vi2 L Zzuo (3&2. 48}
Finally, equation (3.2.15) can be rewritten in the form
v m o m _ \
‘12 AV1 - Vi AV2 = 0. (3.2.19)

It can be shown that the above discussicn is valid for all elements

of the network under a mild condition that the measured voltages V? and

2 essentially depend on all elements. Moreover, it does not matter if

v
the port of the element Yi is the same as the port of éxcitation or a
port of measurement. Similarly, the port of excitation can be ocne of
the ports of measurement. Therefore, in order to obtain the
coefficients of the equations (3.2.9) two simulations of the adjoint
network are required. First, we apply a unit current to the first
measurement port and calculate the voltages across all elements 611,
321, ve e §p1' Second, applying a unit current to the second
measurement port we find 612. 322, coay sz. Finally, we formulate the
equations (3.2.19) for i = 1, 2, ..., p and check the condition (3.2.7).

In fact, only one simulation is required since in both cases we have to
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solve exactly the same system of equations with different rightv hand
sides. It can be calculated simultaneously, or alternatively, using the
same LU factorization.

Although a rather rare case, it is possible that not all
determinants (3.2.7) are different from zero. If two equations in
(3.2.9), say for :'L1 and 12. are found to be linearly dependent it means
that VT and Vg are influenced by Yi and Yi similarly. The
corresponding straight lines in Fig. 3. 11 are iden:ical and we cannot
distinguish a fault of Yilfrom a fault of Yiz. This situation can
appear, for instance, if two elements are symmetrical to each other
w.r.t. the voltages measured. To remedy this problem we can choose.two
other voltages in order to replace at least one of the two equations.

Finally, it is to be noted that the above method can be used to
detect more general faults like shorts between nonincident nodes. We
can simply consider nonexisting elements between such nodes as elements

of nominal value Y = O and we can derive the equations of the form

(3.2.9) for those elements.

3.3 Multiple-fault Detection

We now generalize the foregoing approach in order to be able to
deal with several simultaneocus faults within the network. These faults
are represented as external loads of (mk)-port network shown in Fig.

3.4, We consider n ports of measurement with

o e 0 an (3.3'1)
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and

a6 o o4 ...’Iﬁ]T. (3.3.2)
The ports of fault are described by
Ve vl vt
and
- rf L. 15T aovRar® viar® Ll v T, (3.3.3)
: 12 0k 18%q Vobls Kk

where k < n-1,
We assume that the impedance matrix £ of the (n+k)=port network

exists., According to Fig. 3.4 we have

m m
v Zem  Zmx || %
= ® (3030 u)
v¥ z z i
a~ ~Xm ~¥XX ~

Assuming that the ports of measurement are open circuited or are excited
by independent current sources we find that the nominal voltage vector

is described by

<
2 b

xo = % ° (303n6)

=
[ X =
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" Hence, the voltage change vector can be expressed as

av® 0
= Z 9 (303.6)
x ~ x
Av I
and, in particular,
AT S (3.3.7)

me is a rectangular matrix having more rows than colunns. Assuming

that zmx is a full column rank matrix we can find the solution of the

equation (3.3.7) as

X _ ,.T -1 T
E = (me me) me A!m' (3.3.8)

Therefore, eliminating 1* from (3.3.7) and (3.3.8) we find the equation

T, -1,T m_ '
[me(zmxgmx) me - 1]AY =0, (3.3.9

which is a generalization of equation (3.2.15). Using the notation

T

b pcaTay AT

~

(3.3.10)

2 3|

A)

for a full column rank matrix é, the left hand side of (3.3.9) can be

rewritten in the form

o~

Z, - D" (3.3.11)
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Given a vector of voltage changes A!m we can calculate the expression ‘
{(3.3.11). It is equal to 9 regardless of the element changes AY1. AYE’
cens AYk if all other elements are kept at their nominal values. In
other words if (3.3.11) is different from zero it means that there is
another element at fault beside the elements Y1, coey Yk'

In order to be able to detect k simultaneous faults we need to know
expressions similar to (3.3.11) for all possible'combinations consisting
of k elements.

As before, the matrix me can be found by means of the adjoint

network. For the adjoint network we have

vm ZT ZT Im
- - [T ~Xm ~
= . . (3.3.12)
X T T %
v Zmx  Zxx I
Let I* = 0. Then we obtain
vE s gﬁx 1, (3.3.13)

~

where Im is the vector of an adjoint network excitation. Taking n

“ml Tm2 “mn

linearly independent excitations I™ , I™, ..., I"" we have the equation

xny 2T o™ Ll 1™, (3.3

v e Y ~mx -~

wnich can be solved for Z;x. The simplest sclution can be obtained by
applying a unit current, successively to all measurement ports (see Fig.

3.5). Then
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Sl o R (3.3.15)
and

T o x1 oXn

me [v~ 200 ! ]n (303.16)

Thus, we need n simulations of the adjoint network (with the same
LU factorization) in order to obtain the coefficients of the expression
(3.3.11) for all possible combinations of k elements. We apply a unit
source to the measurement ports and calculate voltages across all
elements of the adjoint nominal network. Taking‘ the values
corresponding to a certain combination of elements we find the
corresponding matrix me. In this way we obtain the matrices ng j=1,
2y ceey (i) for all possible combinationms.

If there are k faults within the network we can detect them by
checking the expressions (3.3.11) for all possible combinations of k
elements. The expression which corresponds to the elements at fault is
equal to zero while the other expressions are likely to be different
from zero. This enables us to indicate the suitable combination.
However, the approach is limited. Some problems which may arise are

discussed in the following subsection.

3.4 Interpretation

We now discuss the assumptions and the capacity of the approach
presented in this chapter. In order to use it we have to formulate an
appropriate set of p equations for single-faults, (g) matrix equations

for double-faults, (g) matrix equations corresponding to.three.
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simultaneous faults ete. This can be done by practically one simulation
of the adjoint naminal network (with n different excitations). Given
measured voltages we calculate the voltage changes w.r.t. nominal values
and check the equations, We start with equations corresponding to
single faults. If all eguations except one are not satisfied we can
suppose that there is 2 single fault in the element which corresponds to
the satisfied equation. (Although a rare case, it is possible that the
situation is caused by two or more faults of other elements; this can be
verified by other equations.) If all equations corresponding to single
faults are not satisfied we have to go further and check the equations
corresponding to double faults, etc.

To be able to detect the suitable fault combination the equations
(3.3.9) are required to be "independent” in a certain sense. More
precisely, we do not want to face the situation when two or more
equations (for the same k) are satisfied simul taneously for Allm £ 9
But this is not always possible. For instance, if only element Y1 is at
fault then, checking all equations for double faults, all equations
beorrespcnding to those combinations which contain Y1 like Y1Y2, Y1Y3,
«es are satisfied. In other words, it is possible that two equations of
the form (3.3.9) are simultaneously satisfied for certain Aym. but
generally such an implication does not exist. This is the case we are

interested in. The concept of block indepencent equations will help us

to state the problem,

Consider equation 73.3.7) in a slightly more general form

(3.4.1)

[
¢ =
13
34
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where A is an n x k-matrix, k < n. The rank of A is assumed to be

rank A = k, (3.4.2)
so the matrix ng is nonsingular. System (3.4.1) is overdetermined. As
is known, the solution of (3.4.1) exists if and only if (compare with

(3.3.9))

P' = E; (30“.3)
or

(A - Db = 0. (3.4.4)

In other words, the left hand side of (3.4.4) is equal to zero if
and only if the system (3.4.1) 1is consistent. Taking (3.3.9) and
(3.3.7) into account, that is to say, the expression (3.3.11) is equal
to zero if and only if there exists the solution Ex of the system
(3.3.7) for given Aym. Therefore, if we want systems (3.3.9) to be
"1nde§endent" we actually do not want different systems (3.3.7) (for
different combinations) to be simultaneously consistent (or
inconsistent) for any Aym. Hence, we come to the following definition.

Consider two overdetermined systems of equations
Ax,=b and A,x, 6 =Db, (3.4.5)

and assume that n x k—matrices A1 and A_. are of full column rank.
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Definition 3.1

Systems (3.4.5) are said to be block dependent if for any B both

are consistent or both are inconsistent.
If systems (3.4.5) are not block dependent then they are called

block independent.

The conditions of Definition 3.1 are equivalent to the logical

expression

and YHAX = A X.. {3.4.6)

Consider, for example, the second part of (3.4.6). For any X this is a
consistent system of equations w.r.t. X4, 80 according to the previous

discussion (compare with (3.4.3))
BiAsxy = A, (.47
or

(51 - DA, (3.4.8)

~

I ]

[AM]
]

2O
®

Since the above equation has to be valid for any x2 we find the

condition

LAy = By, (3.4.9)

Similarly, from the first part of (3.4.6) we find



- 4G -

5251 = &1. (3.4.10)

The conditions (3.4.9) and (3.4.10) are necessary and sufficient for the
systems (3.4.5) to be block dependent. In fact, only one of the two
conditions has to be checked. To show it we introduce the notion of

block dependent matrices. Assuming, as before, A1 and 52 to be n x k-

matrices of full column rank we call them block dependent matrices. if
(3.4.9) holds. It will be denoted by A1 ~ 52. The relation has the
following properties. It is reflexive since A & = AGAA)'(ATA) = A.

It is commutative because if A B = B then

5a=n@e)' BT -1 BT AT k81" 8Ya -
- aaTy~"aTs BTacaTa)~1aTacaTa)~"aT1"! T4 -
= aaThy'aTeyaTey ! (wTay8™) ' 8%y =

"
>
°

In ihe above derivation we utilized two propertiés: (1) the matrix
(QTQ) is symmetrical, and (2) the matrix 5?5 as well as its transpose
§T§ are nonsingular. The latter property follows the asSumpt;on g = Eg
= ﬂ(éTé)_1(ﬂT§) because k = rank E < rank(ﬁTg) < k. Thus, if one of the
expressions (3.4.9) and (3.4.10) holds then the second one holds also.

The relation of block independent matrices is also transitive. Assuming

é ~ E and B ~ C we have



AT wlhaatn T AT BT -
caatp T AT W E T ED WA -

= ARG -

= AC.

Therefore, the relation of bleck dependent matrices is an equivalence
relation. This is a generalization of the linear dependence of vectors.
Similarly, the condition (3.4.9) (or (3.4.10)) is a generalization of
the condition (2.2.7) (with the equality symbol). Using the condition
(3.4.9) we can find out which equations of the form (3.3.9) are
dependent., In other words, we can determine the combinations, whose
influence on the vector Azm is similar, i.e., based on Azm we cannot
distinguish these combinations. Then, we should change measurement
tests to be able to determine which combination actually occcurs.

The approach presented in this chapter is based on the assumption
of the existence of the impedance matrix (Figs. 3.2 and 3.4) This
assumption, however, is not essential since the impedance matrix exists
for most practical networks. A more crucial assumption is the one which
concerns the matrix me in (3.3.7) to be of full column rank. The
assumption means that there exist exactly k linearly independent rows of

A

ax These rows correspond to those voltages which we can use to

uniquely determine Ix as well as Vx. This is simply the prcblem of the
jdentification of elements AY?. AY;. se oy AYi which was discussed in

subsection 2.3. Under this assumption, the inverse of a full column
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submatrix of me exists and.‘as a consequence, the conditions of Theorem
2.2 are satisfied. This is seen directly from (3.3.4) since, knowing Ex

as a solution of (3.3.7), we have
vz 1™+z 1%, (3.4.11)

where Em is a given vector of excitations. Then, according to (2.3.11)
we find the element values AY:, AY;, vee, AYX.

As mentioned in subsection 2.3, the more unknown elements we want
to consider the more unlikely it is to satisfy Theorem 2.2 (or Theorem
2.1). In other words, there is an upper bound of k for which we are
able to construct the equation (3.3.9) and, as a consequence, to detect
k simultaneous faults. If we want to consider more simultaneous faults
we can use the method of identification of all elements described in

subsection 2. 4.
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4, POSTPRODUCTION TUNING

4,1 Proklem Formulation

According te [3], a design consists of the ncminal vector

iG 4 [¢? ¢g . ¢§3T (4.1.1)

of the network parameters ¢1, ceey ¢p’ the tolerance matrix
g 8 diagle, ¢ € ) (4.1.2)
= 1 2 20 e p [ ® w

and the tuning matrix

& .
T = d*ag(t1 t2 con tp). (4.1.3)

Usually only some, say k, elements are tunable, so the tuning matrix can

be represented as
E = diag(t1 ese tk 0 ... 0). (3.1.1

An outcome of the manufacturing process implies a point

0

¢+

[ >3

o , (4.1.5)

~

[ o]
¢

where u € Ru and Ru is usually considered as

-~

e RP | =1 <y, <1, 0= 1,2, ..., p}. (4.1.6)

An outcome ¢” meets the required specifications if it belongs to the

"~

constraint region RC, defined as

R, 2 {6 | g(e) >0}, .17
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where g is the vector of constraint functions.

~

After tuning, an outcome ¢*P can be expressed by

$"P = o¥ + T p, (4.1.8)

where $ is a scaling vector corresponding to the actual amount of
tuning. Since the tuning range is defined by the matrix T we consider o

as an element of the set

R = {peRP | a <p; &by, -1 <ay <0, 0¢D

. < <10 (4.1.9)

A worst-case design centering, tolerancing and tuning algorithm

[3,11,12] supplies a design such that

v u e Ruag ¢ R, such that 3“" ¢ R_. (4.1.10)

Postproduction tuning consists of two stages: (a) tuning assignment
and (b) carrying out this assignment. If only one element is to be
tuned then the tuning can often be carried out directly by experiment
without tuning assigmment. This approach, however, can hardly be used
if many elements are to be tuned or if the tuning process is
irreversible. |

The objective of the tuning assignment problem is to find an

appropriate vector p such that

ap

ne
n

€ Rc' .1.11)

le
e
+
3
o
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a . . .
where ¢° is the actusl parameter vector

"~

aiT

ah,.a  a a ,
f - €¢1 @2 ® 69 ¢k LI ¢p s \u.1¢12)

The vector @a has to be identified by means of any method based on
postproduction measurements.
In terms of optimzl design problems the tuning assigmment is quite

gimilar to design centering. To show this let us consider the k-

dimensional subspace of tunable elements ¢t such that

e
[d
ct

$ s (4.1.13)

where

and

A T
gr - {¢k+1 ¢k"|’2 ® e B d)p] *

Let ¢f denote the actual values of the parameters which are not tunable.

Then
A a, A k a
Roe = Ro(2) 2 {gp €R | 8(¢) > 0 and ¢. = ¢} (4.1.14)
is the constraint region for the tuning assignment problem, The

additional conditions which appear in (4.1.14) can be treated as

additional equality constraints

h($) = ¢ ~ ¢ = O | (4.1.15)
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used explicitly in the optimization process. However, it is feit that
the better approach makes use of these constraints during the analysis

of the network. In other words, we consider constraint functions

8,00, & g(®) : (4.1.16)

A A

where ¢ is given by (4.1.13). Then the optimization (i.e., tuning
assignment) can be done directly in the subspace ot with the constraint
region

R, = {9, | g,(¢) 20} (.1.17)

A three-dimensional interpretation of this is shown in Fig. 4,1,
Unlike optimal design centering we now have other constraints since
the set Rp is limited, i.e., only certain amounts of tuning are

available. These constraints can be represented in the form

and a (4.1.18)

where Tt consists of first k columns and rows of T and components of the
vectors a and b are given by (4.1.9) for i = 1, ..., k. We use the
notation

Ep(ft) 20 4,1.19)

for the constraints (4.1.18).



A number of different approaches which have been developed for
optimal design centering can now be adapted in tuning agsigmment. We

will discuss some of them [2]. We start with minimax tuning assignment.

An eoptimal tuning assigmment in the minimax sense can be formulated

as the following constrained minimax problem

minimize max(—g;(¢t)) (4.1.20)
28 1
subject to (4.1.19), where gi(@t} denotes the ith component of ga(Qt).
This is an exact approach. If we take into account an uncartainty
in carrying out the tuning assignment we should consider the tolerances

on the tuning. We discuss this problem in the following sections.

4,2 Fixed Tuning Tolerance Problem

Two different approaches can be taken into account. First, we deal

with the absolute tuning tolerances, i.e.,

@ip = gi + ztgg + D3, (a.2.1)
0 . . X
where Py is the nominal tuning,
- i o
2 = diag(d1 d2 oo dk) (4,2.2)

is the tuning tolerance matrix, § e R6 and RG can be considered as

R £ (s emd | -1 <8 <1, 1= 1,2, .. Kb (4.2.3)

Given the actual parameter vector ¢z and the nominal tuning
assigrment pg we see that all the outcomes fall into the box, whose size

is defined by the tolerances D, as is shown in Fig. 4.2(a). This
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inaccurate tuning can be treated as the accurate tuning po but starting

from an inaccurate point ":6' described by
aé a )
oy = & + Ds, 4.2.4)

as is shown in Fig. 4.2(b).

Assuming that the appropriate set of candidates for a worst case
tuning (often vertices of the tuning tolerance region) Sy So0 cees fN
ijs available then the fixed tuning tolerance problem can be solved using

(4.1.20), where Ea(¢t) is extended over all worst-case candidates

§a61(2t)' §a (Qt)' cee ..g,as,f?.t)'

The fixed absolute tuning tolerance approach seems to be a little
unrealistic fqr small amounts of tuning, espeqially if some of the
tunable elements do not need to be trimmed at all. Alternatively, we
can consider relative tuning tolerances to be fixed. This can be

expressed by

gip = ¢: + Tipg + DApg, (4.2.5)

where g = d:‘Lag(d1 d2 dk) is now the matrix of relative tuning
tolerances and A 4 diag(g). g € Rs, represents a random effect of
tuning.

The preceding approach cannot be applied directly to this problem
since the size of the box varies with the nominal tuning amount 2?-,'

Nevertheless, assuming that the candidates for a worst case tuning 21,

32, cesy fN are available we can consider the matrices
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Ei + Efi’ i=1, 2, .o, N, (4.2.6)

as corresponding worst case tuning ranges. Hence, (4.1.20) extended
over all worst case tuning ranges i3 an appropriate minimax formulation

of the fixed relative tuning tolerance problem.

4,3 Variable Tuning Tclerance Problem

For better centering of the tuning assignment the variable
tolerance approach can be used., This might enable us to carry out the
tuning as inaccurately as possible. Different optimization techniques
are utilized for the optimal design centering [2]. The one which is
based on a nonlinear programming formulation minimizing a suitable cost
function [3] seems to be the most useful approach tc the variable tuning
tolerance problem,

Now, besides the nominal tuning BO {(we now omit the subseript t for
the sake of simplicity) the component tuning ¢tolerances of (4,2.2) are

the variables of the problem. The suitable cost function
, d), (4.3.1)

where d = [d, d. ... d JT should possess the well-known properties

1 72 k
C(po, d) + constant as d +» = (4.3.2)
and
0 2
Clpg , ) +» = as di + 0 (4.3.3)

which can be satisfied by the function C1(po, d) of the form
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0

0 K lesl
¢, (e% @ = I oy 5. (4.3.4)

=TS i

where ay are constant weights.

However, for our purposes the property (4.3.3) should be modified
since for pg = 0 we do not need to consider any tolerance at all, i.e.,
di should be equal to zero. Then, obviously, there is no cost of such
untuned "tuning". In other words, (4.3.4) should be rewritten in the

form

0
logl

(4.3.5)

where J 4 ii | pg 4 0}. Moreover, we would prefer to tune only as few
elements as possible. This can be expressed as another property of the
cost function, namely, that it is a decreasing function of an absolute
value of component tuning lpgl for the relative tolerance being fixed,
p?/di = const. On the other hand, we deal with additional
constraints (4.1.19). Both, constraints (4.1.19) and forcing the "zero-

i.e.,

tuning", if possible, can be applied simultaneously by considering an
additional cost function, which is actually an interior barrier

function, of the form

0.2

K (p3)

C (D ) =z - I B ’ (u03-6)
i=1 * (pg-ai)(pg-bi)

where Bi are constant weight coefficients.

Finally, the variable tuning tolerance problem can be formulated as
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minimize [Ci(po, d) + Czipg)l (4.3.7)

po, d

subject to

ap .-
by € Rct for all § € RS, (4.3.8)

where gip is given by (4.2.1).

Any algorithm for the above problem should avoid some numerical
difficulties which may arise because the cost function is not
differentiable at points p? =z 0, di = 0. Again, the solution of (4.3.7)
can be obtained assuming that the set of worst case candidates 1is

available.

4.4 Uncertainty of Identification

As a consequence of inaccurate measurements we should consider the
uncertainty of identification of element values. In other words, we
should take into account a region R: of all possible points ¢2 instead

of a single point ¢i. Since the actual parameter vector ¢a depends on

a5

the vector of measurements V [V1 V2 cos VM]T as

62 = o2 (V) (4.4.1)
.
and we measure the values VO = [V? Vg ceo V;]l then
a a a a
Rt = {ft | o R}, (4.4.2)



- 61 -

vhere

R% = (o7 | ¢% = o0 +F ) for all e R, (4.4.3)

~ ~

where f 4 diag(f‘1 f2 fM) corresponds to the inaccuracy of the

measurements and RE 8 {g | =1 £ E’i < 1}. The general properties of the

dependence of the region Ra on the vector § are still not known and

should be investigated. A more serious problem, however, is associated

with finding the constraint region (4.1.14). Now, it can be defined as

a
Rop = m Rc(.?r)' (4.4.4)

a ,a
greRr

where R: = {gi | ga ¢ R},

Finding the constraint region (4.4.4) may be extremely difficult
and some approximation methods might be useful.

Finally, the tuning assignment problem consists of finding the
appropriate vector fo such that the whole region R; would be placed
within the constraint region (4.4.4). For exact tuning the situation
would be like that of Fig. 4.2(b). Again, tuning tolerances can be

taken into account.
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5. CONCIUSIONS

A wide range of topics in the field of postproduction parameter
jdentification, tuning and fault detection have been discussed. Methods
of identification and fault detection presented here are oriented to
linear analog electricazl networks.

In the field of parameter identification we have discussed the
methods for finding: (a) general hybrid matrix parameters, (b) values of
selected elements and (c¢) values of all elements. The methods are based
mainly on voltage measurements of the network, which is excited by
current source(s). The limitationsA for the selected element
identification have been derived and formulated in Theorems 2.1 and 2.2.

For identification of all elements a simple approach based on nodal
analysis has been proposed. As a very important example we present a
method for ladder networks. The method is much simpler than that of
Trick and Sakla [14] and, because of a particular sparse form of the
equations, we obtain explicit recurrent formulae for the solution. For
arbitrary network tepologies, however, there are still many open
questions and unsolved problems.

Fault analysis, which can be done using methods of identification,
needs its own approaches especially in the case when only a few faults
oceur. Methods based on the bilinear dependence of network functions on
a circuit parameter have been developed for single-fault detection. A
particular approach utilizing a single current excitation and
measurements of two voltages has been proposed. The adjoint network
simulation has been found to be a convenient way for the necessary

calculations. This approach has been successfully extended in order to
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deal with multiple-fault detection. However, there is a limit to the
number of simultaneous faults which can be considered.

Finally, a variety of approaches to the problem of postproduction
tuning have been discussed. Starting with the simplest minimax
formulation‘based on the assumption that the identification and tuning
are accurate enough we have gradually introduced more complicated
problems taking tolerances of tuning and inaccurate measurements into
account. Some of these problems are extremely difficult and there is a

great need to develop them in the future.
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FIGURE CAPTIONS
Two-port measurements.
Two-port network with source and load.

n-port network. The current excitation corresponding to
the ith set of measurements is shown.

Single element identificaticn.
Active n-port and its hybrid equivalent.

Representation of active n-port of Fig. 2.5(a) as an
(n+em)-port with m external excitations.

Hybrid equivalent of a 2n-port.
(2n+m)-port with m external excitations.
Generalized branch.

Ladder network.

Geometrical intefpretation of single-fault detection based
on checking of equations (3.2.6). The actual values f
and f2 corresponding to a change of Y2 are also indicated.

Representation of a network with a single fault as a
4-port ngtwork with the external load AY, . The nominal
value Y, is included in the H#-port, The port of
excitation J and ports of measurements are also indicated.

Adjoint network simulations giving coefficients of
equation (3.2.9).

Network with k simultaneous faults represented by (n+k) -
port with n ports of measurement. The impedance matrix Z
depends only on nominal values of network elements. ~

Adjoint network simulations giving coefficients of
equation (3.3.9).

Constraint region Rct in the tunable element subspace.
An illustration of the fixed tuning tolerance problem

indicating (a) the tuning tolerance region and (b)
corresponding "starting" box.
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Fig. 2.3
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Fig. 4.1
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