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Abstract - This paper presents an approach for
sensitivity analysis and gradient evaluation required
in power system analysis and planning. The approach
utilizes Tellegen's theorem in an augmented form which
allows different power system problems to be handled
based on the a.c. power flow model in general and
without any approximations.

The approach provides the flexibility of
including line responses directly while preserving the
advantages of compactness, sparsity and simplicity of
the adjoint system. Numerical results are presented
for illustration and comparison.

INTRODUCTION

Many power system problems have been successfully
solved by optimization techniques [1]. For effective
application of these optimization techniques [2] to
analysis and design the gradient vector of performance
functions and constraints w.r.t. the design parameters
are required to be calculated in an efficient way.
Relevant problems include optimal power flow studies,
contingency analysis and planning of electric power
systems.

Tellegen's theorem [3] with extensions [4] has
been successfully exploited in electronic circuit
analysis and design [5] as a powerful tool for
calculating the required gradients wusing one
additional linear network analysis.

Fischl and Puntel [6] and Puntel et al. [T7]
described the use of the adjoint network in the
transmission system planning problem based on the
linear d.c. power flow model. The d.c. model may be
considered of sufficient accuracy for some
applications. However, it is characterized by the
restrictive assumptions of neglecting transmission
losses, excluding reactive power flows and considering
flat voltage profiles which make it inadequate for
other studies requiring a more accurate model and more
information.

In the work of Wu and Sullivan [8], the a.c.
power flow model has been recognized with some
approximations. Two coupled models have been
developed to supply the gradient information. The
tableau approach [9] presented by Director and
Sullivan utilizes the Lagrange multiplier method to
provide gradient information based on the a.c. power
model. In this approach the total number of variables
of a particular problem dictates the problem
dimensionality.

The Lagrange multiplier method handles the power
flow constraints as general equality constraints.
These constraints characterize a particular electrical
network. We can utilize this fact to achieve a great
deal of dimensionality reduction and scheme
compactness. Indeed, Tellegen's theorem facilitates
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such achievement. Tellegen's theorem has been
successfully used by Puttgen and Sullivan [10] in a
suitably extended form to provide gradient
information. The a.c. model was used with some
approximations regarding generator modelling. Their
approach provides bus voltage gradients w.r.t.
transmission-line parameters.

Fischl and Wasley [11] have theoretically
outlined an approach for calculating power flow
sensitivities. It is based on the a.c. power flow
model and effectively utilizes an adjoint method to
provide the gradients for several classes of
functions. The system states are bus quantities so
that the adjoint matrix of coefficients is the
transpose of the original Jacobian matrix. State
transformations are required to handle functions of
line quantities.

In this paper, we present an approach which
allows Tellegen's theorem in an augmented form to be
directly used for efficient sensitivity analysis and
gradient calculations. The a.c. power flow model is
used without any restrictive assumptions. Several
classes of functions can be considered. Line
quantities are directly handled. The adjoint matrix
of coefficients is of the same size and sparsity as
the Jacobian matrix of the original network.

Numerical examples are presented based on a 6-bus
sample power system. Several types of functions are
considered for the purpose of illustration and
comparison.

TELLEGEN'S THEOREM FOR THE A.C., POWER MODEL

Assume V and I represent the complex voltage and
current variables associated with the given network.
We will use to distinguish the corresponding
variables associated with the topologically similar
adjoint network. Tellegen's theorem in the form
usually used for electronic circuit analysis states
that

£V, I =0, (1a)
b
LIV, =0, (1b)
b

where the summation is taken over all branches,
subscript b denoting the bth branch.

To exploit the a.c. power model we introduce the
following valid variations of Tellegen's theorem.
First, we have a pair of complex conjugate terms
corresponding to (1a) and (1b), namely,

* "%
{“; Vb Ib =0 (2a)
and
* "%
f} Ib Vb = 0, (2b)

where * denotes the complex conjugate. These terms
have been considered by Puttgen and Sullivan [10].
Next, we consider the pair of power terms

#* * .
IS =2 (Py-JQ) =2 VI,=0 (3a)
p DT, P p PP



and

Sb = I (Pb + ij) =

5 IV.I = 0. (3b)
b b b

b'b

These terms provide the key to the generality we are
seeking. Note, incidentally, that the directions of
power and current are the same.

Equations (1)=(3) can be written in terms, for
example, of first-order changes in the voltage and
current variables in the given network. Doing this
and collecting the terms in an appropriate manner, we
have

S ~

*
z
: [Ib GVb + Ib

sV' -V ST -V eI Vi)
b~ Vp 8L — Yy 8Ty + SV T
s(V. 1)1 =0 (4a)
+ SWLINT = a
or

L 4T TR AT AR RN
[( b+ Ib) 8V, + (Ib + b) 8V, + ( b~ V) 8T

b b

Voo vty 1t 4
+ U, - V) 617 = 0. (4b)

TERMS FOR NETWORK ELEMENTS

We consider the number of loads to be n, and the
number of generators to be ne. The buses are ordered
such that subscripts ¢ = 1, 2, ..., n. identify load
branches, g = n, + 1, ..., n, + n, identify generator
branches and n = n, + n, +1 identifies the slack

L G
generator branch.

A term of (4) associated with a load is now
considered, namely,

~ ~% # ~ % % %
IJL svl + I’L 6V1 - vg GIQ - V2 GIl + 652 + GSQ.
Since
§ * * I* v
S2 E 6(V£ Il) = VL GIQ + LG Iy
we have
8 * I* 8V
Il = [SSL -1, QJ/VE (5a)
hence
I s o1 svim (5b)
§ 0 = [s .~ 1 § LJ/VL' 5b

%
Substituting for &I, from (5a) and SIL from (5b) we
obtain

~

~% o ® o ®_ %
[IE, + Vﬂ, Il/vll,] GVQ + [IJL <+ Vl Iﬂ./vﬂ. ]GVQ‘
~g A s w (6)
+ [1 - Vm/VlJGS2 + [1 - Vz/Vm]GSl.
A term of (4) associated with a generator is
considered as
~ ~g ¥ o~ AR K %
I 8V +I 86V -~V 8I -V 8I +68S +6S .
g g g g g g g g g g

Note that
SIVI2 cs@W Yy =V vt 4V sV 3)
= = + 0
g g8 8 g g g g
from which
% * *
SV =8(VV)I/N =V 8V /V . (8)
g g 8 g g g 8

Note also that the real part of Sg is expressed by

# # * * *
2P =8(S +S5S ) =VSI + I8V +VEI + I8V (9)
g g g g g g g g 8 g 8

from which, and using (8), we obtain

* # # 2
8T = 83 + S )H)/N_ -1 &V V)N
g g . g 5 g g8 *B
- [I_ -IV /U I8 /V -V 8I /V .
g g8 8 g 8 g 8 8

* *
Substituting for 6V and 6I_ the term associated with

the generator becomes €
- vy et - aviy o v e
e g g g g Vg g g g
Wo- ot Va1 e Iy e VT Rrer VY
g ~x g 8 g . g g g g 8 g g 8
1 -V /V 188 +S ). 10
+ [ g/ g] ( g+ g) (10)
The term of (4) corresponding to the slack bus
is, for

v =o, an
given by
wrovy e e -V o 12
n V) T =Yy n’ (12)
Other elements, e.g., transmission-line elements,
characterized by

I (13)

g = YV
lead to the first-order expression

§ =
It Yt GVt + Vt GYt

from which

GVt = (élt - Vt Wt)/Yt, (14a)
hence
* * # * *
o= (8 -V Y /Y. (14b)

Substituting (14) into the appropriate term of (4) we
get

* ~ ~ #*
[V, =V, + (T, + I)/Y 180

IV, = Vr e (I + I/ 160 - (T, + IV, /Y)Y
IV = Ve e g+ TS = (T + TV /Y ) OY

™Iyt a*
- @y + IDW /YN, (15)

ADJOINT NETWORK AND NETWORK SENSITIVITIES

Consider an ith (real) design variable Qti which

may appear as an argument of admittance Y,. Note that

t
¢ti can represent, for example, the parameters of

shunt control elements and phase shifting
transformers. Then
&, = It A (16a)
t . 9% . ti’
i ti
hence
#
* t
= Z A
GYt T Qti' (16b)

Rewriting the Tellegen summation (4) we have
. N g M s ~% ~ * *
2[I£+ Vo T/V, I8, + ELTy+ VIV oy
~ NE % * * ~#
+ Z[I -IV/V +{I -IV/N}V/N ] &
g g g8 8 g g8 g g 8 g

V- (v vt e ot oy e v et
- g g ( g g/ g g ¥ ( n = n) n+( n~ n) n



~ ~

*
vV -
+Z[t V+(It

17y /Y, 161
t + T/ T

IOV, -V e (T8I (1 -V /v, 88
+t[t-t+ t+t/t t+£ -’g’/!’ 2

01 - v, viest A IR . G X A i)
PR TS TV VLN P e

~% * A~k aYt
+3 01 =V /V 16(S 48 ) =2 & [(I +I )V /Y ) 55—
g ggT gy bETtTen Ay,
*
taoHatat e A 0 an
+ ( £t t)( t/Yt) a¢ti] ¢ti = 0.

Obviously, if we have an explicit performance or
constraint function, for example, of the responses Vl'
* * *
*
Vz' Vg’ Ig' It and It as f(Vy, Vg, Vg, Ig, It' It)
then we are at liberty to define the adjoint element
~ *
vV =V, (18)
n n
whjch eliminates the expressions involving 8I  and
5In. We then rewrite the remaining components of (17)
as

afr af * af af
§f = I Vo GVE + —% 6VR') + L (gv— 6Vg + 3T 6Ig)
2 2 BVQ g g g
3f af *
+ Z (5—1— GIt + —5 5It)
t t I
t
* *
=2 @ s, + S es) w1 (2 s V)
L [ ds d(v.yv)
L g d g8
#*
s s esty w3 a9
d(s +s ) & B t i “ti
g 8
where we have defined the adjoint elements
~ af ~x %
Iy = 3y, - Ve TV (20)
» o I | af
V -V V/V = - 21)
g g & & 518 ’
~ ol T af * * %
I -I V/V = - (I -1 V. /v /v, (22)
e g g g OV (Tg = Ig Vg/Vg)Ug/Vg
* ~ af ~ *
Vt - Vt = F - (It + It)/Yt, (233)
or
o=y v, +v. 2 v o+xh (23b)
= + a1 - V(Y + Y.

)
t t 't t It

Note that each of (20) and (23) represents two
conditions while each of (21) and (22) represents only
one condition.

Note also that since f is real

] *
A @)
Vs av
2
and
3 ] *
= (5t (25)
S

INTERPRETATION OF THE ADJOINT NETWORK

Consider Fig. 1 and the equation associated with
a load bus, namely, (20).

bus |

VAL L

Fig. 1 Adjoint element model for a load bus

For convenience, we write (20) as

E ~g ~x
L = IIL +Y!L VJZ,’ (26)
where

IS A

L= af‘/an' @27
and

A 2
¥, = -8 /v (28)

Fig. 1 shows the independent source If and the element
Y .
2

Now consider Fig. 2 and the equations associated
with a generator bus.

bus ¢

A

Iq

<>

Fig. 2 Adjoint element model for a generator bus,
requiring the solution of (29) and (33)

Equation (22) is rewritten as

- A % ng
V =¢ I K)
g g lg g gt Vg (29)
where
o A _v v¥(520) (30)
g~ T 'g g/t d g
— A * 2
T = (v ;
g ( g) VG ZQS)' (31
oS A 2 *
Vo2 (v v i 2
g ( g) (3f/3 g) /(3 2Qg). (32)



and where

* *
jeq =1 V -1 V.
g g 8 g g
Equation (21) is also rewritten (see Fig. 2) in the
form
~ * ~% 3
VU —v v o=y 35 (33)
g 8 g 8 g I

Observe that the linear system (29) and (33) must
be solved to define the adjoint element corresponding
to the generator in the given network.

The slack bus constraint (18) is illustrated by
Fig. 3.

bus n

Fig. 3 Adjoint element model for the slack bus

Equation (23) for the remaining elements becomes

- - ~g
It = Yt Vt + It' (34)
where
°S A of * *
It = Yt 'EI—t— - Vt(Yt + Yt)- (35)
Independent sources associated with each branch
are summed, as shown in Fig. 4, as
PR (36)
m teT
m

for any m (= %, g or n), where T identifies those
branches connected to bus m. m

Observe that the transmission elements of the
adjoint network are identical to those in the original
network as is the case for the d.c. power flow model
[713.

THE ADJOINT EQUATIONS

The derivation of the adjoint equations are
outlined in this section. In general, they take the
complex form

e Yo Wl L Lo+4
oo Yoo Y| (%= | ot o BT
¥NL ZNG Yrm vn In * Jn
where the nxn bus admittance matrix has been
partitioned into blocks associated with the sets of
load, generator and slack buses of appropriate
dimension. Note that Ynn and associated variables are
scalars.
For load buses we let
~ ~g ~g
]-EL = YL YL + EL' (38)

bus m (=l,gorn)

to,t1,"' ’tl‘l'l

€T

Fig. 4 Equivalent adjoint elements at bus m

~ ~

where I \'

L L and I

~ ~La
consisting of the Iy, Vy and

are vectors of dimension n

IE, respectively, and YL

is a diagonal matrix whose diagonal elements are the

corresponding ¥, of (28).

For generator buses we let

(39)

(40)

(41a)
(41b)

(41e)

(42a)
(42b)
(42¢)
(42d)

(42e)

~ ~x ~g
=0 T
Yo =%+~ i * Yo
® n
R - =
where G E and GS are vectors of dimension n
~G' <G A ~Ga ~ G
consisting of the Vg, Ig and Vg. respectively, and ?G'
fG, BG and EG are diagonal matrices whose diagonal
elements are taken from (30), (31) and (33).
Let
Ygs = Qs *+ JBgge
Yy = Xy + Sy
dy = dyg * My
where R, S and M can be G, L or n. Further, let
Yy v s¥
SR RIS L
I = g1 * g2
¢ - ;¢
"'G = J"’GZ’
T -7 i®
~G T ~G1 * Je2
R -R iR
~G T ~g1 * Jegor
FG = 3fc2.

uaf)



Using the foregoing notation we arrive at

Equation (49) in conjunction with (40) separated
into real and imaginary parts lead to the rows of (43)
corresponding to the generator buses.

GRADIENT CALCULATIONS

Comparing (19) with (17) we derive the following.

Load Variables

Re {i §S,} Re{[1 - \7*/\/ 168, }
as, e A Rt )

~ ~
Re{1—V£/VE}6PE+ Im{1—VL/V2}6Q£

hence we can write

af o

a—PI = - 2Re{1 - an/vn‘}. (50)
df oF

36; = 2Im{1 - VQ/VQ}. BN

Yi~ Y f -~ - - A )
S
See * ¥y Si6 Bt B I “Ier =2 7 SnVnr * BwVne
—GS - 3 +0 3 +(@ G
~G1 ~G2~G2 ~G1~G1 '~G1~GN
-26156L * %628 | “%61%a * %c2Bae !l 261BaL * 262faL! 2618ee * 262lc| | Yan
T 2628w V1~ 1Bon* 26286 Vn2
B G . - ¥ G v a8 -3, -GV -B U
B * Y2 Sie S~ I Si6 L2 12 = L2 = Zin'n2 T Sinma
0 2Rs2 9 2Rs1 Ye2 Fez
~ J / \ J
43)
where Generator Variables
~ A —
[} =9 -0 . (4y ~% ~%
~G2 T <c2 T ~G2 ) L S R VA (52)
A v e e ee e
The rows of (43) corresponding to the load buses gg
are obtained in a straightforward manner by
sybstituting the separated forms of Y, ., Y ., Yjuo ¥, df _ o*
T and §, into (37) and (38). LL? -G e TV (53)
- For the generator buses, consider the real part gg
of (39) as
- ~ A A ~g .
Vo1 = 2eolge * 261ic1 * %6olce * Yorr (45) Other Variables
The subset of equations (37) corresponding to the V., . Y
N df t * t
generator buses is —— =2Re { — (I_ + I ) =51}
dé, . Y t t° 3¢
~ ~ ti t ti
Ig=-Ug+ g (46)
S af * aYt
where = 2Re{V, (V, + =— = V. ) — }. (54)
t 't aIt t a¢ti
A ~ ~ -
I =Y V. +Y V., +Y_ V. A7)
~G ~GL~L ~GG~G ~GN'n
Notice that the partial derivative depends on
Let unperturbed currents and voltages in the original and
adjoint networks. Consequently, the two analyses
Ig = Igq * 3lgoe (48) accommodate any number of variables Qti' The term
- ~ * *
Eliminating I, and I, from (45) and (46) we obtain 3£/3Vy, /3, af/avg' af/aIg' 3f/3I, or 3£/, is
_ e A A~ _ A ng zero if f is not explicitly a function of V,, Vg, Vg.
- — - = (¢, .~% L] V... * )
@662 Leo261 61 Va1 = ~Cea62’d62* 6161 Ve I, I, or Iy, respectively.
(49)

EXAMPLES

We present in this section some numerical results
to illustrate the practical use of the formulas we
have derived and, in particular, to exhibit the
structure of the adjoint system of equations which
have to be solved. A 6-bus sample power system (Fig.
5) employed by Garver [12] serves our purpose.

Required data for the problem is shown in Tables
I and II. Powers injected into buses are shown. Table
III shows the corresponding a.c. load flow solution.
Table IV shows the matrix for the adjoint system (43),
which is common to all the sensitivity calculations.

So as not to be restricted to any particular
application, we consider the following four examples
where we take, without loss of generality, the
parameters ¢t. to represent line conductances and
susceptances 6t transmission lines. In this case (54)
becomes

daf .
55; = 2Re{(at + 3 Bt)} = Zat

and

Q.

f . .
EEZ = ZRG{J(“t + J Bt)} = - 28



Table III
Load Flow Solution

bus 4
== hus 3
Fig. 5 6-bus sample power system
Table I
Bus Data
P, Q. \Y §.
Bus Bus t * ! l‘ Z;l
Index,i Type (pu) (pu) (pu)
1 load -2.40 0 - /=
2 load -2.40 0 - /=
3 load -1.60  -0.40 - /=
y generator -0.30 - 1.02 /-
5 generator 1.25 - 1.04 /-
6 slack - - 1.04 /0
Table II
Line Data
Number
Branch Terminal Resistance Reactance of
Index,i Buses Ri (pu) Xi (pu) Lines
1 1,4 0. 05 0.20 1
2 1,5 0.025 0.10 2
3 2,3 0.10 0. 40 1
4 2,Uu 0.10 0. 40 1
5 2,5 0.05 0.20 1
6 2,6 0.01875 0.075 4
7 3,4 0.15 0. 60 1
8 3,6 0.0375 0.15 2
where
. A o af *
at+get-vt(vt+—--vt>

BIt

Load Buses

<
n

1 0.9787 / -0.6602
V2 = 0.9633 / -0.2978
V3 = 0.9032 / -0.3036

Generator Buses

Q, = 0.7866; 64 = -0.5566
- . s _ _
05 = 0.9780; 5 = 0. 4740
Slack Bus
P6 = 6.1298; 06 = 1.3546
and
A .
Yt=Gt+JBt.
Example 1
Let
2 *
f= I 1I.|" = = I, I,
t t 7t
teTL teTL

where T, indicates the set of transmission lines in
the sysébm.
For this function

The first part of Table V shows the RHS vector of
the adjoint equations for this function and the
ad joint voltages resulting from the solution of (43).

Table VI shows the derivatives calculated by our
approach and by small perturbations around the base
point for checking the formulas. Table VII shows the
excitation and solution vectors of the original and
adjoint systems and the calculated derivatives in the
corresponding d.c. power flow study.

Example 2

Consider, for example,

- 2_ *
£2]Vy % =V, Vs,

for which

af af af
—~— =V,, = =0forgs #£3, =< =0,
8V3 3' 3 %, aIt

9 f af
3V -Oanda—I—=0.
g g

The second part of Table V shows the RHS vector
of (43) and its solution vector for this function.

Table VIII shows the derivatives calculated by
our approach and some checks by small perturbations.



Table IV
Adjoint Matrix of Coefficients

2.9085 0.0000 0.0000 -1.1765 -2.3529 11.6900 0.0000 0.0000 -4,7059 -9.4118
0.0000 3. 3490 -0.5882 -0.5882 -1.1765 0,0000 20.5097 -2.3529 -2.3529 -4,7059
0.0000 -0.5882 1.2179 -0.3922 0.0000 0.0000 -2.3529 8.6744 -1.5686 0.0000
-5.1854 -2.5927 -1.7285 8.5065 0. 0000 -1.6702 =0.8351 -0.5567 3.0620 0. 0000
-9.2970 -4,6485 0.0000 0.0000 12.9455 -2.1677 -1.0839 0.0000 0.0000 3.2516
-16.5453 0. 0000 0.0000 4.7059 9.4118 4,1503 0.0000 0. 0000 -1.1765 -2.3529
0.0000 -23.4119 2.3529 2.3529 4.7059 0.0000 7.6314 -0.5882 -0.5882 -1.1765
0.0000 2.3529 -11.7178 1.5686 0. 0000 0.0000 -0.5882 3.8802 -0, 3922 0.0000
0. 0000 0.0000 0.0000 -1.0777 0.0000 0.0000 0.0000 0.0000 1.7321 0.0000
0. 0000 0. 0000 0.0000 0. 0000 -0.9495 0. 0000 0. 0000 0. 0000 0. 0000 1.8506
Table V
RHS and Solution Vectors of the Adjoint Networks
2 2
f = i IItl f = |v3| f = sin &
Element No.

Solution Solution Solution

RHS Vector Vector RHS Vector Vector RHS Vector Vector

1 15.5879 6.5387 -0.9356 0. 7547 -0.9356 0.6888

2 22.0101 4,9065 2.6385 0.9114 2.6385 0.8884

3 8.8078 3.7802 0.1381 0.8461 0.9999 0. 8437

4 -0.6401 6.2411 -0.2573 0.8425 ~-0.2573 0.7997

5 -12.4168 5.8574 0. 4477 0.9072 0.0268 0.8211

6 -12.5143 5.4964 0.7346 0.5854 0.7346 0.5339

7 ~53.3547 2.3090 -12.0161 0.2661 -12.0161 0.2607

8 -16. 4201 2.4281 -6.1743 0.1640 -5.9043 0.2539

9 0.0000 3.8832 0.0000 0.5242 0.0000 0.4976

10 0.0000 3.0053 0.0000 0. 4655 0.0000 0.4213

Table VI Table VII

The Results for f = I lItlz

t

Results of d.c. Power Flow Analysis

Derivatives w.r.t. G

Original Network

Derivatives w.r.t. B

Adjoint Network

Line RHS Solution RHS Solution
By Small By Small
By Our Perturbations By Our Perturbations
Approach +1O—6 Approach 110'6 -2. 4000 -0.6148 40.1883 10.0237
- -2. 4000 -0. 2844 81.1520 6.5346
-1.6000 -0.2998 22.7818 4,9685
1,4 0. 146915 0. 146915 0.219814 0.219814 -0.3000 -0.5022 - 1.5803 7.9698
1,5 0.522770 0.522774 0.196945 0.196943 1.2500 ~-0.4161 -29.3648 6.7807
2,3 0. 126807 0.126811 0.025452 0.025456
2,4 0.603831 0.603835 0.533374 0.533373
2,5 0. 289047 0.289050 0.011592 0.011590 Line Derivative w.r.t. B Line Derivative w.r.t. B
2,6 0.786006 0. 786006 0.374631 0.374626
3,4 0.715027 0.715033 1.08442 1.08443
3,56 0. 453939 0. 453940 1.03172 1.03172 1,4 0.112 2,5 -0.131
1,5 -0.099 2,6 -0.172
2,3 -0.025 3,4 0. 479
Example 3 2,4 0.089 3,6 0.362
Let
: % Note that the partial derivative of f has been defined
f = sin 65 = :% (V5 - V5)/|V5}, taking into consideration |V_| as a control variable.
The last part of Table”V shows both the RHS and
where 8 _ is the voltage angle of bus 5. Now, the solution vector of (43) for this function. Table

5

- - d v 2
£=-3 0 (lvsl /vs)]/l vsl

hence

3f
3V

5

o 2, 2
= -5 D+ IV TNCI Y

Example 4

functions of the form

IX shows the calculated derivatives using our approach
and also some checks by small perturbations.

Here we investigate line removals by considering



Table VIII

Table X
Contingency Results of Example 4

Calculated Exact

Function Removed Function Function

Line Index Line Index Change Change
2,3 1,5% 0.002 0.005
2,3 2,3 -0.029 -0.021
2,4 2,4 -0. 470 -0. 404

¥ Only one line of branch 1,5 is removed.

The Results for f = |v3|2
Line Derivatives w.r.t. G Derivatives w.r.t. B
-3 -3
1,4 -0.982894x10_ 0.595004x10_>
1,5 -0.131659x10_% =0.173856x10
2,3 0.300576x 10_7 -0.103833x10". -
2,4 0.254091x10_ -0.695912x10_
2,5 0.272289x10_5 -0.337865x10" 5
2,6 -0.711205x10_ -0.932314x10_
3,4 0.490701x10_, -0. 490622x10_7
3,6 -0.516076x10 -0, 462822x10~
Checks by Small Perturbations «:10'6
BE/AG,, = 0.300556x 102
AF/8B. = 0. 173845x1072
Table IX
The Results for f = sin 55

Line Derivative w.r.t. G Derivative w.r.t. B
-3 -2
1,4 0.257275% 10 5 -0.686200% 10" 5
1,5 -0.930866x10 - 0.108172x10 3
2,3 ~0.182742x 10 2 0.333698x10 -1
2,4 -0.619060x10 -1 -0. 194655x%10 -1
2,5 -0.127479%10" 2 -0.272739x10"
2,6 -0, 466628x10 -1 —0.235790x10_1
3,4 ~0.139558x 10" > —O.256494x10_1
3,6 -0.217424x10 -0. 15561510

Checks by Small Perturbations i10—6

-1

BE/BGyy = -0, 127479x10
Af/8B, = 0.108173x10™2
2 *
f = IIt] = ItIt'

Table X shows some results of different contingencies.
REMARKS

The expressions we have derived employ voltage
and current variables. Performance and constraint
functions can be formulated directly in terms of
complex voltages and currents, bus or branch
quantities as required for a particular problem. It
should be obvious that we could equally well have
derived our expressions in terms of other basic
variables. %

We have designated the control quantities Sﬁ, SQ,

%
'R d (S
( g g) and ( 2

practical designable variables. We remark here that

+ S*) as well as the parameters ¢ti as

#

PQ, = (Sg + Sg)/?,
*

Qy' = -j(sﬂ. - Sm)/z,

ly 12 2y y*

%
P = (S +3)/2.
g g g

Any computer program featuring our approach would
incorporate the following steps.

Algorithm

Step 1 Obtain a base load flow solution.

Step 2 Evaluate partial derivatives of functions f,,

1

f2, caoy f w.r.t. Vk,vz, Vg, Ig, It' I:.

Comment We have dealt with partial derivatives of any
function f w.r.t. complex variables. This
notation has facilitated the derivations and
subsequent formulation of the equations to be
solved. Two real quantities are assigned as
independent control variables at a bus. Then
the required partial derivatives can be
easily obtained by expressing f in terms of
the chosen controls and states. We observe
that in Example 1 f is in terms of I,, which
is a chosen state. Similarly, f is In terms
of a chosen state ,jn Example 2. In Example
3, however, the V_ is neither chosen state
nor control, henc it has to be replaced

appropriately.

Step 3 Define the adjoint parameters required for
equation (43).

Step 4  Solve the adjoint system (43).

Comment For each function f foy ..., f_ only one
forward and one baekward substf%utlon is
required (LU factors are calculated once).

Step 5 Calculate the gradient vector using
(50)-(54) .

Comment If the effect of line additions or removals

is to be determined appropriate first-order
changes are calculated using the gradient
information of Step 5.

CONCLUSIONS

Difficulties which undoubtedly prevented previous
workers from applying Tellegen's theorem to the a.c.
power flow model 1in general and without any
approximations are overcome in this paper by using a
suitably augmented form of the Tellegen sum in which
power terms are included.

The addition of these power terms is the key for
increasing the ability of Tellegen's theorem to handle
more general classes of power system problems. The
utilization of the same idea can lead to several forms
of different sets of variables.

Our approach provides the flexibility of
including line responses directly while preserving the
advantages of compactness, sparsity and simplicity of
the adjoint system. It preserves the usual advantages
of easy handling of nonexisting elements in planning
studies. In contingency analysis, multiple



contingencies can be analyzed by summation as in the
d.c. model case.
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