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I. INTRODUCTION

Computer-aided circuit design, which has become one of the most
powerful tools in the design of analog electrical devices [1], enables
us to deal with, for instance, manufacturing tolerance and tuning
problems. Bandler, Liu and Tromp [2] formulated the design problem
taking postproduction tuning into account. This work was extended by
Polak and Sangiovanni-Vincentelli [8,9]. Although the algorithms
proposed, for the time being, are computationally extravagant, there is
hope for better and more efficient ones in the future. These methods
are employed before a circuit is manufactured in order to assign the
appropriate values of circuit parameters. A practical design, however,
does not stop at that stage. The use of computer aids in further stages
can also be helpful. Testing and tuning problems are of special
interest [3-7, 10-14]. The main objective of testing is to check
whether the circuit, which is already manufactured, meets the required
specifications or not.

Another objective of testing is related to postproduction tuning.
So-called deterministic tuning requires not only knowledge as to which
elements have to be altered, but it is also necessary to know the actual
values of network parameters in order to be able to calculate the amount
of tuning to be carried out. This is the subject of the actual
parameter identification which is based on measurements of the network
already manufactured. Most authors dealing with tuning problems assume
that actual values of network parameters are available. Nevertheless,
since the elements can not usually be taken out of the network this can
not be done directly. Therefore, appropriate methods of identification

should exist.



The two bbjectives of testing are both subjects of fault analysis.
However, it iQ felt that the term "fault analysis" is better suited to
the situation when only a few elements are at fault and all remaining
elements are correct. Then we want to locate the faulty elements.
Thus, the situation when we aré interested in actual values of all (or
some) network elements can be better described by the term "parameter
identification".

The solvability of the all parameter identification problem was
first considered by Berkowitz [3]. He introduced the concept of
accessible (and partly accessible) terminals where voltages and/or
currents (or only voltages) can be applied and/or measured. From the
theoretical point of view there is no difference as to which kind of
excitation is used. However, from a practical point of view the use of
current sources seems to be a little bit more reasonable. We will
consider ideal current sources because for any nonideal source the
source resistance can easily be treated as an additional element of the
network.

We assume that no existing connection can be broken, hence current
measurements are difficult to take. We may, however, consider that some
ports‘ can be shorted and the currents in these shorts measured.
Therefore, voltage measurements are preferred over current measurements.
We will try to consider voltage measurements only and as few of them as
possible.

The solvability of the all parameter identification problem was
later investigated by several other authors [6,7,14]. Mayeda and
Peponides [6] gave a topological characterization of the problem. Navid

and Wilson [7], using symbollic network functions, formulated sufficient



conditions for this solvabilty. Trick et al. [12-14] considered the
problem of identification and showed how to formulate an appropriate
system of equations using the adjoint network concept. Tﬁey proved the
very important result that, for linear networks, the problem can be
solved by means of linear equations. Their approach, however, seems to
be unnecessarily complicated, because many simulations of the adjoint
have to be performed in order to formulate the equations. They
formulate the equations using changes w.r.t. nominal values as unknowns.
Of course we can assume that the nominal values of network parameters
are known. This assumption is essential if we want to locate one or
more faults assuming that the other elements are at their nominal
values. For the purpose of identification this assumption is not
essential, i.e., there is no need to know these values if we are
interested in finding actual values of all parameters. The knowledge of
the nominal values is only a matter of formulation of an appropriate
system of equations (either actual values or actual changes can be
used) .

Although it is known how to check whether chosen tests are
sufficient» for identification no paper solves the problem of how to
choose these tests to be independent (except the situation when we
measure everything possible as in [7]). There are some other papers
which investigate this problem from the test point selection point of
view [5,10,111.

Most papers on parameter identification assume tests to be
performed at a single frequency [3,6,7,12-14]. This is quite a
reasonable assumption since such identification provides the values of

passive admittances and control coefficients of controlled sources.



Repeating the identification at different frequencies enables us to
identify the component values provided that there is a unique dependence
of element values on the frequency response (as for canonical
structures). Moreover, testing at a single frequency is essentially the
same as that for resistive networks.

As is known [3], parallel elements are not solvable, so we assume
that there are no direct parallel connections of elements or,
alternatively, we have to be satisfied with the knowledge of the
admittance of the whole connection. For instance, we can not determine
individual values of two parallel resistors (obviously, even if we use
measurements at different frequency points), so we have to satisfy
ourselves with the composite resistor.

This work deals with the postproduction identification of network
parameters. Analog linear and lumped networks are considered. Methods
for selected elements as well as for the identification of all
parameters are discussed. The methods are based on measurements of
voltage using mainly current excitations. Tests are assumed to be
per formed at a single frequency point. The well known nodal approach is

used in order to formulate the appropriate systems of equations.

II. IDENTIFICATION OF SELECTED PARAMETERS
Consider the identification of a single two-terminal element within
a known environment. The surrounding network can be replaced by the
Thevenin equivalent as shown in Fig. 1. Assuming that the voltage Vx

across the unknown element Zx is known we find Zx from



Vo = Vx)zx =V, Z 1)

TH x“TH®

Observe that the assumption

TH £0 (2)
is crucial for the identification. We also note that the knowledge of a
single voltage may be sufficient for identification of a single element.
The above approach can be generalized as follows. Consider n
unknown elements of a network. The situatioh can be represented as an
active n-port being terminated by unknown elements Y1, Y2, ceny Yn (Fig.
2(a)). Assume that there exists a hybrid equivalent of the active
n-port shown in Fig. 2(b). The equivalent is described as follows.

The vector of port voltage sources is

S S .S S.T
Ya 2 [V1 V2 oo Vk] ' (3)
the vector of port current sources is
S A S S S T
Eb 2 [Ik+1 Ik+1 ces In] , )

and the hybrid matrix H' of the n-port without independent sources is

defined by

, |=H R (5)



where

Eaa gab
1
H = . (6)
Hpa Hop

According to Fig. 2(b) we have

' S
L = Ib = Yoo Vb (7
za - Tlaa Ya'
where
zaa = dlag(Y1 Y2 ve Yk)
and
Y 2 diag(y .Y ee. Y
-bb k+1 "k+2 " 'n’”

Substituting (7) into (5), and after some manipulations we obtain

-1 S -1 -1

Y V H oV H -H_H \'}
~aa-a ~aa ~|l ~a ~aa ~aa-.ab .a

1t = B S|+ » » . (8)
{bbzb ﬁbaﬁaa 1 Eb Ebagaa Ebb_gbaﬁaaﬁab Yb

where 1 is the identity matrix of an appropriate order and I is the

-~

vector of currents through the unknown elements. From (8) it is seen

that the existence of the inverse H;; is necessary to obtain the



solution. This is equivalent to the existence of the admittance maprix
of the n-port (observe that the matrix in the last part of (8) is
actually the admittance matrix). On the other hand we have considered
another assumption, i.e., that the hybrid equivalent exists. It can be
shown that the existence of a hybrid matrix is sufficient for the
existence of the corresponding hybrid equivalent. Therefore, 1if we
assume that the admittance matrix exists we can consider a Norton
equivalent and, according to the above diséussion, we can find the

solution. This leads to the following theorem.

Theorem 1

Identification of n elements based on voltagés across these
elements (Fig. 2(a)) is possible if and only if there exists the
admittance matrix of the corresponding n-port (after shorting
independent voltage sources and open-circuiting independent current
sources) .

The solution can also be obtained directly without looking for a
hybrid equivalent. According to Theorem 1 and using a representation of
the network of Fig. 2(a), which is shown in Fig. 3, there exists a

matrix H such that

‘ I =H | Vy |, (9)

~V ~V
Vv I
L~ [ ~T ]

where H11 is the admittance matrix of the n-port of Fig. 2(b). From (9)

we have



I =H V+H v

Hyg Ve Hyy Vy + Hyg Ige (10)

Once we know I then we can easily find the values of the unknown

elements, since

Y. = —Ii/Vi or Zi ='-vi/Ii 11)

for i =1, 2, «.sy N

Now, consider that the measurement ports are different from the
ports of the elements which are to be identified. Assume that there
exists a hybrid equivalent as shown in Fig. 4. According to Fig. 4 we
have (m and x identify the measurement and identification ports,
respectively, and a, b, ¢, d identify ports of the same kind within the

two groups)

~ 9 ~
-V I
-.a -a .a
S
I, +1 Vv
~b ~b = H ~b , (12)
vV o- v ~l o
.C .C ~
S
L L Ya ]
where
~ | 2
Eaa ﬂab : ﬁac ﬁad
Eba Ebb : Ebc Ebd ﬁxx gxm
H= |y ~ 5 VLT T LT = (13)
~ ﬁca ﬂcb | Ecc gcd gmx Emm
1
'
Hia Hao 1 Hae Haq
L | _

/
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and H H H H are n x n matri . i
Rex' Pxm’ Jmx’ omm atrices Observe that in order to

solve the system (12) for unknown vectors Ea' !b’ ya' Ib we have to know
the inverse E;l. This corresponds to the existence of the transmission
matrix linking ports of identification as the input with ports of
measurement as the output. Assuming that there exists a mixed

"transmission-hybrid" representation of the network described by (see

Fig. 5)

- — -
v ym
IX Im
~ =Al"~ |, (14)
Iy Yy
v I
L.. N L~I
. m
we find, for I = O,
v¥ A A A v
- 211 213 ~14 W .
X = Vm + . (15)
I Ao Aoy By I

The above discussion gives us the following theorem.

Theorem 2

Existence of the transmission-type matrix defined by (14) is
necessary and sufficient for identification of n unknown elements based
upon n voltage measurements if ports of measurement are different from
ports of identification.

The requirements of Theorem 1 can easily be verified. The

admittance matrix exists if and only if no port can be shorted by
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shorting all the remaining ports. In contrast, verifying the conditions
of Theorem 2 is more difficult. This is simply because the elements of
a general transmission matrix of a 2n-port network (unlike a 2-port)
cannot be defined as ratios of single input and single output in the
presence of shorts and openings of other ports. Moreover, the existence
of the transmission matrix is. nét related to the existence of any
particular hybrid matrix. Hence, Theorem 2 is not very useful in
practice and one should look for another and simpler criterion.
Nevertheless, we observe that in both cases there exists a limit to the
number of elements which can be identified. Usually, Theorems 1 and 2
are satisfied as far as the identification of one or two elements is
concerned. The more elements we want to consider the more unlikely it
is to satisfy the corresponding theorem. The number of elements which
can still be identified strongly depends upon topology and elements
chosen. But in any case, for a particular network, there exists a
maximum number of elements which can be identified by methods described
in this section and this number is less than the total number of
elements in the network. In the next section we deal with the problem
of identification of all elements since this cannot be done by the above

methods.

III., IDENTIFICATION OF ALL PARAMETERS
We now consider the situation when all network elements are
unknown. We assume that voltages across all elements are available.
Since Kirchhoff's voltage law 1is satisfied (i.e., we assume that
measurements are accurate enough) we can consider nodal voltages only.

Using the preferable current excitations we have a generalized branch
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shown in Fig. 6. As is well known, a network with p branches and r

nodes can be described by the branch-node incidence matrix

Q = [Aik], (16)
where
+1, for the kth branch directed towards the ith node,
lik = -1, for the kth branch directed away from the ith node, an

0, for the kth branch not incident with the ith node,
i=1,2, «eo, r=tand k=1, 2, ..., P.

Following the typical nodal approach we introduce the vector of

nodal current excitations as

I"= p . . (18)

- .

AI="I. (19)
where

[I1 I, «.. Ip] (20)

is the vector of branch currents.
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Using the notation

{ = [Y1 Y2 ces Yp] (21)
for the vector of branch admittances, and
g = dlag(U1 U2 ces Up) (22)

for the matrix of branch voltages, we can write Ohm's law for all

branches of the network as

I =<UY. (23)

4

Since Kirchhoff's voltage law is satisfied automatically we note that
equation (23) together with (19) are all the available equations for the
network. The current vector I is of no interest, so eliminating it from

(23) and (19) we find
(pAU)Y =1". 2u4)

This is simply the system of equations which has been sought. It
contains r-1 equations with the p unknown values of Y1, Y2. ey Yp.
Matrix A consists of r-1 linearly independent rows, so if branch
voltages are different from zero then the matrix (Qg) also consists of
r-1 linearly independent rows. Note that p can be equal to r-1 only if
the network graph is a tree. In this case all network elements can

easily be determined if the excitations chosen are such that there is a

nonzero current in every branch of the tree. This is a rather obvious
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result since, knowing the excitations, we know immediately all branch
currents. In other cases we always have p > r-1 and we are not able to
identify all elements Y1, Y2. ceey Yp based only on the equation (24).
If some of these elements are known (at least p-r+1 of them) we can
solve (24) for the remaining parameters provided that the resulting
system contains an appropriate number of linearly independent equations.
This is another approach to the problems considered in the foregoing
section.

Now, we are interested in the identification of all parameters of
the network. Since the number of equations in (24) is less than the
number of unknowns we have to find additional equations based on other
set(s) of measurements. According to (24) one set of measurements gives
us at most r-1 independent equations. This means that we need at least

m sets of measurements, where

m = int( — ) (25)

and int(x) denotes the smallest integer xo such that x < xo. Because
the number of branches p is between r-1 (for a tree-network) and

r(r-1)/2 (for a complete-graph network), i.e.,

r(r-1)

r-1 < p<{——o (26)

we find that

). 27)
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For typical networks m is expected to equal 2 or 3. Every set of

measuranentS;El provides the appropriate system of equations (24) as
i
Um)Y =1 (28)

for i=1,2, ..., M where M > m.

All of those systems give us the final matrix equation

~ —1 — -
A1U1 IST
A2U2 ISZ
. Y = . . (29)
AMUM ISM
- . L -

Usually, different sets of measurements are obtained only under
different excitations, while the network topology is not changed at all,

SO
A=A = ... = A (30)

However, if we can short certain nodes, different ones for different
measurements, then in general, we should consider different matrices Qi.

The system (29) is required to contain exactly p independen£
equations. Roughly speaking, the systems (28) should be "independent"
of each other. 1In other words, we have to arrange for M " jindependent"
measurements. How to arrange for these independent measurements,

however, is not known so far. Nevertheless, several directions can be
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proposed.

It would seem to be optimal if the subsequent measurements provided
equations which formed an independent system along with all previously
obtained equations and, furthermore, if the final system was not ill-

conditioned. In other words, we want the rows of matrices

~ EEERE
]

>
[ ==

.o (31)

¢ >
 c
>
R C

A2 G

3

L

>
[ ==t

to be‘linearly independent. . Assuming (30) holds we have M = m. of
course if p/(r-1) is not an integer then the last system (for i = M)
contains a few more equations and the system (29) is overdetermined.
‘Alternatively. for the last set of measurements, we can make an
appropriate number of shorts such that the matrix AM consists of
p-(m-1)(r-1) rows and the system (29) has exactly p'equations. For this
approach, we would propose to use different locations for the
excitations for the différeht measurements. These excitations should be
as remote from one another as possible.

Now, as an important example, we apply the foregoing theory to

ladder networks.

IV. METHODS FOR LADDER NETWORKS
Consider the ladder network shown in Fig. 7. The branch—node
inéidence matrix A consists of r-1 = m+1 rows and p = 2n+1 columns and

its structure is
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A = . (32)

- J

Using only the input source I? for the first set of voltage

measurements, i.e.,
I = [I o 0 ... 01, (33)

we obtain the first subsystem of equations (28) as

=l - ~ ~
U1 U1 Y ] IS1-
1 2 : 1 1
1 1 1
-U2 U3 Uu Y2 0
1 1 1 . = . (34)
-Uu U5 U6 .
1 1
-U 1] Y 0
2n 2n+1 2n+1
L. - - - . J

According to (25) we find m = 2, so we have to arrange for another set

of measurements. Since we need exactly n more equations we can make

exactly 1 short. A number of different approaches can be suggested. We

will discuss three of them.
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1. We use the same excitations, i.e.,

ISz = IS1 (35)

and the output port is shorted. The appropriate matrix A2 is

obtained from (32) by dropping the last row.

2. We use only the output source I§n+1 for the second set of

measurements, i.e.,

s2 _ s2 T
"¢ =00 0 ... 017 .1, (36)

and the input port is shorted. The appropriate matrix A2 is

obtained from (32) by dropping the first row.
3. We do not make any shorts, i.e., we use the same branch-node matrix
A=A, (37)

and the resulting system of equations (29) will be overdetermined.
According to the previous discussion we apply the output source and

the vector 532 is in the form of (36).

Note that regardless of the method chosen, for any row of A2 we can
find an identical row within the matrix A1. Hence the 1linear

independence or linear dependence of the final system (29) consists in

the particular values of voltages U:, U;, ooy U; in comparison with U?,

2 U2

U2. ees Uge

Because of this the first method is likely to be ill-
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conditioned. It can be caused by relatively insensitive behaviour of
voltages across the elements located close to the input w.r.t. a change
of the output load. Using the same excitation for the two measurements
we can meet the situation that the corresponding equations in both
subsystems are "nearly" the same. From this point of view it is obvious
that we are looking for quite a different excitation for the second set
of measurements. The second and the third methods satisfy this
requirement. These two methods are similar and we can discuss both
simultaneously. The only difference is that the second method provides
one less equation and that the values of voltages are a little different
(in particular, U? = 0 and Ug = -Ug). Therefore, we will discuss the
third method and most of the following results will be applicable to the

second method. Now, the second subsystem of equations (28) is-similar

to (34). The only difference is that superscripts "1" are replaced by
I32

~

superscripts "2" and the right hand side of (34) is replaced by
given by (36). The resulting system of equations (29), after

reordering, can be expressed in the form

[

Y =B (38)

where

S1 : S2
2n+1

T (39)

and
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-
1 1
U U
2 2
U1 U2
1 1 1
-U2 U3 Uu
2 2 2
—U2 U3 UH
. a1yl 1
2 2 2
—Uu U5 U6
1 1
Uon Uone
2 2
L _U2n U2n+1
-

The particular sparse form of the matrix A enables us to find explicit

formulae for the solution of (38). It is more convenient to use nodal

i

i .
voltages V1, ooy Vn+1' is=

1, 2, such that

(41)

for i =1, 2and k=1, 2, ... . From the last two equations we obtain

S2 1 1
Tone1 (vn - vn+1)
Y2n+1 = X (42)
: n
and
IS2 1
an+1 n+1
Y2n S (43)
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where

PR LR R A (44)
n n n+1 n n+1

Substituting Y2n into the preceding two equations we can determine Y, _4

and Y2n—2' In this way we find the recurrent formulae

By
Yoket © X;'Y2k+2' (45)
Ak+1
Yo = 5 Yoks2' (46)
K
where
1 1
Vi Vi
Ak = det u7)
vyl
K Vk+l
and
1.1 1 1
. e Vet Vie1 ko2
Ak = det v2 -v2 V2 _v2 . u8)
k+1 k - k+2 k+1
From (46) and (43) we notice that
82 1
Yo 8 Toner Vo (49)

or
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S2 V1
2n+1 n+1 ,
Y = (50)

for k = 1, 2, «eesy N

Using (50), (45) and (42), we find Y,, 1{3 cees Y Finally,

2n+1°

from the first equation of the system (38) we have

51

Alternatively, since the system is overdetermined, we obtain from the

second equation

Y = — Y (52)

and both solutions should be identical. Of course, this second equation
does not appear in the second method (because‘of shorting the input
port). The above solution may be described by the term backward
solution.

Similarly, starting from the first two equations we can'derive the

forward solution as

Y, = . (53)



S1 .2
I1 V1
Y2k=——r,k= 1, 2, «oe, N, (54)
k
1
Ak
Y2k+1 = —A——-Y2k, k=1, 2, SRR n-1, (55)
k+1 ¥
and
S2 2 2
Donet1 = Y1 = V¥
Y2n+1 = - V2 R (56)
n+1
or
1 1
vn - Vn+1
2n+1 - 1 Yon- (57)
n+1 ;

For the second method, only the backward solution exists and Y1 is
expressed by (51). For the third method we can use the backward as well
- as the forward solution and the two solutions should be identical. They
can be different from each other if the measurements are inaccurate.
Then the question arises of how to take advantage of the fact that the
system (38) is overdetermined.

The solvability of the problem depends on the determinants (47).
They have to be different from zero. In other words any two successive
nodal voltages for the two tests cannot be linearly dependent. Al so
2

Vn+1 and Vl should have nonzero values. From a physical point of view

we see that none of the nodal voltages (except V;+1 and Vf) can be equal

2 1 1

L . 1 _ _ _ _ _
to zero. This is because if Vk =0 or Vk = 0 then Vk+1 = Vk+2 = ... =0
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2 2 . _ _ _
or Vk-1 = Vk_2 = ... = 0, respectively. Then also A = Ap ¢ = o = 0
or 4, = Beq = eee = 0 and the solution does not exist. This

corresponds, for instance, to the situation when the frequency of
excitation is the resonant frequency of a shunt elemént._ To remedy the
situation we can change the frequency of excitation and/or arrange for
other measurements, i.e., use other ports of excitations. Otherwise, if
all nodal voltages are different from zero the solution is likely to

: 1
exist. For instance, for a resistive ladder network the voltages V1,
1
2'

consequence, the determinants (47) are different from zero. The only

\'} ... and Vi”, Vﬁ. V§_1. ... are consecutively smaller and, as a
exception occurs when two succe_ssive voltages are identical, i.e., a
series element is a short circuit. In this case, although we can
identify Y2k = », we cannot identify Y2k—‘l and Y2k+1 separately. Only
the composite parallel connection of sz_.1 and Y2k+1 cari be determined.
This corresponds to the assumption that the network does not contain
parallel connections of elements which are to be identified.

The above example of the ladder network parameter identification
gives us some guidance as to how to arrange for independent tests of
measurements as well as some problems which can arise. However, these
are not satisfactory enough and more general and precise methods and
properties should be sought. 1In particular, methods for active networks
are of great importance. We deal with this problem in the following

section.

V. ACTIVE NETWORKS
We now consider a network which consists of passive as well as

active lumped elements. Control sources are taken into account as
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models of active elements. We will consider only voltage controlled
current sources (VCCS) which are typical for the nodal approach. It is
sufficiently general for many practical cases.

The general formulation discussed at the beginning of this section
can easily be extended to identify unknown control coefficients besides
all other passive admittances. Of course, if the control coefficient of
a VCCS is known, we can treat this source as independent since the
controlling voltage is also known.

Consider a network with passive branches and s voltage controlled

current sources. The VCCS elements are described by the equation

(58)

for k = 1, 2, ..;. S.

For our purposes we have to treat the controlled branches as
different from those which contain passive elements and/or independent
sources even if they are parallel. Hence, the branch-node incidence

matrix for the network can be expressed as

A= [Qp _ﬁa] (59)

where Ap is the (r-1) x p matrix described by (16) and A, is an (r-1) x
s matrix constructed for all controlled branches in the same way as ép'

Now, Kirchhoff's current law can be written in the form

J = =1, (60)
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where

A S L LA L L (61)
~ 1 2 s
Using the notation
. c ,C c
U = dlag(U1 U2 cee Up U1 U2 oo Us) (62)
we finally find the equation
S
(AU)Y =17, (63)

where A is given by (59), IS is described by (18) and Y is the vector of
unknown parameters

... Y] (64)
S

c ,C
2 e o 0 p 1 2
The system (63) contains r-1 equations with p+s unknowns. As before, in
order to obtain an appropriate number of independent equations we have
to arrange for other tests. The number of tests which we need is at

least

p+s

m = int ( —¢ ). (65)

The same approaches are valid as for the choice of independent

measurements.
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VI. EXAMPLE
As an example consider the identification of unknown parameters G1,
> G3, ye G5 and Gc of a resistive active circuit shown in Fig. 8.
According to (59) and (62) we have

G G

B 7
1 1 0 0 0 0
A= 0 -1 1 1 0 1
0 0 0 -1 1 -1
L -
and
q = diag(U1 U2 U3 U,4 U5 U1).

' : S
The number of tests required is 2. First, we apply only the source I1 =

2A, so

ST .2 o o]

—
1

and measure voltages

U1 = diag(1 1 0 -1 1 1.

Second, applying only the source 12 = 84, i.e.,

S2 T

I = [0 0 8]

-~

we measure

02 = diag(1 -1 2 -4 6 1).
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The two tests give us the final system of equations (29) as

1 1 0 0 0 0.1 G1T 2‘T

0 -1 0 -1 0 1 G2 0

0 0 0 1 1 -1 G3 _ 0

1 -1 0 0 0 0 Gu 0

0 1 2 -4 0 1 G5 0

o o o 4 6 -1 ]]¢c° 8
L JL J U J

whose solution is
T

VII. CONCLUSIONS

A very basic approach to the problem of postproduction parameter'
jdentification has been discussed. Methods presented here are oriented
to linear analog electrical networks. They are based mainly on voltage
measurements of the network, which is excited by current source(s). The
limitations for the selected element identification have been derived
and formulated in Theorems 1 and 2.

For identification of all elements, a simple approach based on
nodal analysis has been proposed. As a very important example we
present a method for ladder networks. The method is much simpler than
that of Trick and Sakla [13] and, because of a particular sparse form of
the equations, we obtain explicit recurrent formulae for the solution.
For arbitrary network topologies, however, there are still many open
questions and unsolved problems.

It is to be noted that the presented nodal approach to the
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identification of all elements is also validvunder limited measurements.

In such a case we simply do not have all of equations in (29). The

equations containing explicitly the voltages which are not available

have to be dropped from (29). If necessary, we should perform more

tests.

Then, the identification can be done if the network is element-

value-solvable.

(1]

(2]

(31

(4]

(51

(61

(7]

(81

(91
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FIGURE CAPTIONS

Single element identification.

2 Active n-port and its hybrid equivalent.

3 Representation of active n-port of Fig. 2(a) as an
(n+m)-port with m external excitations.

4 Hybrid equivalent of a 2n-port.

5 (2n+m)-port with m external excitations.

6 Generalized branch.

7 Ladder network.

8 An active network example.
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