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I. INTRODUCTION

Although there 1is a number of papers which deal with testing
problems, only a few of them concern analog circuits [1-17]. The main
objective of testing is to check whether the -circuit, which is already
manufactured, meets the required specifications or not. If not, it
should detect the source which causes the network to be wrong,
principally, to indicate the element(s) which is (are) at fault. Then
the elements or subnetworks which contain these elements can be replaced
or repaired.

By a fault we mean not only an unwanted short or open circuit but
also, more generally, any large change in the value of an element w.r.t.
its nominal value. Since the meaning of the term "large change" is not
precise enough we will consider any change in element value as a fault.
Of course, we assume that the network design, i.e., the topology as well
as the nominal values of the parameters are known.

Fault analysis consists of two stages: fault detection and fault
evaluation. Fault detection can be done by the method which identifies
all element values [2-4, 6, 8, 11-12, 14-16] and then comparing the
nominal and actual values. Thus, fault evaluation is being done
simultaneously. This approach, however, can be too general. It may
also be too difficult if, for instance, the network is not element-value
solvable. Usually, we look for one, two or several faults and there is
no need to identify everything as though we did not know anything about
the network.

The fault detection should locate the faults, i.e., identify
elements which are out of their nominal values. Once we know which

elements are at fault, the fault evaluation is simply equivalent to the



identification of selected parameters discussed in [41].

There are a few papers dealing with fault analysis without
identifying all elements mostly to locate single faults. This can be
done by constructing a fault dictionéry using computer simulation of
mainly single catastrophic faults [1,17]. Another approach uses certain
analytical or geometrical invariants of element value changes [5, 9, 10,
13]. The 1latter approach is worth developing since it enables us to
deal not only with catastrophicb faults and the computational effort
required is much smaller than in the case of fault dictionaries.

This paper presents a new approach to fault detection in the
foregoing sense. Analog linear and lumped networks are considered.
Methods for single as well as for multiple fault location are proposed.
The methods are based on checking consistency or inconsistency of
certain equations which are invariant on faulty elements. The
measurement tests are assumed to be performed at a single frequency
point. We consider mainly current excitations and voltage measurements.
As is known [2], parallel elements are not solvable, so we also assume

that there are no direct parallel elements.

II. SINGLE-FAULT DETECTION
Consider a network function f as a function of a single element Y.

For many cases it can be expressed as a bilinear function

A + BY

f:m. (1)

The direct use of (1) for the single-fault detection is impossible since

f can be changed either by a change of Y or by changes of the



coefficients A, B, C, D which depend on values of other elements.
Now consider two different network functions f1 and f2 of the same

element Y as

A1 + B1Y A2 + B2Y

T f, = ———— (2)
+ D.Y 2 C2 + D2Y

If the two functions essentially depend on Y, i.e., AiDi - B;Cy £ 0 for

i = 1, 2, then each of them can be solved for Y and the solution is

A,| - C1f1 A2 - C2f2

Y = = . (3)

—B1 + D1f'1 —B2 + D2f2

From (3) we find the relation

(C1B2 - D1A2)f1 + (A1D2 - B1C2)f2 = (A1B2 - B1A2) + (C1D2 - D1C2)f1f2,

)

which holds for any value of Y provided that all other elements are
fixed. If the two network functions are of the same type (e.g.,
trans-impedances) the denominators C1 + D1Y and C2 + D2Y are determined
by the same characteristic polynomial of the network. Hence, they can

differ only by a constant multiplier, so C1D2 - D1C2 = 0 and (4) becomes

a linear relation
af, + bf, = ¢ (5)

where a 2 cB. -D.A., b2aD, -8B

A
182 185, 1P, 1C2 and ¢ = A.B., - B.A

172 172°



Equation (5) gives us the relationship between values of f1 and f2
when all network elements except Y are kept unchanged. In other words
the coefficientsia, b and ¢ depend only on nominal values of all other
elements. Similar relationships between f1 and f2 can be derived for
all other elements Y1. Y2, ceey Yp. This is done for nominal values of

all elements. Therefore we obtain p equations
alf. + b f. =z ct, i=1,2, ..., P, (6)

each of them corresponding to a certain element of the network.
Superscript i denotes the index of the element. We will use these
equations for the single-fault detection.

Based on measu;ements, we find the actual values of f1 and f2. If
there is a single fault within the network, i.e., one of the elements
Y1, Y2. cees Yp is changed, then the corresponding equation of (6) 1is
satisfied since all other elements are at their nominal values. All

other equations are likely to be unsatisfied. To be able to identify

uniquely the fault location it is required that

det | @ b | 2o, (7)

for any k, %, k # &. If these conditions are fulfilled then all of the
equations in (6) are satisfied only by the nominal values f? and fg and

no two equations can be satisfied by the same values f1, f2 different

0 0
from f1, f2. The two-dimensional (e.g., DC network) geometrical

interpretation of this is given in Fig. 1. The equations (6) describe

straight lines in the two-dimensional space f1, f2. They all intersect



at the point corresponding to the nominal values of all elements.

Since the nominal values satisfy equations (6) we can use the

changes
Af. = £, - £2, 5 =1, 2, (8)
J J J
instead of f1 and f2. Thus, we have homogeneous equations
i i .
a Af1 +b Af2 = 0, i=1,2, «eoy P 9)

To use these equations we do not need to know the values cl, i=1, 2,

..., P, but we have to know f? and fg.

The actual values of the network functions f1 and f2 are to be
identified by measurements. Using, preferably, current excitation and
voltage measurements the two network functions should be certain
impedances or trans-impedances

m
£ = VI =1, 2. (10)
g J

J J’

Thus, the equation (9) can be directly expressed using the measured

voltages VT and Vg instead of f1 and f2. If the excitation currents Ig1

and Ig2 are at different values then the coefficients a1 (or bl) have to

be rescaled. Otherwise, this is not necessary.
The two excitations Ig1 and I82 do not need to be applied to the
m
same port, but if they are then the voltage measurements V1 and Vg can

be taken simultaneously (i.e., at the same measurement test). We now

derive a simple method which supplies the coefficients of equation



(9) for the latter case.

Consider the representation of the network shown in Fig. 2. Note
that the 4-port network consists of elements which are at their nominal
values, so it does not depend on any fault.

According to Fig. 2 we have

~ ~ -
vmT 0
1
m
V2 0
Y = = % , (11)
VI Ig
V. =V.AY.
1 1 1
- - - -

where VT and Vg are the voltages measured and Ig is the excitation

(i.e., we consider the network functions fj = V?/Ig, j = 1,2). Since

the left hand side of (11) can be expressed as
V =V + AV, 12)

where VO is the nominal vector obtained for AYi = 0, we find

avy 0
m
AV2 0
AV = =27 . (13)

AVI 0
Av. =V.,AY.

L 1 1 1

- - -



Thus

m
av’ Zyy

. = Il . (1’4)
v, Zoy

Eliminating Ii from (14) we obtain

AV — z. avT = 0. (15)

Zoy BV 148V

Note that in order to be able to eliminate Ii at least one of ZM and

224 has to be different from =zero. The equation (15) is one of the

equations (9). It corresponds to Yi' so al = Z2u and b1 = —214.
In this way we can find all equations (9). But it would be
inconvenient to consider as many different 4-port networks as the number

of elements. We propose to use the adjoint network simulation for this

purpose. The method is explained in Fig. 3. According to Fig. 3(a) we

have
— — —
. 1 Z11
. 0 Z
-2 |- 212 (16)
~ ~ 13
| Vi | © L 214
so that
') =7Z.,,. 1)

il 14



Similarly, according to Fig. 3(b) we find

~

=7 (18)

Vio = Zoy-

Finally, equation (15) can be rewritten in the form

~ ~

m
Vi2 AV1 - Vi1 AV, = 0. (19)

It can be shown that the above discussion is valid for all elements
of the network under a mild condition that the measured voltages VT and

Vg essentially depend on all elements. Moreover, it does not matter if

the port of the element Yi is the same as the port of excitation or a
port of measurement. Similarly, the port of excitation can be one of
the ports of measurement. Therefore, in order to obtain the
coefficients of the equations (9) two simulations of the adjoint network

are required. First, we apply a unit current to the first measurement

~ -~ ~

port and calculate the voltages across all elements V11, V21, ey Vp1.

Second, applying a unit current to the second measurement port we find

~ ~ ~

V12, V22, ceey sz.

2, ..., p and check the condition (7). In fact, only one simulation is

1]

Finally, we formulate the equations (19) for i 1,
required since in both cases we have to solve exactly the same system of
equations with different right hand sides. It can be calculateq
simultaneously, or alternatively, using the same LU factorization.
Although a rather rare case, it is possible that not all
determinants (7) are different from zero. If two equations in (9), say
for i, and i are found to be linearly dependent it means that VT and

1 2’

Vg are influenced by Yi and Yi similarly. The corresponding straight
1 2

lines in Fig. 1 are identical and we cannot distinguish a fault of Yi
1
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from a fault of Yiz’ This situation can appear, for instance, if two
elements are symmetrical to each other w.r.t. the voltages measured. To
remedy this problem we can choose two other voltages in order to replace
at least one of the two equations.

Finally, it is to be noted that the above method can be used to
detect more general faults like shorts between nonincident nodes. We
can simply consider nonexisting elements between such nodes as elements

of nominal value Y = 0 and we can derive the equations of the form

(9) for these elements.

III. MULTIPLE-FAULT DETECTION
We now generalize the foregoing approach in order to be able to
deal with several simultaneous faults within the network. These faults
are represented as external loads of (n+k)-port network shown in Fig. 4,

We consider n ports of measurement with

v Ay L vt (20)
~ 1 2 n

and
I SR LU L. L 21)
I 1 1o n

The ports of fault are described by

=<

Ve o= [v? vi oL v

n
~
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and

X X .X,T
AY2 ces vaYk] , (22)

x.T X ,X X
. Ik] = —[V1AY1 V2
where k < n-1.

We assume that the impedance matrix Z of the (n+k)-port network

exists. According to Fig. U4 we have

<

VA I
~mm ~mX ~
= . (23)

<

Zam x| 2

Assuming that the ports of measurement are open circuited or are excited
by independent current sources we find that the nominal voltage vector

is described by

va Em
=27 . (24)
vOrl ~ o

AV 0
X =7 < | (25)
AV Tl
and, in particular,
N A (26)
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me is a rectangular matrix having more rows than columns. Assuming
~

that me is a full column rank matrix we can find the solution of the

equation (26) as

- z2f oz )7 b A, @7

Therefore, eliminating I*¥ from (26) and (27) we find the equation

T -1.T m
[me(zmximx) Znx = 1]AY =0, (28)
which is a generalization of equation (15). Using the notation
T8 aaT ! (29)

for a full column rank matrix A, the left hand side of (28) can be

rewritten in the form

(Zyy = DAV (30)
Given a vector of voltage changes Aym we can calculate the expression
(30). It is equal to 9 regardless of the element changes AY1, AY2, e
AYk if all other elements are kept at their nominal values. In other
words if (30) is different from zero it means that there is another
element at fault besides the elements Y1, .o Yk.
In order to be able to detect k simultaneous faults we need to know

expressions similar to (30) for all possible combinations consisting of

k elements.
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As before, the matrix me can be found by means of the adjoint

network. For the adjoint network we have

V" 77 77 ™
~mm ~Xm ~
= ~ . (31)
v v A ¥
~ ~mX ~XX -
Let * - 0. Then we obtain
X T “m
Y - %mx { ’ (32)

A

where Im is the vector of an adjoint network excitation. Taking n

“ml “m2 Emn

linearly independent excitations E ' } v oeeer 1 we have the equation

AR e Zix (™ ... 1™, (33)

which can be solved for Zix' The simplest solution can be obtained by

applying a unit current, successively to all measurement ports (see Fig.

5). Then
™oL, "=, (34)
and
AR AR e B (35)
~mXx ~ ~

Thus, we need n simulations of the adjoint network (with the same

LU factorization) in order to obtain the coefficients of the expression
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(30) for all possible combinations of Kk elements. We apply a unit
source to the measurement ports and calculate voltages across all
elements of the adjoint nominal nepwork. Taking the values
corresponding to a certain combination of elements we find the
corresponding matrix me. In this way we obtain the matrices Zix j=1,
2, ..., (®) for all possible combinations.

If there are k faults within the network we can deteét them by
checking the expressions (30) for all possible combinations of Kk
elements. The expression which corresponds to the elements at fault is
equal to zero while the other expressions are likely to be different
from =zero. This enables us to indicate the suitable combination.
However, the approach is limited. Some problems which may arise are

discussed in the following section.

IV. INTERPRETATION

We now discuss the assumptions and the capacity of the approach
presented in this paper. In order to use it we have to formulate an
appropriate set of p equations for single-faults, (g) matrix equations
for double-faults, (g) matrix equations corresponding to three
simultaneous faults etc. This can be done by practically one simulation
of the adjoint nominal network (with n different excitations). Given
measured voltages we calculate the voltage changes w.r.t. nominal values
and check the equations. We start with equations corresponding to
single faults. If all equations except one are not satisfied we can
suppose that there is a single fault in the element which corresponds to

the satisfied equation. (Although a rare case, it is possible that the

situation is caused by two or more faults of other elements; this can be



- 15 -

verified by other equations.) If all equations corresponding to single
faults are not satisfied we have to go further and check the equations
corresponding to double faults, etc.

To be able to detect the suitable fault combination the equations
(28) are required to be "independent" in a certain sense. More
precisely, we do not want to face the situation when two or more
equations (for the same k) are satisfied simultaneously for Aym Z 0.
But this is not always possible. For instance, if only element Y1 is at
fault then, checking all equations for double faults, all equations
corresponding to those combinations which contain Y1 like Y1Y2, Y1Y3,
... are satisfied. In other words, it is possible that two equations of
the form (28) are simultaneously satisfied for certain Azm, but

generally such an implication does not exist. This is the case we are

interested in. The concept of block independent equations will help us

to state the problem.

Consider equation (26) in a slightly more general form

A x =b, (36)
where A is an n x k-matrix, k < n. The rank of A is assumed to be

rank A = Kk, (37)

~

so the matrix éTé is nonsingular. System (36) is overdetermined. As is

known, the solution of (36) exists if and only if (compare with (28))

AC(ATA) A b = b, (38)
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or

(39)

~~
=
1
).a
N
o
"
=)

In other words, the left hand side of (39) is equal to zero if and
only if the system (36) is consistent. Taking (28) and (26) into
account, that is to say, the expression (30) is equal to zero if and
only if there exists the solution Ex of the system (26) for given Aym.
Therefore, if we want systems (28) to be "independent" we actually do
not want different systems (26) (for different combinations) to be
simultaneously consistent (or inconsistent) for any Aym. Hence, we come
to the following definition. Consider two overdetermined systems of

equations
A.X. =b and A.X, = b, (40)
and assume that n x k-matrices A, and A_ are of full column rank.

Definition 1

Systems (40) are said to be block dependent if for any b both are

consistent or both are inconsistent.

If systems (40) are not block dependent then they are called block

indegendent.

The conditions of Definition 1 are equivalent to the logical

expression
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vﬂAx:Ax and VEAX = A X u1)

X X ~1s1 282 Xy X M8 ~2-2

Consider, for example, the second part of (41). For any X, this is a
consistent system of equations w.r.t. X4, SO according to the previous

discussion (compare with (38))

AAsx, = Ao, (42)
or
(A = DAy x5 = 0. (43)

Since the above equation has to be valid for any X5 we find the

condition

Aqidy = Ape (44)
Similarly, from the first part of (41) we find
AA, = A (45)

The conditions (44) and (45) are necessary and sufficient for the
systems (40) to be block dependent. In fact, only one of the two
conditions has to be checked. To show it we introduce the notion of

block dependent matrices. Assuming, as before, A1 and A2 to be n x k-

matrices of full column rank we call them block dependent matrices if
(44) holds. It will be denoted by §1 ~ A2 The relation has the

following properties. It is reflexive since A A = A(ATA)'1 ATA) = A.

(
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(R vs]]
(-
1] "
= w
~ ~~
= w
= w
N
P
=
"
2=
o
~
P
-
-]
(R}
—
1
-—
P w
1>
1]

|
=
~
=g
=g

In the above derivation we utilized two properties: (1) the matrix

TA) is symmetrical, and (2) the matrix ATg as well as its transpose

(A
T -

are nonsingular. The latter property follows the assumption B = AB
T, -1

= A(A"A) (éTB) because k = rank B < rank(ATB) < k. Thus, if one of the

expressions (44) and (45) holds then the second one holds also. The

relation of block independent matrices is also transitive. Assuming A ~

B and B ~ C we have
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Therefore, the relation of block dependent matrices is an equivalence
relation. This is a generalization of the linear dependence of vectors.
Similarly, the condition (44) (or (45)) is a generalization of the
condition (7) (with the equality symbol). Using the condition 44) we
can find out which equations of the form (28) are dependent. In other
words, we can determine the combinations, whose influence on the vector

m . L. . m C s .
AV is similar, i.e., based on AV we cannot distinguish these

~

combinations. Then, we should change measurement tests to be able to
determine which combination actually occurs.

The approach presented in this section is based on the assumption
of the existence of the impedance matrix (Figs. 2 and L) This
assumption, however, is not essential since the impedance matrix exists
for most practical networks. A more crucial assumption is the one which

concerns the matrix me in (26) to be of full column rank. The

~

assumption means that there exist exactly k linearly independent rows of

me. These rows correspond to those voltages which we can use to

uniquely determine Ix as well as v¥. This is simply the problem of the

identification of elements AY?, AY;, ooy AYz which was discussed in

[4]. Under this assumption, the inverse of a full column submatrix of

me exists and, as a consequence, the conditions of Theorem 2 in [4] are

~

satisfied. This is seen directly from (23) since, knowing 1¥ as a

solution of (26), we have
vz 1™mazo 1, (u6)

where ™ is a given vector of excitations. Then, according to [4] we

X X X
Y
1' A .

AY2. oo K

find the element values AY
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As mentioned in [4], the more unknown elements we want to consider
the more unlikely it is to satisfy Theorem 2 (or Theorem 1). In other
words, there is an upper bound of k for which we are able to construct
the equation (28) and, as a consequence, to detect k simultaneous
faults. If we want to consider more simultaneous faults we can use the
method of identification of all elements described in, for instance,

(41.

V. EXAMPLES
Example 1
Consider a simple resistive network shown in Fig. 6 with nominal
values of elements G? =1, i=1, ..., 5. Assume that, for single-fault

location, the network is excited at the port 11' and voltage

measurements are taken at the ports 11' and 33'. For Ig = 1A nominal
responses are V?1, = 5/8 and Vg3, = 1/8. We easily find equations (19)

corresponding to subsequent elements of the network as

1 5 ) |

8 Ao - F AV33, = 0, (47a)

Lo, +3 v, =0 (47b)

8 1! 8 "'33* ~ 7

2 2

7 Wi - F AV33, =0, (U47c)

3.+ v, =0 (47d)

8 1" 8 33+~ 7

5 1 _ _—

8 AV“, -3 AV33, = 0. (47e)
Now, measuring voltages V11, = 2/3 and V33, = 1/6 we have AV11, = AV33,

= 1/24 and notice that equation (47c) is satisfied while all others are
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not. Assuming a single-fault within the network we find the element G3

responsible for faulty responses. G3 = 0.5 gives us the responses.

As was mentioned in Section II we can also consider a nonexisting
element of value G?3 = 0 between nodes 1 and 3. The corresponding

equation is

2 v =0 U7F)

y
8 B AV330

1M~

Measuring voltages V11, = V33, = % we observe that only equation (47f)

is satisfied. This situation corresponds to a short-circuit between the

nodes 1 and 3.

Examgle 2

Consider the same network as in Example 1. For double-fault
location we choose the port 11' as a port of excitation with Ig = 1A and

ports 11', 22' and 33' as ports of measurement with nominal voltages

0 0 0
Sq1 = 5/8, Vyy, = 2/8 and Voo,

following matrices Z;i corresponding to all combinations Gi’ Gj of

v = 1/8. According to (35) we find the

network elements. Since for any a # 0 ;E = A we multiply these matrices

by 8 for the sake of simplicity. We have

PS ] ~5 2 )
3 ) 2
azLi -2 2., 82;i -l u],
~ 1 -1 ~ L1 P
— - -
—~ r~ =
) 1 - 5
8211 -2 2. 82;) T
~M 1 _3 ~Mmx 1 5
. - - -
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3 2 3 1
8253 = |2 s, 8251: = -2 2|,
~ -1 2 ~ -1 =3
- J - -
~ - — T
31 ) 2 1
8225 = -2 2 . 8234 = 4 2 .
~MmX -1 5 ~mX 2 _3
- - L -
35 2 1] 45 1]
gz>° = |4 2|, gz = |2 2|,
~MX 2 5 ~ -3 5
- J - J

Let the voltages measured be

m 1
vie=ls,

cojw
.
o] =

Then aV" = [ - % . %—, O]T and we can check that

1 ~1/8 0
(zii ~ ™= - %— 1 181 =10
~ ~ - 111 0 0

and the equation (28) is not satisfied for every other combination.

Thus, the elements G, and Gu are indicated as faulty elements. It can

2

be checked that G2 = 4 and Gu = 0.5 cause such situation.

Now, consider another situation when voltages measured are

We find that

B o o0 0 1/21 0
2 0o -1 2 1712 =1]o0
- 0 2 -l 1/24 0
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We also find that equation (28) is now satisfied for the matrices E;i
and Zii because the two matrices together with Z;i are block dependent.
Therefore we cannot distinguish which one of the three combinations
actually appears. Nevertheless, for some reason we can be satisfied
with the knowledge of the region where the faulty elements are located.
This is indicated by the inconsistency of equation (28) for all other

combinations.

VI. CONCLUSIONS

Fault analysis, which can be done using methods of identification,
needs its own approaches especially in the case when only a few faults
occur. Methods based on the bilinear dependence of network functions on
a circuit parameter have been developed for single-fault detection. A
particular approach utilizing a single current excitation and
measurements of two voltages has been proposed. The adjoint network
simulation has been found to be a convenient way for the necessary
calculations. This approach has been successfully extended in order to
deal with multiple—fauit detection. However, there is a limit to the

number of simultaneous faults which can be considered.
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FIGURE CAPTIONS

Geometrical interpretation of single-fault detection based

on checking of equations (6). The actual values f.  and f
; R 2

corresponding to a change of Y2 are also indicated.

Representation of a network with a single fault as a
4-port network with the external load aY.. The nominal
value Y. is included in the 4-port. The port of
excitation and ports of measurements are also indicated.

Adjoint network simulations leading to the coefficients of
equation (9).

Network with k simultaneous faults represented by (n+k)-
port with n ports of measurement. The impedance matrix E
depends only on nominal values of network elements.

Adjoint network simulations leading to the coefficients of
equation (28).

A simple resistive network example.
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