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Abstract

Efficient sensitivity analysis and gradient evaluation, essential
in power system studies such as optimal power flow, contingency analysis
and planning, is the subject of this paper. We present an approach
based upon a generalized adjoint network concept. It exploits all the
powerful features of Tellegen's theorem by suitable extensions through
which the a.c. load flow model can be used without any approximations.
We introduce the conjugate notation used in formulating the Tellegen
expressions for general complex functions. We also introduce the
concept of group terms which facilitate control of the adjoint system so
that a wide variety of particular cases can be handled. We derive and
tabulate standard sensitivity expressions common to all relevant power

system studies.
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I. INTRODUCTION

Efficient sensitivity analysis and gradient evaluation are
essential in power system studies such as optimal power flow,
contingency analysis and planning. A number of relevant papers [1-6]
have dealt with appropriate computational approaches. Previous work
based upon Tellegen's theorem [7-9] approximates the a.c. load flow
model.

In this paper (see also Part II), we present a general approach to
power system sensitivity analysis and planning based upon a generalized
adjoint network éoncept. Our new theory exploits all the powerful
features of Tellegen's theorem by suitable extensions through which the
a.c. load flow model can be used without any approximations. Hence, all
applications of interest can be handled.

Part I of this paper introduces the conjugate notation employed
throughout . It is used in formulating the Tellegen expressions for
general complex functions. These expressions are augmented via complex
coefficients, in general. We also introduce the concept of group terms
which facilitate control of the adjoint system so that a wide variety of
particular cases can be handled.

We denote branch voltages and currents and their complex conjugates
as basic variables since the theory is expressed in them.
Transformations from these basic variables to element variables of
practical interest to power system engineers are developed.

We derive and tabulate standard sensitivity expressions common to

all relevant power system studies.



- II. CONJUGATE NOTATION

In this paper we use a special notation which we shall call the
conjugate notation. A complex variable and its complex conjugate
replace, as independent quantities, the real and imaginary parts of the
variable. The use of conjugate notation facilitates the derivations and
subsequent formulation of the equations to be solved.

Consider a complex function f of a set of complex variables
assembled as the column vector ¢. Let f1‘ and f2 be the real and
imaginary parts, respectively, of f and 24 and P the real and imaginary
parts, respectively, of Z. Then the first-order variation of f is
expressed as

8F(zq0 1) = 88,05 , 25) + Jof,y(zy, zy)

of, T af, T af, T af , T

- () 1 i ( —L2 <
= ( T ) 85 + ( T ) 8z, + Ji( T ) 8z, + ( ; ) 652}. (1)

where, afi/;j; i, J 1, 2, are column vectors of appropriate partial
derivatives assembled corresponding to the components of Z4 and s T

denotes transposition. Using conjugate notation we obtain
)8+ (=g ) 8z, (2)

where * denotes the complex conjugate and partial derivatives of f
w.r.t. 4 and E* are again assembled in appropriate column vectors. Note
that (1) and (2) are equivalent.

Let us consider the arbitrary example

2 * 2 2 )
f=g v = () -5+ g) + 3Rpir, - Ty



In this case, (1) leads to
§f = [(2;1 + 1)6;1 - 2, 6;2] + j[2;2 8¢ + (2g, = Dez,l,
and (2) leads to
*
§f = 2¢ 8¢ + 6¢ .

Note also that, for real functions, we can show that

*
3 e (3)
E 35.
and for imaginary functions
*
R 1)
E R4

III. TELLEGEN'S TERMS AND GROUP TERMS FOR THE A.C. POWER MODEL
In this paper variables are basically expressed in terms of the
complex voltage V and complex current I associated with the given

.y

network. We use to distinguish the corresponding variables associated
with the topologically similar adjoint network.
Tellegen's theorem [7], which depends solely upon Kirchhoff's laws

and the topology of the network, states that
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where the summation is taken over all branches, subscript b denoting the
bth branch.

Since the Vb and Gb of (5) satisfy Kirchhoff's voltage law (KVL),
the V; and G; also satisfy KVL. Similarly, since the Ib and Eb of (5)
satisfy Kirchhoff's current law (KCL), the I; and i; also satisfy KCL.

Hence, in addition to (5) the following valid variations of Tellegen's

theorem can be considered [9]

v (5¢)
i b 'p = o, c
pV I =0, (5d)
b

v
L p Vp = o, (5e)
b

Q *

E b Ib = 0, (5fF)

o
z Ib Vb = 0, (5g)
b

G*

g b Ib = 0. (5h)

Note that, in the case of identical original and adjoint networks, we
set Vb = Vb and Ib = Ib in (5).
In addition to Tellegen's terms (5) we also consider valid

expressions in terms of certain groups of elements in the form

I C =0 (6a)



and
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where CE and CE* are complex functions of the variables Vb and Ib and
their complex conjugates V; and I:, and Bk is the set of branch elements
forming the kth group, |

An example of the group terms (6) is the KVL for a local loop of
the network. The number of the group terms considered in a practical

problem is usually small.

The extended Tellegen's sum is now written as

(o I v VoI R AN LvisT iy
Ity Vproa Ly V=8V Iy -8V I+ eI Vo+g I V
~ * . k —_ Kk#*
-\)VbIb—\)VbIb+irkkbka+l):<I‘kAbka]-0. 7)

where the terms (5) and (6) have been adjoined in an appropriate

sequence via the complex coefficients a, a, B, By E» Es Vs Vs r,and T ,

0 if b f B
Abk = . (8)
i B
1 if b e K
Note that in cases where
a = a*, (9a)
T =8, (9b)
— #*
E =&, (9¢)

(9d)
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and

the

The

rk = rk for all k, (9e)

extended Tellegen's sum (7) is a real quantity.
In sensitivity analysis first-order changes are of prime interest.

sum (7) is written in terms of first-order changes in V and I as

~ —_ % *' ,A . ] * -~ * —_ "%
i [a Ib svb +a I svb -8B Vb sIb - B vb slb + £ Ib svb + £ Ib evb
VooeIh - T v eI (cK sv. 4+ T v 4+ cK eI
-V bcb“’vb“b*irk"bk bv SVp ¥ Cpv 8Vp + Cpy 81y
—K * - k* K K* —k* %
+ Cbi 6Ib) + i Pk Abk(cbv GVb + va GVb + Cbi GIb + Cbi 5Ib)] = 0,
(10a)
or
(@I +T I ck T ck*y v
z [((a b+ E b * I rk Abk by * z rk Abk bv) $ b
b Kk K
— "% ~ —k - —L#* *
+ (a Ib + & Ib + i rk xbk va + i rk Abk va) svb
(8 V -5V ck T ck*
* BV vV T Mok i 2 T Mok bi) 81y
BV -vV ™ T T o1t (10b)
+ (=B vb - v Vb + i rk xbk cbi + ﬁ Ty xbk Cbi) GIb] = 0, Ob
k . k* =k k¥ Kk K* kK,  *
where Cbu' Cbu' Cbu and Cbu stand for acb/au, aCb /73U, aCb/aU ’

k*
3Cb

*
/93U , respectively, u denoting v or i and U denoting V or I.



IV. ELEMENT VARIABLES VIA BASIC VARIABLES
The perturbed Tellegen's sum (10) has been written in terms of
first-order changes of Vb’ V:, Ib and IZ. We shall call these variables
the basic variables .and denote them by the vector

¢ 3

Y
*
“ov N Yy
W, = —_— = - . (11)
b . 1
“pbi b
\ , I*
b

Now, for each element, and according to its type, another set of
variables called the element variables is of practical interest. The
element variables will be denoted by the vector z_ of four components

describing the practical state x

b and control ub variables associated

with element b as

zZ, = . (12)

where x, and u_ are two component vectors. sz can be expressed in

~b ~b
terms of 6gb in the form
Sfb
82y = leu | = Lo (13)
...bJ
where
T
9z
PN —=b T | (14)
~ awb

is the Jacobian matrix.



From (13)

(15)

A term of (10) associated with the bth branch is written in the

more convenient form

°T
f Gyb. (16)
where
( I —f* I ck T Ck*
oy L : T 2ok Cov * i Ty ok Cbv
~ — % 2 _k e _k*
£ a Ib + & Ib + I Pk kbk va + I Fk Abk va
- ~bi| Kk K
fb= — = ,(17)
~ ; v S :T. A cK £ T A ck*
Tov BV - vV + T S . "k bk “bi
g v 5T A CF I T o**
BV =V b ¥k bk bi T k *bk “bi
hence (10b) is written as
I £l osw =0, (18)
b °%b
b
or using (15) as
T o
T fb fb GEb =0 (19a)
b
or
-1.T "~ .T
I ((«1b ) fb) ng = 0. (19b)

b
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V. TRANSFORMED ADJOINT VARIABLES AND NETWORK SENSITIVITIES

Let
be

Ebu

N /

">

b fy (20)

(J

be transformed adjoint variables associated with the bth branch, where

Npx and Npy are two component vectors, then from (19b)

2 AL 6z = 0 (21)
~b <b
b
or from (12)
AT AT
T (Dbx 6fb + A, ng) = 0. (22)

b

Now, for a general complex function f of all state vectors x, and

all control vectors u, we set

b
Tbx = Bx. ° (23)
b
hence
of =3 002 T ax + (2557 gy )

b ~b ~ ~b -

_ T af T
z [be 6xb + ( 5 ) éfb]’ (24)
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Then, from (22),

£= 20037 _ 4T Jeu, (25)
b ~b ~b -
so that
df af ~
-— =z = -7 .. (26)
d~b aub ~bu

~

In the case when Yy is a function of some real design variables we write

3u
du_ = I —— Ag 27)
~b i a;bl bi’
where Cbi is the ith design variable associated with u_ and Acbi denotes

the change in Cbi' In practice, Cbi represent, for example, the
parameters of shunt control elements and phase shifting transformers.

From (25)

au
a ~ ~
el R (28)
bi ~D = bi

Note that (23) defines the adjoint elements while (26) or (28).

provides the required gradients.



- 12 -

VI. GENERAL FORMULATION

We define an adjoint vector analogous to Wy of (11) as

4 \

. Yy
-~ va A b
o S Bl I Bl (29)
Whi Iy
~%
Ib)
T

and write the matrix (J;1) of (20) in a partitioned form

Mo M
T 1 e
(Jp )" = , (30)
b W P
~21 22

b b
where M,,, M5,

Using (17) and (30) the vectors Nox

yg1 and ygz are 2x2 matrices.

and n u of (20) are given by

mox - M1 fpi * Mio Ty (31
and
b LMt (32)

Tou = M1 fps + Moo £y

-~

and f are written in terms of w, and w, as
~bv ~b b

A

The vectors Ebi

(33)
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and

A ~

_ b -
by - A Yoy T Ay Yoy (38

b — b
where Qi’ Qi’ A

A, and K; are 2x2 matrices. The elements of ]; and'Ki

consist of the adjoint coefficients a, @, £+ £» Bs B, v and v.

For the set of terms considered in Tellegen's sum (7) the matrices

b — b - .
éi' Qi’ ev and Qv are given from (17) by
/ \
Kk — k¥ _*
2T Mg Cou/Ty 2 T Aok Cov’Ip
b K K
Ay = ' (35a)
) T. ™t
ﬁ Ty bk “ov/Tb f( Ty *bk “bv’ b
\
_ « &
x, = e (35b)
g o
—_ ' k¥ *
I Ape Coi/Vo  E T Apk Coi/Vp
b K K
v = " x ’ (350)
~ —x - —x
f{ Ty 2ok bi’Vb i T 2ok %bi’Vp
N
and
_ B v
A = - . (35d)
~V -
v B
Note that if Cg of (6a) has the form
ck=v I (36)
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where

<
]

and

i
]

the elements of Ab b

iIb,

(37a)

(37b)

i and A, consist solely of the adjoining coefficients

r and T.. Note also that Vb= +1 in (35a) and Ib =+1 in (35c¢) lead to

k k

corresponding zero matrices.

For use later we now define

K K
Nip = Ty Cov
% =k

Nib = Tk Coy

kK K

Nob = Tk %1

and

K K

Nob = Tk %3

Using (33) and (34), equation (3

~

1) is

~

K#*
bv’

—Kk*
va'

Kk*
bi’

—k#*

written as

%i "pbi © %bv Ybv * b

(38a)

(38b)

(38¢c)

(38d)

(39)
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where the 2x2 matrices 5' and ebv

i b
014 are given by

Opi = Miq 4y (40a)
and
gﬁv =" !?2 E&' (40b)
andAthe vector gb is given by
0 = oy ~ M4 A ¥pg = Mia Ay Yoy (1)

Note that the choice of the coefficients o, @ ... ete. is

subject to the consistency of (39).

VII. POWER SYSTEM ELEMENT VARIABLES
We consider the total number of branches to be ng consisting of ng
loads, ng generators, one slack generator and N = ng - np - ne -1 other
branch elements.
The buses are ordered such that subsecripts 2 = 1, 2, ..., n
identify load branches, g = nL+1, ceey nL+nG identify generator branches
and n = ng o+ ng + 1 identifies the slack generator branch. Subscripts t

=n+ 1, ..., ng are used to identify other branches.

The element variables for a load are usually defined as



ne>

or, for example, as
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*
IV | w v'?
2 L L
tan L3V =V )/ (V V)]
Sy an LItV =Vt
P ) VI
2 22+21
.* #*
Qz J(Vglz-vzll)/Z
\
. P \
v v
2 2
v v
;é 2 ) 2
= - %*
~% S VI
g )
s VI
2 2 2

The element variables

or, for example, as

, (42a)

(42b)

for a generator are usually defined as

) tan ['(v* vV )/ (v v*)J
Sg an  LJWWg=Vg//Wgt'g
* #*
Q FOTT v 1Y /2
g £¢ g8
|V | w2
g g g
p VIR
g geg g g
/ \
v v
g g
I I
g | e
#*
v | Vv
g g g
s +s* v It
g g g g g8

\

, (43a)

(43b)
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The element variables for the slack generator are usually defined

as

/ P Vv I* V*I 2
n ( nn*'n n)/
L *
_ Xn A Q, J(vnIn“vnIn)/2
zn - - = B = PE—
- ¥ 1/2
Yn |vnI (ann)
’ 1, ¥ *
8, tan [J(Vn—Vn)/(Vn+Vn)]
N AN
or, for example, as
/ \
I
n
*
I
~ 4 n
Zn < v :
n
*
\')
n

2

(44a)

(44b)

For other branches the element variables are defined according to

the element type. The element variables for a transmission element, for

example, may be defined as

*
.
ReLIt} (It+It)/2
Im{I, } $(17-1.) /2
3 Xt , Mg I
= [ I S R e
t ¥ %
u, G, (T NV +T W) /2
N
B, JALN-T ) /2

(45a)
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or as

\ d
I, I
* *

-, Iy Iy

..z.t= . = L . (45b)
t £V
* %* %*
Y, I /V,

Let'gb be a general vector containing ?2, ?g’.gn and z_ of (42a),

t

(43a), (4ba) and (45a), respectively. Also, let Z_ be a general vector

~ ~ ~ ~

containing Z0 §g' z and z, of (42b), (43b), (U44b) and (45Db),
respectively.
Using the results of the Appendix the corresponding matrices § i

and © and vector eb for different power system elements are shown in

~bv
Table I for the set of element variables Zb and in Table II for the set
of element variables zb.

It is important to notice that © [ and 6 _ of Tables I and II

~bi’ ~bv b

are common to all relevant power system studies as long as the element

variables considered are z._ and 2y respectively.

b
VIII. THE ADJOINT EQUATIONS
In this section we derive the adjoint equations. We write the

matrices gbi and ?bv and vector gb of (39) in the form

~

Op; = . (46a)
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gbV = N (46b)

Ve
\,

and

0, = ’ (46c)

7
N

hence, the adjoint current-voltage relationship for element b has, from

(39), the form

k I 4+ —k

T k —k
¢b b ¢b I V, + wb V + W, (47)

where k = 1, 2 denotes the first and second complex equations of (39),

respectively, or, when separated into real and imaginary parts,

i —-i 2 —-i ~i Z i —-i 7 —-i ~i 7 ~Si
(Opr¥ep ) Tpy + (=001 5 = (g rby IV + (o= 0V + W
i=1,2 (48a)
and
J 73t ~3 =3 S I J °S3.
(¢b2*¢b2)1b1 + (opg=op ), = (wb2+¢b2)vb1 + (*b1 u'b1)vbz + Wos
i= 1,2 (L8D)
where
~k "~k ~k
¢b - ¢b1 + J¢b2! (498)
Kk -k —X

“k ~“k "k
vy = ¢b1 + J¢b2, (49¢c)
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—*« _ —k —k
by = Yy * I
Vo = Vo1 * Vpoo

~ A A

I =1 + jI

b = b b2’
and
~Sk  ~Sk Sk,
Wy = Wpq + JW58

k=1, 2.

~

(49d)

(49e)

(49f)

(49g)

In order to uniquely define the adjoint currents'Ib in terms of the

~

adjoint voltages V., the system of four linear equations (48) has rank 2.

b

Two of the four equations are used to describe the adjoint element. We

write these two equations in the form

b 2 b 2 b 2 b ~S
011 To1 * ¢qp Tpo = ¥qq Vpq + Vo Vo *+ Wiy
and
b 2 b 2 b 2 b . ~
021 Tp1 * 000 Tpo = ¥oq Vo * ¥ Vpo v W
where
b _ 7i . —i
®19 % b9 * Oy
b i _7i
®10 = bpp T Ope
b o_ i -
Va1 = Ypq * Ppqe
b o_—i _ i
Vo = Ypo T Vpoo
~s  ~sy
wb1 = Wb1, 1 or 2,
and
b ~j -
%29 % Ppp ¥ oo
b _ %) _ =3
%0 = P17 Oy

(50a)

(50b)

(51a)

(51b)

(51e)

(51d)

(51e)

(52a)

(52b)
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b _ 7] —J
Yoq = Vpo * Voo
b o_ 73 _ =
Yoo = bpp T Vpepe
AS _Asj. .
Wb2 = wb2, j=1o0r 2,

(52¢)

(52d)

(52e)

Equation (50) is written for transmission elements in the form

~ — ”~ — ~ AS
Ter = Yeq Veq = Yoo Ve * Tyy
and
L. =Y. V.. +%Y. V.. 41>
t2 = Te2 Vo1 T Yo Ve t o teoe
where
- - t £ £
Yor Yo ¢ T2 ¥
S
Ag
~ ~ t t t
Yoo o Y 2y o199 Vo
and ’ ’
3 t t S
t1 22 12 W
_ 1
=2
t
s £ t ~3
Lo BZy 41 Weo
\ \ 7/ \
and where

At ot t ot
By = 0qq 0pp = bqp 05y £ 0.

We define the complex quantities

11>
[
I

t t1

(53a)
(53b)
t
Y12
(54a)
t
Yoo
(54Db)
(54¢)
(55a)
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and
Y, 8y, 45y (55b)
t t1 te*
Equation (53) is written in the matrix form
/ 3 ( r
1 Y| |V Ir1 = I
= . (56)
¥T2 ¥T1 YT2 ET2 ET2
¥ yP yP vP : ; .y Y
where ¥T1' ¥T2’ ¥T1 and ¥T2 are diagonal matrices consisting of the Yt1’
— ~ ~ . ~ ~ ~ ~ l\s AS
Yt2' Yt1 and Yt2’ respectively, and YT1’ YT2’ IT1' ;TZ’ Iz, and ;TZ are
~ ~ ~ ~ AS AS . .
vectors of components Vt1’ Vt2’ It1' It2’ It1 and It2' respectively.
For later use, let
vP A 7P Ry
Yo = ¥pq + oo (57a)
yP 4 ¢P P
Yo = Ypq * oo (57b)
v, v e g (58a)
~T 7 LTH -T2’
E 4 E + jE (58b)
=T ~T1 T2
and
25 4 7S .28
Ir = Irq + gy (59)
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Now we define the 2nx2n matrices

4
291 212
¢ = (60)
24 2
and
1 Y12
¥y = ’ (61)
Yo Yoo
where
01, & diag (o7,}, (62a)
0,5 & diag (67,1, (62b)
A L. m
9y = diag {¢21}, (62¢)
A . m
¢y, = diag {¢22}, (62d)
A . m
¥qq = diag {y, 1, (63a)
. m
¥y, 8 diag {y7,1, (63b)
. m
¥ 4 diag tyyehs (63c)
and
A L. m
f22 = diag {¢22} (63d)

are nxn diagonal matrices, m can be &, g or n.
Equation (50) is written for the bus elements using (60)-(63) in

the matrix form
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B 4 °B ~SB

211 212 £M1 311 312 YM1 HM1
= + . (64)
B ! B ~SB
251 %22 Tuo ¥21 Y22 VM2 Wu2
7 \ Vs Ve
where }M1’ EMZ’ YM1’ YMZ' ¥M1 and WM2 are vectors of components Im1’
~ ~ ~ I\S As .
Im2' Vm1, sz, w&1 and wm2, respectively. We let

BAZB 2B

Im = Img * Jyae (65a)
B ACB B
VM = YM1 + JYMZ (65b)
and
“SB A 0SB . . SB
Wy = Wyq + Wy (66)
KCL is written as
B
| I
ERE S R S8
Ir
where
A i
RNENEY (68)
is the reduced incidence matrix of dimension nxn_ (n buses, n_ branches)

B B

whose elements aij are given by



_25;_

aij =1 if branch j is incident at bus i and oriented away from
it,

aij = -1 if branch j is incident at bus i and oriented toward it,
and

aij =0 if branch j is not incident at bus 1i.

Now we define

Y=Y+ 3T, 2 a0 Y ﬁg' (69a)
Yo=Y + gy 4a. ¥P Al (69b)
~T ~T1 T2 ~T 2T T
EM = Jyy * jgmz 2 A %g (70
and
@3 = @31 + j@ﬁz £ Ay QSB' 7
Al so the bus voltages
QM : §M1 * Jng : By ?3’ (72)
are related to QT through the relationship
Vp = A7 Uy (73)

Eliminating E and Iﬁ from (56), (64) and (67) and using (72) and (73)

we arrive at the final set of adjoint equations to be solved in the form
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N\

— ~ —_— ~ ~ ~ ~ ﬂs
(04 Y+ 2o oty q) (=00 Ypo4@ Yo #¥ 00 | | Vi 2119m1+2129M2 M1
(0T 40 Yot¥. ) ( Y Y y| v O g 40 Je AW
L o S RT3 - S DA TR PAS Pt S R 2 B B VP 2o19M1+220dMo 2
A VAR . \ 4
(74)
Note that multiplying (56) from left by the matrix
£
| Q
.4 SRR
Kﬁ ] y (75)
9 Ay
substituting YT from (73) and using (67), (69) and (70) we get
Y1 Y12 M1 I * I
z - . (76)
Yo Y4 VM2 e * w2
\ 7 V4
where
i = £ + ji = A EB | 77)
M oMt IiMe T 3w Iwe

The form of (76) is that of the conventional nodal equations. It
can be used for solution purposes if the RHS is voltage independent,

e.g., as for typical linear electronic circuit cases.

IX. GRADIENT CALCULATIONS

The solution of the adjoint system (74) provides the adjoint
variables w._ of (29). The required gradients are then calculated using

A A

(26) or (28). The vector N,y 18 obtained from (32) where fbi and fbv

are calculated from (33), (34) and (35). Using the results of the

Appendix matrices §g1 and M22 of (32) for different power system



- 27 -

elements are shown in Table III for the set of element variables Eb and

in Table IV for the set of element variables zb.

X. CONCLUSIONS

This paper has laid the foundation of an exact adjoint network
approach to general power system sensitivity analysis and planning
.problems. A family of adjoint systems of equations has been derived so
that a wide variety of special problems can be handled. We have
overcome the difficulties which have prevented previous workers from
applying Tellegen's theorem to the a.c. power flow model in general and
without any approximations.

We have derived and tabulated standard sensitivity expressions
common to all relevant power system studies. Part II of the paper [10]
addresses, in detail, an important special class of adjoint systems
applicable to the evaluation of sensitivities w.r.t. all design and
control paramgters of most functions of practical interest. Numerical
examples are providéd in that part. |

The concepts stated in the paper are general. While they have been
applied with power systems in mind, they are applicable to other systems

as well.
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APPENDIX
Loads
For a load the Jacobian gz using the éet of element variables %L of
(42a) is given by |

* * 172 % 1/2
vz/[z(vzvz) ] vz/[z(vlvz) ] 0 0
i/ (2V j *) 0 0
=-J z) J/(2Vz
9y = ., (A1)
* /o I v*/z vV /2
I,/ /2 . .
j */2 jI j */2 iV /2
=3I, 31,72 v, -3V,
hence
. % 1/2 .
(VE/VE) JVL 0 0
* 1/2 . *
(vz/vl) -3V, 0 0
-1
dy = , (A2)
* 172 . * I
—IL/(vzvz) JIL 1/vl -J/Vz
% * 1/2 L : .
~1L/(vzvz) —JIl 1/v£ in,
so that
* *1/2 e TRV
<aV2+£V2)/<v£vz> (;vz+av£)/(v£vz)
i © ' (A3)
. * — —
J(avz-gvl) J(EVl-uVL
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I I* Vv V*)1/
-(B g +v L)/( Y

3 I*
J(BIQ—V 2)

k

[Nk

L ja
Lk 4
K i

Ve

k

. k
i szk[Nvll

\

L

2

'

L

e
\'

— = % 1/2
-(vI£+BIl)/(V2V2)

i(31 -BT1)
JGI, BT,

K *1/2 <k , * 172
I A NGy (V/V) * N Vv Tl

k

K ¥
- N, V]

if 2

I
2 L

Using the set of element variables 22 of (42b)
given by
’ \
1 0 i 0 0
I
0 1 5 0 0
|
J = L —,
~L =
I 0 L0 v
! 2
' #
\O Iz g VQ 0
hence
1 0 ; 0 0
]
0 1 i 0 0
i
-1 |
! - oo -
0 I V* : 0 1/V
TV i /
]
R 0 VA 0
[} i I3

\

Kk * 1/2 <k _* % 1/2
2 Azk['szIz/(vzvz) - szIz/(Vzvz) ]

, (AY)

» (A5)

(A6)

the Jacobian is

(AT)

(A8)



so that

Generators

For a generator the Jacobian Jg using the set of element

Z of (43a) is given by

- 30 -

a
i =
g
(v
-V z/ )
oAV o
I
-8 z/z
A} _
Mig Ay Wy =
7
z
. k
12 év Ylv =
z
k

™|

Q|

BTV
=BV,

;Giz/v:J

Lk i

‘)

vi L %

NVL 2

V*
I/ 3

(A9)

(A10)

(A11)

(A12)

variables



*
~3/(2V i/ 2V
A g) j/ ( g) 0 0
i1 /2 i1 /2 v /2 v /2
I g Ig Mg ~g
3, = _ . . (A13)
* x 172 * 172
V /[2(V V V /[2(V .V 0 0
g [2¢( g g) ] g/[ ( g g) ]
/2 I./2 v /2 v /2
g g g g
hence
( o v, 92 0
g ; g g'g
]
]
o | * % 1/2
-3V 0 WA 0
Mg E g/ (Vglg)
-1 1
ig = ; . (A1Y4)
i1 I s vy1/2 it
- 1 -
g I g e g
]
1
x , ! * * 172
51 VoL oIov 1V
g g 1 Tl Vg
\ 7/
so that
,'< V —gVh) $(EV oV )
Jtalg=tlg Jiglgmely
ggi = 0 (A15)
0 0
Vd
(8T —vI') (5T BT )
J(B g—v g Jv g—B g
?'gv = ’ (A16)
) * - %
B N ) HEDAREVA

7/



g g -
Mi1 A5 Wgy = ' (A17)
0
=k
N I -N"1I
[ vg g vg 8]
g g -
M12 ﬁv ng = . (A18)
k ® _y
A [=N_ /V +N_ /V
Mgl Nyg/Vgtlivg/Vg?
Using the set of element variables ; of (43b) the Jacobian is
given by
1 0 0
0 1 0
Jd_ = , A1
Ig (A19)
*
\'} ' 0 0
g g
* %
I ' v
g g g g
/7
hence
1 0 0 0
V*/V 0 1/V 0
“g''e
-1
J = y A20)
-8 (
0 1 0 0
(1 V*/V2 I*/V ) V*/V I /V2 1/v
gg g ¢ g g’ g g'e g

N
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so that
(ameV' 7V ) (F=aV' /V )\
a=t¥e/ Vg tmalg g
0 | , (A21)
0 0
Ve
* 2 * — ¥ o %
IV v IV /Vo=I /v
VIV VgIg/Vg) B(I Vg /Vg=Ig/Vg)
Ogy = , (A22)
Vi BV IV
BT Vg vBYg g
kK
NS - A
ﬁ ‘i MNig ~ Nig g/ g]
€ 28 - (A23)
!11 ﬁl Ygl - ’ 3
0
(I v /Vz—I V)
k 8k vg g g 8
g & )
!12 ﬁv ng - ‘ (A2H)
K =k
. NS NS Vv
; kg Nyg g/ g

Slack Generator

For the slack generator the Jacobian Jn using the set of element

variables E% of (44a) is given by
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e
1 /2 2 v
0 1./ /2 v /2
‘* 3 o* 3
-JIn/Z JIn/2 JVn/2 —JVn/Z
J =
-n
* * 1/2 * 1/2
Vn/[Z(VnVn) ] Vn/[Z(VnVn) ] 0 0
i/ (2V ) j 2V*
-j/( n 3/ ( n) 0 0
\ /
hence
[ - * 1/2 .
0 0 Vn/(VnVn)‘ JVn
* ® 1/2 ¥
0 0 V /(YY) -3V
J-1 =
~n
# . * 172 .
1/Vn -J/Vn -In/(VnVn) JIn
. * ® 172 .
. In, =1/ (V V) -3,
N .
so that
0 0
gni =
0 0
’ V* -_— ¥ —
(g/ n+\>/Vn) (v/Vn+B/Vn)
3 ,
~nv

N

) * = w
J(-B/anv/Vn) J(-v/Vn+B/Vn)

n n
Miv A3 Yni = ’

9

, (A25)

(A26)

(A27)

(A28)

(A29)
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’ \
k ¥ L
i Ank[an/vn+an/Vn]

n .n _
!12 én an - ! (A30)

. k % <k
N [-NT AV ANT AV

Using the set of element variables én of (44b) the Jacobian is

given by
/ \
0 0 1 0
0 0 0 1
gn = _— - . (A31)
1 0 0 0
0 1 0 0
hence
/ N
0 0 1 0
0 0 0 1
1= - -1, (A32)
~n
1 0 0 0
0 1 0 0
AN
so that
0 0
~ni = ’ (A33)
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Transmission Elements
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n
M AW

A w =
~V nv

~ni

<|

®|

(A34)

(A35)

(A36)

For a transmission element the Jacobian Jt using the set of element

variables z

t of (45a) is g

iven by

0 0 1/2 1/2
0 0 =j/2 j/2
ft = -
I /(2V2 I* 2 *\2 *
-1, t) - t/( Vt) 1/(2Vt) 1/(2Vt)
i1 2V2) i7" 2V* 2 j j *
J t/( t —JIt/( t) -J/(th) J/(2Vt)

hence

?

(A37)
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o 2 2
V /I, Ve /T, ~VE/T, -3Ve/T,
v vt v*2 I 'V*Z/I*
£/I¢ =3V /1 Ve /1y Ve 72
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= A
it . (A38)
1 j 0 0
1 -j 0 0
7
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vk T vt
(avt/It+g t/ t) (th/It+a t t)
. %* * L, — —_ % *
3oV /Ty =gV, /1) J(EV /T =aV /1)
\ 7
(B+v) (v+8)
e, = _ . (A40)
VT ey 3G |
K K % %
i N Ngp Vo/T, + Nol VO/I]
bt _ | . '
Mg By Wy = ' ’ (A4T)
- . K & %
i My NGy Ve/Tp = Wi V /1]
\
Kk
I agNge + Nyl
K
t ot 4
Mi2 Ay Yey = ' (Ak2)
kK —k
i JAtk[Nvt Nvt]
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Using the set of element variables ét of (U5b) the Jacobian is

given by
/ AN
0 0 1 0
0 0 0 1
:I.t = ’ (Au3)
1 8 0 W, 0
t' 't t
0 I*/V“2 0 1 V*
't ar
\ /
hence
AN
V./1 0 -V2/I 0
t't t' 7t
0 V* I* 0 V*z I*
t/1¢ Ve /1
-1 _
it = ’ (ALY)
1 0 0 0
0 1 0 0
N P
so that
\
a vt/It £ vt/It
eti = ’ (A45)
V* I* _.v* *
g t/ t a t/It
N
/
8 v
gtv = ' (A46)
v B

d
\
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4 N
£ hek N?t Ve/Iy
Tﬁ1 MY Wy = ' (A4T)
* *
s Mk ﬁ?t Ve/1y
\ )
.
2 Aey “5t
Mip AY ey = : (A48)
s Mtk ﬁtt
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TABLE IIb
ELEMENTS OF ,e,bi’ E)bv AND gb USING ELEMENT VARIABLES Eb
Slack Generator Transmission Elements
/ 7/
, —
! 0 0 oz/Yt “;/Yt
— |
Obi
0 0 ol o
| £/ t a/Yy
A Ve
8 v B v
~bv
v B v B
N\ 7 ~ 7
% N /
of k af k k
— -3 A, N — - I x, [N, /Y 4N
9 n K nk vn 9 t K tkit" "t vt
fb
of =k of =k ¥ —k
Ix . N —% - I A [N/ /Y 4N
oI K nk 'vn 51 K tkit" "t vt
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TABLE IIIa
MATRICES Mg1 AND MSZ USING ELEMENT VARIABLES z,
Load Elements Generator Elements
0 0 v /|V Vv
0 0 0 0
\ Vi N
. ' / \
Ny 1V st 0% v D S /(U IV.)
L L g s' s’ g g' gl
M
- . * . *
-3/, i, ", ",
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TABLE IIIb

b

51 AND M22 USING ELEMENT VARIABLES z

Slack Generator

Transmission Elements

V /v v \ ( Y vy Y¥
n | nI n/I nl -Vt/ t - t/ t
3 . * 3 Y .V* Y*
iV _Jvn _Jvt/ t J t/ t
/ * * N /O o N
S/ VD =S /(Y]
3 * * .
an/vn -JSn/Vn 0 0
TABLE IV
MATRICES M21 AND Mge USING ELEMENT VARIABLES z_

S—

=

Slack
Elements Generator Elements Generator Transmission Elements
| I T
| 0 ’ 0 1/Vg ; 1 0 Vt/Yt 0
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l : l 0 1 0 V* Y*
. 0 0 ) A
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L g g
* 0 1
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Abstract: Efficient sensitivity analysis and gradient evaluation,
essential in power system studies such as optimal power flow,
contingency analysis and planning, is the subject of this paper. We
present an approach based upon a generalized adjoint network concept.
It exploits all the powerful features of Tellegen's theorem by suitable
extensions through which the a.c. load flow model can be used without
any approximations. We introduce the conjugate notation used in
formulating the Tellegen expressions for general complex functions. We
also introduce the concept of group terms which facilitate control of
the adjoint system so that a wide variety of particular cases can be
handled. We derive and tabulate standard sensitivity expressions common
to all relevant power system studies. ’
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