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Abstract

A unified approach to power system sensitivity analysis and
planning has been presented in a companion paper, where a family of
adjoint systems based on the exact a.c. power flow model was described.
Here, we consider a class of this family in which the extended Tellegen
sum is a real quantity. An important practical case is discussed in
which the adjoining complex coefficients are set to particular values,
which result in an adjoint system of a special structure. The adjoint
matrix of coefficients is shown to be of the same size and sparsity as
the Jacobian matrix of the original power network. The required
sensitivity expressions are derived and tabulated for direct use in
sensitivity analysis and gradient evaluation and are common to all
relevant power system studies. Numerical examples are presented baSed

on a 6-bus sample power system.
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I. {NTRODUCTION

In power system studies such as optimal power flow, contingency
analysis and planning [1] the sensitivities of the system states and the
derivatives of objective functions and constraints w.r.t. the control
variables are required to be calculated in an efficient way. The
adjoint network approaches to these problems, which are based on the
exact a.c. power flow model [2,3] appear to be superior to the Lagrange
multiplier method [4] since they afford a great deal of dimensionality
reduction and scheme compactness. A unified approach to power system
sensitivity analysis and planning exploiting the adjoint network concept
has been presented in Part I of this paper [5]. A family of adjoint
systems based on the exact a.c. power flow model has been fully
described. In this part, namely Part II, we consider a class of this
family in which the extended Tellegen sum is a real quantity.

We discuss in detail an important practical case in which the
adjoining complex coefficients are set to particular values which result
in an adjoint system of a special structure. The transmission 1line
admittances of both the original and the adjoint systems turn out to be
identical. The required sensitivity expressions for this special case
are derived and tabulated for direct use in sensitivity analysis and
gradient evaluation. These sensitivity expressions are common to all
relevant power system studies.

Numerical examples are presented for a 6-bus sample power system.
The sensitivities and gradient vectors of several types of functions are

considered for the purpose of illustration and comparison.



II. REAL EXTENDED TELLEGEN SUM
Equation (7) of Part I describes the general form of the extended
Tellegen sum. To obtain a real extended Tellegen sum, it is sufficient

for the adjoining complex coefficients to satisfy the conditions

— * ® . #
e as B=B,y E=EE, Vv=yw (1a)
and
- # c
r, = T, for all k. (1b)

Hence, the extended Tellegen sum is written as

[0l V R A L I v ety
g o L Voo TV -8V Iy-8 VoIy+el Vp+8 LY
v ot ck * &*1 = 0
Vi tp 7Y bb"lfrk*bk b+§rk)‘bkb = 0. (2)

Expressing (2) in terms of first-order changes in V and I, the
resulting perturbed sum is also a real quantity and equations (39) of

Part I are consistent for all values of a, B, &, Vv and T

k.
Equation (2) describes a class of adjoint networks corresponding to
different values of the arbitrary complex coefficients ¢, B, &, Vv and
I'k.
III. AN IMPORTANT SPECIAL CASE

We consider the special case

1 + jo, (3a)
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i
w
i

0 + jo, (3b)

™
1]
<
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and



r, = 0 + jO for all k, (3e)
which, as we shall see, provides a special structure of the adjoint
network. The transmission admittances of both original and adjoint
systems are identical. The required gradients in power system
sensitivity analysis and planning studies are supplied via one adjoint

network analysis.

The matrices A?. Ki. As and I; of (33) of Part I are given by

0 0
b
Ay = A 8 J (4a)
0 0
7/
/ AN
1 0
i\i = N (ltb)
0 1
7 \
0 0
Ab = A = . (4e)
~V ~V
0 0
/
and
-1 0
A = , (4d)
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hence, the matrices 551’ sbv and vector 8, of (39) of Part I are simply

- b

8 = Mg (5a)

— b

~bv ~ !12 (5b)
and

gb ® Mox* (5e)

Tables I and II show the corresponding matrices [ i and §£v and vector

eb for different power system elements considering the sets of element

variables EL and ib, respectively.

IV, POWER SYSTEM ADJOINT ELEMENTS
Using the results outlined in Table I, the equations defining the

adjoint elements for the set of element variables'Ez are, for a load

T gl ® af . of
I, = =(S,/VOV, + [|V,| VT j b6 1/@v)), (6)
for a generator
VI vt e sy - (7a)
g g ‘g g- Cglg g gllg’ Vg T 3%, 2
and
Vv o-vut v oyt 2L (Tb)
g lg " Vg Vg =31V Vg P

where each of (Ta) and (7b) represents only one condition, for the slack

generator
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-4
Vo= vt (R, g2, (8)
n- 'n ) 2 J Q, '
and for a transmission element
- of af

I =Y V. +Y [ ]/2. (9)

= — = §
77t 't T Tt " BRe(I,} 3In{I, }

Similarly, using the results outlined in Table I, the equations

defining the adjoint elements using the set of element variables z, are,
for a load
T 2, % of
Iz = - (Sz/vz) Vz + aVz . (10)
for a generator
VI -vI 2q Vi +v 2L (11a)
g g " Vg Tg T TI2 Qg VgV + Vg v, 2
and
A * %
VvV -v. v o=y 2 (11b)
g 8 g8 8 g 3 g

where each of (11a) and (11b) represents only one condition, for the

slack generator

Vn = =T (12).
n
and for a transmission element
I =Y, v, +y & (13)



Note incidentally that, for transmission elements, equations (9)
and (13) have the form

I, =Y V,_ +1I_. (14)

£1 ° Yt1 = Yt1 (15a)
and
YtZ = Yt2 = Yt2' (15b)
where
Yt = Yt1 + JYtz, (15¢e)

hence, the line admittances of both original and adjoint systems are the

same, and (76) of Part I has the form
Y.V, = =(I,, + d,), (16)

where IT is the symmetrical bus admittance matrix- of the original
system. Moreover, since the matrices Qij’ wij; i,j =1, 2 of (74) of
Part I are diagonal matrices, the adjoint matrix of coefficients is of

the same sparsity as the Jacobian matrix of the original network.

V. THE ADJOINT EQUATIONS

We write equation (16) in the form

’

( A ~ ~
Yoo Yoo Y L L+ 9
! - e
Yoo Yoo  Yon sl = Is * J| ¢ amn
zNL ZNG Ynn vn In + Jn




where the nxn bus admittance matrix has been partitioned into blocks

associated with the sets of load, generator and slack buses of

appropriate dimension, and V EM and gM have been partitioned

M
correspondingly.
We also write the diagonal matrices ?ij and wij; i, j =1, 2 and
the vector W: of (74) of Part I in the corresponding partitioned forms
4 \
L
% 0 0
G
%55 |0 %13 o1 - (18a)
n
0 N ®ij
\
/ 3
L
¥ij 0 0
v..= | o0 WO o, (18b)
~1J ~ ~1J ~
n
0 0 L&
\Y N V4
where 0%.. @?.. VF. and WQ. are diagonal submatrices, and
~i30 ~i3" ~ij ~ij
4
S
WL
) ~S
BM = HG . (18¢)
wS
~n

4

Using the forms (17) and (18) it is straight forward to show that
the adjoint system of equations (74) of Part I can be written in the

form



\

L L L L L L L L L L
S1GLr2B e 88t B =0 Bt St 1Bttt
G G G G G G G G G G
#1186+ 21280 211966212866+ 11 ~211BaL 2128 =211Bge* 212866+ Y12
L L L L L L L L L L
oqGp* 008 Yo 854G 5808 =0 B0t % Bt %00
G G G G G G G G G G
1%L %2256 951866+ 922866 Y21 ~%21BaL* %2061 =% 1Bag* %2066+ Y22
L~ L~ *s
A ) MR R PN
V A ~
Vi1 L L L L
G B N Vi1 9 4BL6m 2128 6 Vo
G~ G~ °S
. 8119617212926 1
v .
V61 G G G G ~
(211Gen*212Ban " Vn 1~ 211Ban=21286N Vn2
-_— = - (19)
LS L% 28
. 85190149209,
v | .
VL2 L L L L ~
(051G N* 9208 N V01 221BLN 222G x V2
G~ G~ S
8196142296252
Va2 G G ~ G G -
S (951G an*220B6N V1 ¢ 221Ban=22286N ) Vn2
where

Yrg = 619 * 3 Brypo
Vg = Vg1t 3 Yoo
Ig = k1 * 3 koo

(20a)

(20Db)

(20c)

»
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~g As g
We = Wgq +J Weo (20d)

and I, J and K can be G, L, N or n.

Note that the form (19) 1is general for any set of element
variables. The adjoint matrix of coefficients has dimension 2(n-1) x
2(n-1) where the sléck bus equations have been omitted.

Tables III and IV show the parameters of the adjoint system (19)

for the sets of element variables z

~

b and L respectively. For
simplicity, only general elements of the diagonal matrices and of the
vectors are shown.

The structure of the adjoint system (19) for any of the two cases

is simplified to

/

L L
GL * ¥y S Bt ¥ Bs
G G G G G G G G G G
2018228 21186602866 Y1 8B tiSar  ~%11Baet 2866t 2
L L
BiL * ¥ Big GL*¥ 6
G G
0 ¥ 0 Yoo
N / \
v T . +W. +G V. -B Vv
L1 L1 TR Iy it T B Y2
§\; OG[3+GG—BG]+0G[3 +B‘\7+G\7]+ﬁs
V61 21186156 n 1 Ban 2! * 2120962*BonVn1*96nVn2d * YGo
\7 3 +;JS + B \7 + G \7
L2 L2 YW * By Var Oy Vno o
~ AS
Va2 Weo
\ 7/ \

(21)
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VI. GRADIENT CALCULATIONS

The derivatives of the function f w.r.t. the control variables are

calculated from

df of ~
— = _ g (22)
du, 2w, ~bu
or
~ u
b
*bi Yo ~ bi

~

derived in Part I. The vector by is obtained from (32) of Part I,

namely

Bbu - M, gbi * M2, %bv’ (24
where the vector %b is given, for the considered case, by
/A
(n ) "
~ ~u
. fbi Ib
fo= |- = — (25)
fov b
G*
L)

and the matrices Mg1 and Mgz are given in Tables III and IV of Part I.
Tables V and VI show the vector Tou for different power system

elements in the special considered case using the sets of element

variables EB and %, , respectively.
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VII. EXAMPLES

In this section, we present some numerical results to illustrate
the use of the derived formulas. A 6-bus sample power system [3,6]
shown in Fig. 1 is considered.

Required data for the problem is shown in Tables VII and VIII.
Powers injected into buses are shown. The corresponding a.c. load flow
solution is shown in Table IX. Tables X and XI show the coefficient
matrices of the adjoint systems corresponding to element variables ?
and ?b,respectively. These matrices are c§mmon to all the sensitivity
calculations.

So as not to be restricted to any particular application, we
consider the following examples where we consider, without 1loss of
generality, the sensitivities of some system states and a function
representing the total transmission losses in the system. The control
variables associated with the transmission elements are taken as the
line conductances Gt and susceptances Bt'

The results presented have been checked by small perturbations

about the base point.

Example 1

In this example, we consider the states associated with the load
bus number 3. Element variables ?L are used. Table XII shows the RHS
vector of the adjoint equations for both states and the adjoint voltages
resulting from the solution of (21). Table XIII shows the derivatives

calculated by our approach.
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Example 2

Now, we consider the states associated with the generator bus

number 5. Element variables Zb are used. The RHS vector of the adjoint
equations for both states and the adjoint voltages resulting from the
solution of (21) are shown in Table XIV. Table XVa shows the

derivatives calculated by our approach.

Using element variables Z

~

b* the derivatives w.r.t. Sz’ for example,

are shown in Table XVb. Note that from (3) of Part I

Example 3

In this example, we consider the function

£= L IItI2 Rps
which represents the total transmission losses in the power network.
Table XVI shows the RHS vector of the adjoint equations for this
function and the adjoint voltages resulting from the solution of (21).
Table XVII shows the derivatives calculated by our approach. Element

variables zb are used.

Example Yy

In this example, we investigate 1line removals by considering

functions of the form



-1 -

The control variables associated with generator and load buses are
maintained at their base-case values.

Table XVIII shows some results of different contingencies.

VIII. CONCLUSIONS

We have considered a class of adjoint systems in which the extended
Tellegen sum (introduced in Part I) is a real quantity. A detailed
discussion of an important case in which the selection of the adjoining
complex qoefficients lead to an adjoint system of a special structure
has been presented. The adjoint matrix of coefficients is of the same
size and sparsity as the Jacobian matrix of the load flow equations of
the original power network.

Sensitivity expressions have been presented and adjoint elements
have been defined permitting a wide variety of problems to be handled.
A number of relevant problems have been numerically explored for a 6-bus
sample power system. The application of the formulas, which have been

derived for two important sets of variables, has been illustrated.
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TABLE 1Ia
ELEMENTS OF gbi’ gbv AND fb USING ELEMENT VARIABLES fb
Load Elements Generator Elements
/ */ \'} ‘ V 'V*~
VIV VIV, v, -3V,
Sbi
iV v* 0 0
J L J 2
( * * v ’S*/V* iS /V
'Sz/(vzlvzl) 'Sz/(vgl zl) J g''g -J g’ 'g
v
'S*/V * iS /V '/V* j/V
J LR J LR J g J g
af af
a|V£| LT
%
af af
369’ aQ
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TABLE Ib
ELEMENTS OF gbi’ 9bv AND gb USING ELEMENT VARIABLES Eb
Slack Generator Transmission Elements
/ 1/Y*\
0 0 1/Yt t
Obi
0 0 i/Y /Y*
A RS A
* 1‘
1/Vn 1/Vn 1
gbv
* ./V 3 3
A N J J
\ AN
/ \
af _of
P aRe{It}
%
of of
aQn aIm{It}

N \ Ve




- 18 -

TABLE II
ELEMENT§ OF gbi' Oy and gb USING ELEMENT VARIABLES z,
Slack Transmission
Load Elements Generator Elements Generator Elements
N\ / % \ 7 N 7
1 0 1 -V /v 0 0 1/7Y 0
g g t
b1
*
0 1 0 0 LO 0 0 ‘I/Yt
7’ \ \ )
’ N\ / \ 4 \
0 -s /2 0 —j2q 2| |1 ol |1 0
[} g 8
gbv
WA 0 1 v o 1| |o 1
) g e
Ve N / N\ V4 \ ’
( \ \ \
af af af af
v, avg ol al,
4
af_ af af af
* 3 * *
aVL g aIn aIt
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TABLE III
PARAMETERS OF ADJOINT SYSTEM USING ELEMENT VARIABLES Eb
Load Elements
4,%1 =1 wf',l = Re{—Sl/Vi}
~S of . of
W, = Rel(]V | sV ] 3% )/(2Vz)}
Yoo Y- oIm{-s V%) : :
®12 © Vig = AN
4o, = 0 o¥ = Imi-s, V2
21 21 22 ~g af af
% ) 2 . L
¢22 =1 W22 = Re{SE/Vz}
Generator Elements
¢$1 = 2Im{V } w%: -2Im{S /V }
g & 8 S _ _af
gL~ 3
g g &
¢12 = 2Re{Vg} ¢12 = 2Re{Sg/Vg}
08 =0 v& = 2Im{V }
21 21 g -
ws = IV |2 _?L_
g2 - g aQ
g g &
¢22 =0 ¢22 = 2Re{Vg}
Slack Generator
o * af . af
V ==V (= 4+ j—=)/2
n n aPn aQn
Transmission Elements
°s af . of ~ °s
I, = Yt( aRe{It} -J aIm{It} )/2, hence I = : ane Re{It} and
3 =3I a Im{is}' m= & or
m = Fmt gl M= g-

The amt are elements of the reduced incidence matrix (68) of Part I.
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TABLE IV

PARAMETERS OF ADJOINT SYSTEM USING ELEMENT VARIABLES zZ,

Load Elements

or. =1 v¥. = Re{-s N2}
11 11 LR ~g af
W21 = Re{ SV; }
L L _ 2
990 = 0 Vip = Im{-Sm/Vz}
o =0 vt = In(-s, V%)
21 21 LR ~g af
wl.2 = Im{ ET; }
L L 2
¢22 =1 w22 = Re{SE/Vz}
Generator Elements
g . & _ 1o
031 = 21m{Vg} ¥ = Im{ Jng/vg} ~ "
Wg.' = Im{Vg ﬁ" }
g _ g8 _ R
4o = ERe{Vg} Vi = Re{JZQg/Vg}
¢g =0 \pg = 2Im{V }
21 21 g ~g of
W52= Im{Vg Yo }
g ) g g
§22 =0 Voo = 2Re{V8}
Slack Generator
" of
Vp = - ol

Transmission Elements

It = Yt 3T " hence Jm1 = I ant Re{It} and sz = I ant Im{It},m = % or g.
t t t
The a_, are elements of the reduced incidence matrix (68) of Part I.

mt
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TABLE Va

THE VECTOR ﬁbu USING ELEMENT VARIABLES z

~b

Load Eléments

Generator Elements

\

e \ e
vt o vt VI VT es Vv s Vi 1/
A Vo = VY gletValeSe e VgSe e Vel Vg
Tou
'G /V* ’G*/V G /V* G./V
A T g g g g
TABLE Vb
THE VECTOR ﬁbu USING ELEMENT VARIABLES Eb
Slack Generator Transmission Elements
4 \ 7/ \
VIV Tasty Avres Vv 1y VI VA
n n+ n n+ nn n+ nn n | nI et Tt et Tt
Dbu

S 2o TR ToRE S
JIVI -VI-SV/V +3S V /V ]
nn nn nn n nn'n

V. I/ v Tt
-V I /Y +V T /Y
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TABLE VI

THE VECTOR Tu USING ELEMENT VARIABLES z,

Slack Transmission
Load Elements Generator Elements Generator Elements
/ N\, / AN 4 7 \
v ' sttty 1 V. I./Y
Y g’'g " g'g''e'e n- t “t/h
Tbu
vt vt/ ™ vt
T 'Vg Vg Iy ¢ Te/Y¢
AN \
TABLE VII
BUS DATA
P % Vil £84
Bus
Index, i Bus Type (pu) (pu) (puw)
1 load =2.40 0 - /-
2 load -2.40 0 - /-
3 load -1.60 -0.40 - /-
4 generator -0.30 - 1.02 /-
5 generator 1.25 - 1.04 /-

6 slack - - 1.04 /O
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TABLE VIII
LINE DATA
Resistance Reactance Number
Branch Terminal R, (pu) X, (pu) of
Index, t Buses Lines
7 1,4 0.05 0.20 1
8 1,5 0.025 0.10 2
9 2,3 0.10 0.40 1
10 2,4 0.10 0.40 1
11 2,5 0.05 0.20 1
12 2,6 0.01875 0.075 4
13 3,4 0.15 0.60_ 1
14 3,6 0.0375 0.15 2
TABLE IX

LOAD FLOW SOLUTION

Load Buses

<
]

1 ° 0.9787 / -0.6602

V2 = 0.9633 / -0.2978
V3 = 0.9032 / -0.3036
Generator Buses
| Q = 0.7866; 8y = =0.5566
05 = 0.9780; 85 = -0.4740
Slack Bus
Pg = 6.1298; Qg = 1.3546
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TABLE XII

RHS AND SOLUTION VECTORS OF THE ADJOINT
NETWORKS FOR THE STATES OF BUS 3

l f =

Element i |V3 63
No.
RHS Vector Solution Vector RHS Vector Solution Vector

1 0 -0.1016x10™" 0 ~0.2232x10""
2 0 ~0.5260x1072 0 ~0.1421x10""
3 0. 4771 0. 8741x1072 0. 1655 ~0.5699x10™"
4 0 ~0.1301x10™" 0 ~0.2867x10™"
5 0 -0.1003x10™] 0 -0.2200x10""
6 0 -0.8205x1072 0 ~0.1803x10™"
7 0 -0.9182x10™2 0 -0.8189x1072
8 ~0.1495 ~0.5868x10™ " 0.5283 ~0.1878x107"
9 0 -0.8095x10~2 0 -0.1784x10™]

2 1

10 0 -0.5148x10 0 -0.1129x10"
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TABLE XIII

RESULTS OF EXAMPLE 1

Line Quantities

Derivatives w.r.t. Gt Derivatives w.r.t. Bt
Line
f‘=|V3l f=63 f=|V3| f=§3
1.4 -0.5441x10™3  -0.1205x1072 0.3294x10™3  0.7433x1073
1,5 -0.7289x1073  —0.1595x107  -0.9625x107>  -0.2133x107
2,3 0.1664x10™2  0.5312x1072 ~0.5748x10™2  -0.1659x10™3
2,4 o.1uo7x1o'2 --0.3359x1o'2 -0.3853x1o‘2 -o.8u65x1o‘2
2,5 0.1507x10™2  -0.1260%1072 -0.1870x10~2  -0.2965x10~2
2,6 0.2439 0.2466 -0.5931 -0.5979
3,4 0.2716x10""  0.7436x1073 ~0.2716x10~2  0.1522x10™"
3,6 0.3419 0.3806 -0.5872 -0.5990
Load Bus Quantities
Derivatives w.r.t. Pz Derivatives w.r.t. Qz
Bus
f:|V3| f = 63 f=|V3| f = 63
-1 -1 .3 )
1 0.2668x10°,  0.5862x10_, 0.5125x1073  0.1132x105
2 0.1603x1071  0.3320x10 0.1502x10 0.7596x10 5
3 0.5731x10 0.1329 0.1182 0.1969x10
Generator Bus Quantities
Derivatives w.r.t. |Vg| Derivatives w.r.t. Pg
Bus
= |V = = =
£= |V £ = £= |V, £z 4
" 0.1948 _,  -0.8082x1072  0.3005x107;  0.6620x10 ]
5 0.7978x10 0.5671x10 0.2169x10 0.4755x10
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TABLE XIV

RHS AND SOLUTION VECTORS OF THE ADJOINT NETWORKS
FOR THE STATES OF BUS 5

Element i 65 £ QS
No.
RHS. Vector Solution Vector RHS Vector Solution Vector

1 0 0. 9467x107 0 0.6004x10™"
2 0 -0.3649x107" 0 0.2754%10™"
3 0 -0.2049x10™" 0 0.3282x107
4 0 0. 745410 0 0.1354

5 1.0 —0.1171 0 -0.2398x10™"
6 0 ~0.7455x10"" 0 0.4884

7 0 ~0.2466x10"" 0 0. 1466

8 0 -0.1804x10™ 0 0.5839x107
9 0 -0.4638x10"" 0 0.8427x10™"
10 0 ~0.6008x10™" 1.0816 0.5721
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TABLE XVa

RESULTS OF EXAMPLE 2

Line Quantities

Derivatives w.r.t. Gt Derivatives w.r.t. Bt
Line
f = 65 f = 05 f = 65 f = 05
1,4 0.2892x10™3  0.6361x10" ~0.7712x10~2  0.6595x10""
1,5  =0.1046x10""  -0.4660%10"" 0.1216x10™2  -0.4421x102
2,3 -0.2054x1072  0.1612x1072 0.3751x1073  -0.1053x10"
2,4 -0.6958x1072  —0.4376x10™ ~0.2188x10""  0.4846x10""
2,5 —0.1433x10-1 0.1630 -0.3065x10-1 -O.2359x10'1
2,6 0.2426 0.3241 -0.6144 -0.5374
3,4 —0.1569x‘10-1 0.1’477x10—1 —0.2883x10—1 0.5497)(10—1
3,6 0.3680 0.3903 -0.5790 -0.5230
Load Bus Quantities
Derivatives w.r.t. PL Derivatives w.r.t. QL
Bus
f = 35 f = Q5 f = 55 f = Q5
1 0.2462 -0.7091 0.1696x1o:f -0.7132
2 0.8745x10_1 -0.1440 0.2672x10_1 -0.2742
3 0.5524x%10 -0,1080 0.2U456x10 -0.1017
Generator Bus Quantities
Derivatives w.r.t. |Vg| Derivatives w.r.t. P
Bus
f = 65 f = Q5 f = 65 f = 05
) 0.1736 -4.5187 0.1721 -0.3128

5 ~0.8889x10™" 7.5809 0.2531 ~0.4612
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TABLE XVb

RESULTS OF EXAMPLE 2

Derivatives w.r.t. Sl

Bus
f=55 f = QS
1 0.1231 — 30.8481%1073 -0.35U5 + 0.3566
2 0.4372x10"" = j0.1336x107 ~0.7199x10™" + 30.1371
3 0.2762x10"" - j0.1228x10™" ~0.5400%10~1 + 30.5083x10""

TABLE XVI

RHS AND SOLUTION VECTORS OF THE ADJOINT
NETWORK OF EXAMPLE 3

Element No. RHS Vector Solution Vector
1 0.4678 0.1692
2 0.3121 0.0852
3 0.3157 0.0828
y -0.2337 0.1627
5 0.4732 0. 1447
6 -0.3673 0.1440
7 -0.5174 0.0534
8 -0.3106 0.0707
9 0 0.1013

10 0 0.0743
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TABLE XVII

RESULTS OF EXAMPLE 3

Line Quantities

Line Derivatives w.r.t. Gt Derivatives w.r.t. Bt
1,4 o.16u6x1o‘} o.87u1x1o‘f
1,5 0.4900x10_, 0.2737x10_,
2,3 0.3490x10 1 0.2102x10 1
2,4 0.8466x10_, 0. 4496x10_,
2,5 0.4547x10 0.2268x10
2,6 0.3518 -1 -0.5270 -1
3,4 0.8940x10 0.4276x10
3,6 0.4838 -0.4917
Load Bus Quantities
Bus Derivatives w.r.t. Pl Derivatives w.r.t. Qz
1 ~0.4535 ~0.2039x107]
2 -0.2017 -0.5410x10 1
3 -0.2217 -0.9465x10~
Generator Bus Quantities
Bus Derivatives w.r.t. Vg Derivatives w.r.t. Pg
4 -0.3736x10"" -0.3758

5 -0. 1840 -0.3128
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TABLE XVIII

Function Removed Calculated Exact
Line Index Line Index Function Change Function Change
1,4 2,4 -0.200 -0.224
2,3 1,5% 0.002 0.005
2,3 2,3 -0.029 -0.021
2,4 2,4 -0.470 -0. 404

*

Only one line of branch

1,5 is removed.
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bus 1 ' bus 4

bus 5

bus 2

bus 6 = hus 3

Fig. 1 6-bus sample power system






S0C-238

A UNIFIED APPROACH TO POWER SYSTEM SENSITIVITY ANALYSIS AND PLANNING
PART II: SPECIAL CLASS OF ADJOINT SYSTEMS

J.W. Bandler and M.A. El-Kady
September 1979, No. of Pages: 33
Revised:

Key Words: Power system analysis, adjoint networks, Tellegen's
theorem, sensitivity analysis, optimal load flows,
contingency analysis

Abstract: A unified approach to power system sensitivity analysis and
planhing has been presented in a companion paper, where a family of
adjoint systems based on the exact a.c. power flow model was described.
Here, we consider a class of this family in which the extended Tellegen
sum is a real quantity. An important practical case is discussed in
which the adjoining complex coefficients are set to particular values,
which result in an adjoint system of a special structure. The adjoint
matrix of coefficients is shown to be of the same size and sparsity as
the Jacobian matrix of the original power network. The required
sensitivity expressions are derived and tabulated for direct use in
sensitivity analysis and gradient evaluation and are common to all
relevant power system studies. Numerical examples are presented based
on a 6-bus sample power system.

Description:
Related Work: S0C-234, S0C-237.

Price: $ 6.00.






