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Abstract This paper exploits the biquadratic behaviour w.r.t. a
variable exhibited in the frequency domain by certain lumped, linear
circuits. A globally convergent and extremely efficient minimax
algorithm is developed and tested to optimize the frequency response
w.r.t. any circuit parameter. It is shown that the algorithm converges
to the global minimax optimum and that the rate of convergence 1is at
least of second order. The algorithm is based on the linearization of
error functions at boundary points of valid intervals. Boundary points
of the region of acceptable designs are explicitly calculated and an
algorithm to exactly determine the region itself for the general

nonconvex case is presented and illustrated.
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1. INTRODUCTION

A number of researchers have considered properties of response or
constraint functions w.r.t. one designable variable at a time in the
contexts of sensitivity evaluation of 1linear circuits [1-9] and the
prediction of worst cases in design centering and tolerance assignment
[9-15]. The bilinear behaviour of certain linear circuits has been
used to derive relationships between, e.g., first-order and large change
sensitivities. In the tolerance problem, attempts have been made to
find conditions which satisfy the common assumption that worst cases
occur at extremes of parameter uncertainty intervals.

In this paper we exploit the resulting biquadratic function
obtained from the modulus squared of the bilinear function to produce
some new results. In particular, at any point in the frequency domain
we can explicitly calculate boundary points of the constraint region of
acceptable designs. These boundary points are further utilized to
exactly determine the constraint region itself for the general nonconvex
case.

The same approach is used to determine valid parameter intervals
which are utilized in a globally convergent and extremely efficient
minimax algorithm. The‘ algorithm is based on the linearization of
suitably chosen error functions in extreme points of all valid
intervals. Examples employing a realistic tunable active filter
demonstrate the optimization of the frequency response w.r.t. a circuit
parameter. Our analysis leads to the ekplicit determination of circuit
tunability. Furthermore, design centering and tolerance assignment

w.r.t. each parameter at a time is facilitated.



L. THE ONE=DIMENSTONAL MINIMAX ALGORITHM

We begin by describing the one-dimensional algorithm for the
minimax problem

minimize max e.(¢), (1)
¢ 1<i<m

where the ei(¢) are biquadratic functions of the form (see Appendix A)

2
Ai + 2Bi¢ + Ci¢

el(¢) = . (2)

2
1 + 2Di¢ + Ei¢

We assume that the functions (2) have no real poles and are
irreducible. The problem (1) is an unconstrained minimax problem.
However, simple but important from a practical point of view, the
constraints on the range of ¢ can easily be taken into account. The
algorithm for solving this problem is based on the linearization of
suitably chosen functions (2) at extreme points of all valid intervals.
As a valid interval we mean a continuous interval

140, 4] (3)
such that, for all i and all ¢ ¢ I,

e (8) <6, ()
where 8§ is a given number, and there exist indices {, i, such that

e£(¢) = e;($) = 8. (5)

v

In the case when ¢ and/or § is at -» or +», respectively, the
corresponding equality (5) is not required.

In order to find all valid intervals I, 4 [;z, 62], L= 1, 2, «uuy
k, and the functions eE (¢) and e£ (¢) which define the extreme points

L L
of the intervals we will use Algorithm 2 described in Section III.



The algorithm for solving problem (1) is illustrated in Fig. 1.
The following steps set it out in sufficient detail, with appropriate
definitions to be uscd subsequently in the convergence proof (Appendix

B) .

Algorithm 1

Data ¢L’ which determine the constraint ¢L < ¢ £ ¢U or,

*y

alternatively, they are suitably taken as large negative and

positive real numbers.

Step 1 Find I such that

1]
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N
=]

CI/EI Z’Ci/Ei for i

Let ¢* « to and stop if Bi Ei

"
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i
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Comment This step is to eliminate the trivial case that ¢ = t= is the

minimax optimum.
Step 2 Initialize §.

Comment In order to make sure that the extreme points of valid
intervals are finite it can be recommended to choose § as
min {mgx ei(¢L), m?x ei(¢U)}-

1

-

A T ° M -
Step 3 Find valid intervals I, = [¢2, ¢2] and i, i,, 2= 1,2,...,k.

Comment This is carried out using Algorithm 2 presented in Section IIT.



Step U

Comment

Step 5

Step 6

Comment

Step 7

Comment

Find gl and By L =1, 2, .y k, given by
de;
&
sz - d¢ ‘; 1 (h)
L
(1(!;
~ iy .
By = 4e ; 1)
L

These are simply the sensitivities at the extreme points of

each valid interval. It is to be noted that g, < 0 and g > 0.

If k= 1, set j+ 1 and go to Step 7.

Find j such that

A28, , (8)

where

A v ~ v v A

8,8, (0,-0,)/(g)-8,).
Al ={ v g (9)

0 if gz = g2 = 0.
In this step we select the jth interval which appears to be the
most promising one in terms of the expected improvement in the

minimax optimum based on linearization. A£ will always be

$l’

positive unless either g, = 0, éz =0or¢, =

Set

v w

* ¢ - - i
¢ (gj¢j gj¢j)/(gj gj) if

A A - A

i, # i. and A, 0.
j i 3 £ (10)

If the extremes of the jth interval are defined by two

different functions, the new value of ¢ is determined by the



- b =

intersection of the linear approximation to the two functions.

v

Step 8 Set ¢* to the minimizing point of the function e; if ij = ij‘
: J

Comment Since the function ei (¢) is a biquadratic function it is easy

J
to find the minimizing point as a root of equation

A LA - ~ 2 A A - - - S
(B] E] - C] D} )%+ (A7 Ef -Cl)e+ (A7Dy =-B;)=0
it it it j it j

which belongs to the interval Ij'

Step 9. Set

v A

#e . . i ¥ . . A, = 0.
3 (¢J+¢J)/2 if o% ¢ (¢J,¢J) or ; 0

Comment This is a default value to obviate any numerical problem which

LY

may arise in Step 6 or Step 7, for example, gj = 0.

Step 10 Find

§ = max ei(¢*). (11)
i

v

Step 11 Stop if k = 1 and if (¢1 - ¢1) is sufficiently small.
Step 12 Go to Step 3. -
In the following, superscript n will denote the index of iteration

of the algorithm. The convergence properties of the algorithm "are

stated by the following theorem.



Theorem

r 1"

e

(6", "] is a unique interval such that ei(¢) < §" for i =

n “n .
1, 2, ., m, then |6 - ¢ | + 0 as n » @. The rate of convergence 1S

at least of second order.
Proof of the theorem is presented in Appendix B.
Now, we will show that the algorithm is guaranteed to converge to

the global minimax optimum. This is due to switching from one valid

interval to another one in Step 6.

According to the comment after Step 6, AE is always positive if
- “n - “n . “n
|¢2 - ¢L' > 0. We can omit the cases when gi = Q and/or g, = 0 since g

< 0 and g? > 0 almost everywhere and Step 9 secures us against these

v

. n . “n n
situations. Moreover, it is easy to notice that AE + 0 if |¢m - ¢

L1+0.

Let us consider two intervals I? and Ig which are found by the

algorithm in the nth iteration. Let us assume that ¢ « Ig is a unique

global minimax optimum. According to (9) and using the following

notation

v ~ ~

n . n n n “n n
a; = min (-g;, 8;); by = max (-g5» ;)5 (12)

where i = 1, 2 is the index of the interval, we have

n.n n
ap by vy P ey
a " (¢1 @1) S,‘E'(¢1 - ¢1) (13)
a, + b
1 1
and
a0 bR 0
2 2 ,°n n "2 .°n  n
a0 - (¢2 ¢2) pa 5 (¢2 - ¢2)- (1)
g8, * %

Thus,
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TP
—E'S n " "n “n (15)
A a ¢, - ¢

2 2 2 2

~ -

Since ¢ € I; is a unique global minimax optimum |¢; - ¢g| + const # 0 if
“n

“n ,’n ‘n,,,'n
- ¢1l + 0 so that (¢1 - ¢1)/(<|>2 - 45)

-

| &

n

1 + 0. The left hand side of

(15) can converge to a value different from zero only if a; + 0 if

1

|¢1 - ¢?l + 0. But this means that there is a local minimum of at

least one of the functions e (¢) or el (¢) of value equal to the local
minimum value at ¢1min € I?Zso that $22 Ig is not the unique global
minimax optimum. Otherwise, since A?/Ag + 0 the algorithm will select
the second interval according to (8).

As is seen from the proof of the theorem (Appendix B) and the
foregoing discussion the algorithm, after minor modifications, can be
used for a broader class of functions than biquadratic functions of the
form of (2). Only mild assumptions on first and second order derivative
behaviour are required. The efficiency of this approach, however,
depends strongly on the computational effort required to obtain valid
parameter intervals as well as to calculate derivatives at all extreme
points of the intervals. Since this effort is considerably small for

biquadratic functions the algorithm proposed is not only globally

convergent but also extremely efficient in this case.

! The left hand side of (15) can converge to a value different from

zero also when b? + @, But this would mean that the pole of every
function e;(¢), i = 1, 2, ..., m, existed at the point ¢, SO ¢ could
not be the unique global optimum point. Moreover, since we assume error
functions having no real poles (at least in the interval [¢L,¢U]) this

case is of no interest.



111, VALID PARAMETER INTERVALS

Consider a single error function ei(¢) of the form of (2). Given a
value § we can easily determine valid interval(s) for this function (see
Appendix A for details). According to the results summarized in Table
I we notice that, due to particular properties of biquadratic functions,
it is always possible to define a continuous interval Ris such that
either

e;(¢) < 8 for all ¢ € Ry,

(16)
and ei(¢) > 8§ for all ¢ £ Ri6
or

e.(¢) > & for all ¢ € R,
i ié (17)

and ei(¢) < § for all ¢ £ Ri&'

Typically, the interval RiG is unique. For particular cases, however,
we can find two continuous intervals such that one of them fits the
situation of (16) and the other one satisfies (17). In such cases we
decide to consider the interval which is underlined in Table I.
Boundary points are included in Ris' To indicate the type of the
interval R.l6 we will use a logical variable tis which is set to "true"
or "false" if Ris satisfies (16) or (17), respectively.

Now, consider the set of error functions ei(¢), i=1 2, ..., M.

Then the valid region RG (intersection of valid regions for all error

functions) can be obtained as

Ry = Ris - U (R;s = Fr(Rys)), (18)
t..=True t, . =False
ié ié

where FP(RiG) denotes the boundary of R, -

It is to be noted that R6 is not necessarily a continuous interval.
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In general,

k v ~ )
Ry = H [og, 0,1, (19)
where k is the number of separate intervals. The algorithm below
provides k and the intervals [¢1’ 6,1, £ =1, 2, ..., k, as well as the

indices of the functions e which actually define the extreme points of
each interval. These indices are denoted il and iz for the lower and
upper extremes, respectively. In the following, subscript § will be

dropped for the sake of simplicity.

Algorithm 2

Data s, ei(¢), i=1,2, ..., m.

Step 1 Set k = 1, PL = 2, PU = 0, 8 = True.

Comment These values of PL and PU indicate initial bounds on R as -«
and +°, respectively. & = True signifies that R is nonempty.

k denotes the number of separate intervals.

> 9 r‘ 3 i

Step 2 For i = 1, 2, ..., m calculate Ri(i.e., r, . and/or rog 1

11

PZi) and determine ti’ PLi and PUi'

Comment PLi is set to 2 if the left bound of Ri is at -=; PUi is set to

0 if the right bound of Ry is at +». Otherwise they are set to

1.



step 3

Comment

Step 4

Comment

Step 5

Comment

Step 6

Comment
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For cach i = 1, 2, ..., m for which ti = False set 0 = False

and stop i P . - P . = 2; otherwine proceed.

If there is a function ei(¢) such that ei(¢) > § for all ¢
then, obviously, the valid region R is empty and the algorithm

stops at this step.

For i = 1, 2, ..., m, such that ti = True, set

- -

(1) o, * gy and i, « i if (PLi = 1and P = 2) or (PLi = 1,
PL = 1 and r > 51),

(2) ;1 cry and ;1 « i if‘(PUi = 1 and PU = 0) or (PUi = 1,
Py = 1and ry,; < ;1),

(3) PL* min{PL, PLi}’

u) PU « max{PU, PUi}.

The first term of (18) is calculated in this step as the

intersection of intervals Ri for which ti = True.

If PL = PU and ¢1 > ¢1 set 6 = False and stop.

If the intersection calculated in Step 4 is empty the algorithm

stops at this stage.

Set i « 1.

"

We now start to remove from R the intervals for which ti

False.



step

Comment

Step 8

Comment

Step 9

Comment
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1 Li = Truc go to Step 21.

The intervals for which ti = True have already been cxploited.
If Py = 0 set j; = 0; otherwise find j; = max{0, 1, ..., PU}
such that r1i 2_¢£ for all & = 1, ..., JL.

jL denotes the greatest index of intervals located to the left
of Ri’ thus the intervals with indices 1, 2, ..., jL will not
be affected by taking out Ri; if jL. = 0 there are no such

intervals. PU is now used as the number of finite upper bounds

of valid intervals and is updated in Step 20.

If k+1 - PL = 0 set jU = k+1; otherwise find jU = min{PL, ceey

k, k+1} such that r,; < ¢, for all & = Jgr e k.

2i —
jU assigned here indicates the lowest index of intervals
located to the right of Ri’ thus the intervals with indices jU’
JU+1; ..., k will not be affected by taking out Ri; if jU = k+1
there are no such intervals. The value of k+1 - P indicates

the number of finite lower bounds of intervals.
If Jy - i, = 1 go to Step 21.

When J, = J;+1 the removal of R, does not affect any of the

existing intervals so we continue with the next 1i.



Step 11

Comment

step 12

Ccomment

Step 1

Comment

Step 14

Comment

v

and ¢jL+1 > rii go to Step 15.

It g +1 > P

This checks whether the lower bound of interval + 1 1is

i

greater than the lower bound of Hi'

-1 21

j.-1 < P, and ¢j <r,. go to Step 17.
U

This checks whether the upper bound of interval jU - 1 is lower

than the upper bound of Ri.

Set ko + (jU - jL - 3); if ko > 0 go to Step 14; otherwise set
¢£+1 + ¢z and 1pe1 « i, for &=k, k-1, ..., Jy (only if k Z_JU)

and ¢1+ + ¢2 and i <« i for & = P

2 . P -1 j..-=1 (only

1 U’ U ’ AR ) JU

if PU Z_jU-1).
Steps 13 and 14 deal with the situation when the interval Ri
intersects the (jL+1)th as well as the (jU - 1)th intervals and
the kO intermediate intervals. This means that kO ihtervals
are removed and the (jL+1)th and (jU-1)th intervals are
reduced. If k., = -1 the (jL+1)th interval is split into two

0

intervals, in which case the above renumbering takes place.

A

+ 1 set og * Ty and i <« 1i.

For & 11 .

I
For % = i + 2 set 0y * Toy and i, « 13 if ko > 0 and JU-1 S_PU

~ ~ ~

set ¢z « ¢s and i+ is’ where & = jL+2 and s =

1y -1.

Ju
Go to Step 19.

Interval reduction is executed here.



1 -

Step 15 If jU -1 S_PU and ¢jU_1 < roi go to Step 18.

Comment This checks for the same phenomenon as Step 12.

- v

Step 16 For 2 = jL + 1 set ¢2 *ro and i« 1.

Set ky + (JU - - 2).

set + and i, « 1 where s =
¢2 ¢S s’

If k, > 0 and jU-1 <P .

0 U

JU-1.

Go to Step 19.

Compent Only the interval jU-1 is affected and consequently reduced.

A

+ 1 set ¢2 « pr . and 1« i.

St 1 For & = 1 .

I
set ky + (Jy - 3y - 2.

Go to Step 19.

Comment Only the interval jL+1 is affected and consequently reduced.
Step 18 Set ko * (JU - J, - 1).

Comment All intermediate intervals (see Comment following Step 13) are

to be completely removed.

v -

Step 1 If ko > 0 set ¢£'ko « ¢,  and 1’!'__k « 1, for & = Jy JU+1, ceey

L
k (only if 3y < k) and L + ¢, and i « i, for & = jy,

=k L=k L
o) o)

jU+1, ceey PU (only if jU 5_PU). Otherwise proceed.

Comment Renumbering takes place if necessary.



otep 2 Set > - ks - .
step 20 Set PU * (IU kO) and k + (k kO)

x
1]

0 sel. 0 ¢« False and stop.
Step 21 If i < m set i « i+1 and go to Step 7; otherwise stop.

Algorithm 2 is used in Step 3 of Algorithm 1 for consecutive values
of §. According to Step 10 and the comment after Step 2 of Algorithm 1,
the valid region will never be empty or unbounded so a little simpler
version of Algorithm 2 can be utilized. Algorithm 2, however, can also
be used independently of Algorithm 1. For instance, one run of it with
'§ = 0 provides the feasible region for functions (A3) (Appendix A) to
meet given specifications. This can be used in the case of single

parameter tuning as is shown in the next section.
IV. EXAMPLE

A tunable active filter [15] has been chosen to implement the
theory and algorithms. The filter is shown in Fig. 2 and its equivalent
circuit in Fig. 3. The specifications w.r.t. frequency on the modulus

squared of the transfer function F = |V2/Vg|2 are

F < 0.5 for £/f, < 1-10/f,

F < 1.21 for 1-10/f, < /£, < 1+10/f,
F < 0.5 for £/f, > 1+10/f,

F > 0.5 for 1-8/f < £/f < 148/f,

F>1 for f = £, Hz,

0
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Using Lhe one pole roll-oft” model tor

whoere l'() is the center frequency.
the operational amplificrs, given by
A w
0 a
A(s) =
S+
a

where s is the complex frequency,

0

radian bandwidth, the nodal equations are

A. is the d.c. gain and w0,

the 3 dB

1 (L]
G.,+G 0 -G 0 '} GV
1 7g 1 1 g g
0 G2+G3+SC2+A2G3 -sC2 -G2+A1A2G3 V2 0
-G1 —SC2 G1+Gu+sC1+sC2 -sC V3 0
i 0 —G2 -sC1 Gz+sC1 LY” L-0 )
> >

Based on two consecutive analyses a biquadratic model in Ru was

obtained at each sample frequency. The normalized sample frequencies

are taken as 1 and 1 % 10/f‘O for the relevant upper specifications, 1

and 1 :.S/fo for the relevant lower specifications. This leads to six

error functions e ,, i = 1, 2, ..., 6. The range of Ru for which the

specifications are satisfied is that for which ei.s 0, i=1,2, ..., 6.

The maximum of the error functions €. versus RM is shown in Fig. 4. A
single run of a program implementing Algorithm 2 indicated that the
filter is tunable for the specifications defined at a center frequency

of 100 Hz. It meets these specifications if

R, ¢ [181.126, 187.1661

l

and with other circuit parameters fixed at values given in Table II. It

is also tunable around a center frequency of 700 Hz (see Fig. 5) and
meets the specifications if

e [3.u4881, 3.5012]

Ry



To find min max ei’ we are faced with the local minima in Fig. 4.
R i
y

The convergence of other algorithms to the global minimum depends upon
the starting point. For the proposed algorithm the results are shown in
Table II1[ for different starting points and at different center
frequencies. Note how small is the number of iterations required.

When R1 was altered to the value 14 k@ the filter is not tunable as
is determined by one run of the program. The optimum value of RH’
however, was obtained in only two iterations (see Table III). In fact,
the algorithm converged in the first iteration since the optimum is

defined by one function, however, the second iteration was performed to

satisfy the stopping criterion.

V. CONCLUSIONS

Implications of the bilinear behaviour of certain linear circuits
in the frequency domain have been investigated. The explicit determina-
tion of the points defining the boundary of the feasible region w.r.t.
one parameter led to a considerably simple check on the tunability of an
outcome of the manufacturing process by adjusting a single parameter at
a time. Detection of worst cases within an interval for any circuit
parameter, of course, is also facilitated.

The proposed minimax algorithm is not only extremely efficient but
is also globally convergent. It has been shown how few iterations are
required for convergence to the global minimax optimum from different

starting points even when local minima exist.
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APPENDIX A: BIQUADRATIC MODELS

For certain lumped, linear circuits, we can express the circuit
response as a bilinear function in a variable parameter ¢ (see, tor

example, Fidler [2])

a
i (A1)

where f is the circuit response at a particular frequency s, while u, a
and b are complex constants in general. The variable ¢ does not
necessarily have the value of the parameter, but it may take the value

0
of the parameter p referred to a reference value p . Hence, we take
¢ =p -p . (A2)

It is to be noted that while u and a may assume zero value, b is
never zero for all practical problems.

As is known, only two analyses with the same LU factors are
required to obtain the complex constants in (A1) [3].

Since the magnitude of the response |f| or functions of this

magnitude are often of interest, we may write

*
2 lul2+2 R(u a)¢+|a|?¢3
| £(6)]|° = > 5
1+2 R(b)¢+|b] "¢

’ (A3)

*
where u is the complex conjugate of u and R(*) denotes the real part

of (°).
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If (A3) is to be greater than a lower specification 3, and/or

smaller than an upper specification SU we consider error function(s)
w (F - 3) ' (AL)
where

-1 for lower specification

1 for upper specification

After substituting (A3) into (Al4) the resulting function is also a

biquadratic function

A + 2Bp + CQE

> (45)
1 + 2D + Ed

e(¢) =
Since (A3) represents the magnitude squared of the response f we have

F > 0 and, in particular, we can assume
2
1+ 2D6 + E6° > O (A6)

for any ¢. The following discussion is also valid in the case when the
inequality (A6) is weak. This is possible only if (A5) and (A3) have a
double pole at the point ¢ = 1/b when b is real. Otherwise (A6) holds.
We can also assume that the function (A1) essentially depends on ¢ and,

as a consequence, (A5) is irreducible, i.e.,

E>O0 (AT)
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and

4(AD-B) (BE-DC) - (AE-C)® # O. (A8)
Now, suppose we are interested in finding the values of ¢ such that

e(o) (A9)

I~
(=]

where 8 is a given number (not necessarily greater than zero) .

Substituting & on the left hand side of (A5) we obtain the equation
(C-&E)¢2 + 2(B-8D)¢ + (A-8) = O, (a10)

whose two, one or zero roots indicate the boundary points of valid
intervals. It is easy to check that the Table I exploits all cases

which are possible under the assumptions (A6)-(A8).
APPENDIX B: PROOF OF CONVERGENCE OF ALGORITHM 1

Let us consider two different functions e;(¢) and e1(¢) which

v ~

define the extreme points ¢n, ¢n of In. (The proof is obvious from Step

8 of the algorithm if only one function is considered.) Without loss of

v

v n
generality, we can assume that ei(¢) < ei(¢), for ¢ € I and ei(¢) <

R n . n A .’n “n
ei(¢) for ¢ ¢ I ,i=1,2, ..., m, where I = [¢, ¢min]’ I = [¢min’

¢n] and ¢min is the unique intersection point of e;(¢) and e;(¢) in the

: ) o “n+1

interval In. There is also no loss of generality if we assume ¢ M
* v . .

" for all n and that g <o, &> 0, since there is only a finite set

of ¢ for which the derivative is zero. We will show that there exists a



value y < 1 such that

“n+1 “n+1 A “n
o™ -6 ] <y 6" - ¢"| for any n. (B1)

~

Since gn > 0 the interval In+1 can be estimated as follows. We have

- v - » - % n . v
n+l _ on+l ¢n+1 _ ¢n < ¢n _ ¢n - TEETH (¢n _ ¢n). (B2)
g -g

>

If e£(¢) is such that é£(¢) > & for any ¢ ¢ In, where £ is a

sufficiently small positive number, we will find Y as

__n_
Y=g <h (B3)
where
n = max -e';(¢). (BY)
“n
pel

The above estimate is not possible only if é;(¢) + 0 and é;(¢) +c £0
for ¢ -+ ¢min'2 In this case the function e;(¢) becomes convex in_the
interval [¢min’ ¢n] for any n > N when N is sufficiently large. Then

the interval In+1 can be estimated as follows

~ v ~ *
¢n+1 _ ¢n+1 < ¢nL _ ¢‘n, (B5)

v

2 If both é;(¢) + 0 and é;(¢) + 0 the rates of convergence of g" and én

a v

. n
are of the same order and it is possible to find an estimate of gn/g

such that (B1) is satisfied. See [16] for details.



L

where ¢™" is the intersection point of the linearization of e£(¢) at the

n+1 -

point ¢" and the line &' = el (¢

n*
i )

From the appropriate geometrical relations (see Fig. 6) we obtain

. . .
o™~ o A% e (6™ - el (™).

= X = (B6)
;n _ ¢n* - An .

After some manipulations, we find that

“nL n#* 32 -
¢ -0 =0
A

n¥*

(6% - ") = (B7)

b5} Wm
=

where R” is the second-order remainder of Taylor’s formula for the

* v
function e;(¢n ) at the point ¢n. It can be written in the form

* v .Y A v
nL _ ¢n - %_qn gn 'i “ﬁ . (¢n _ ¢n)’ (B8)
(g -g)

where qn is the second derivative of e;(¢) at some ¢ € 1. Since qn is

~

limited by a number ¢ and gn + 0, gn +c # 0, we can find a sufficiently

large number N, > N such that the number

1

NN,
9—~—f§41—— <1 (B9)
C

_1 N
Y’ZCg

satisfies the condition (B1) for all n > N,. But according to (B2) the
N .
interval 1 ! can be reached after a finite number of steps since én and

—8n are greater than sufficiently small positive numbers for any n < N1.
This proves that |¢n - ¢n| + 0 as n » =, Now, we shall investigate the
rate of this convergence.

Because of the estimate (B5) and equality (B8) we have already
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proved that, the convergence is at least off the sccond order in Lhe
f'oregoing, case. This resull can be generalized for any casce when the
function e1(¢) becomes convex in a neighbourhood of ®nin’ This is
because the neighbourhood in question can be reached after a finite
number of steps, following which the estimate (B5) is valid. The only
exception is for the case when ¢min is the minimizing point of both
functions e1(¢) and e;(¢) since the denominator of (B8) approaches zero
if n * ®. Detailed proof for this case can be found in [16]. Now, we

can assume that both gn and gn do not approach zero as n » «.

Using the second order Taylor formula we can write

e£(¢n+1) - e;(¢n) . gn (¢n+1 _ ¢n) . %_qn (¢n+1 _ ¢n)2‘, (B10)
™) = e1(0™ g (6™ - ™)+ 7 6™ - ehE (B11)

Knowing that e;(¢n) = e;(¢n) for any n, (B10) and (B11) give the

relation
~ ~ 1 ~ ~ v 1 v w v v ~ ~ ~
gn (¢n+ _ ¢n) _ gn (¢n+ _ ¢n) - %_[qn (¢n+1 _ ¢n)2 _ qn (¢n+1 _ ¢n) ].

(B12)

Using (10), the left hand side of (B12) can be written as

* v ~ ~ ~ v A 4
on (gn _ gn) + gn ¢n+1 _ gn ¢n+1.

n+1

* v
Now, if we assume as before, for example, that ¢n = ¢ , (B12) can be

rewritten as
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From the above we have the estimate

“n “n+1 “n ?]
’g

|¢n+1 _ ¢n+1| < _%;_[anl (¢n+1 _ ¢n)2 + 1a" (o - o™M?

<=+ 1D " - 8™ (B14)

1

! and ¢n+ are

. “n
The final estimate is based on the fact that both ¢ *

n “n+1 “n,2 “n “n,2 “n+1 “n,2
interior points of I so (¢n+ -0 ) < (6 =-9¢7) and (¢ o o ) <
(¢n - ¢n)2. Since second derivatives q and qn are bounded and gn does

not approach zero the factor on the right side of (B14) has a finite

limit, so the convergence of the algorithm is at least of the second

order.
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TABLE 11

CIRCULT PARAMETERS

nK = 50.000 @ ¢ = 0.7284%Hb ul

R1 = 12.446 kQ 02 = 0.7285%6 uF
- _ 5
R2 = 26.500 k@ A0 = 2 x 10
R3 = 75.000 @ ma = 12 7 rad/s
TABLE III

MINIMAX OPTIMUM OF RM

Ru(n)
Center Frequency Optimum *
(Hz) § N.O.I.
Starting Optimum
100.0 184.3998 -0.0458 3
100 300.0 184.3998 -0.0458 3
© 184.3998 -0.0458 3
10.0 3.4946 -0.0403 3
700 200. 044 3.4946 -0.0403 3
200.0 3.4940 0.143Y4 2
* N.O.I. = number of iterations

% R1 was altered to 14.0 kQ and the filter is not tunable since §>0.

Formula (11) was used to initialize 8§ at starting values of RM' Running
times per example on a CDC 6400 computer were about 0.1 s.
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FIGURE CAPTTONS

Illustration of the behaviour of the one-dimensional minimax
algorithm. Note that the algorithm switches from interval 1 to
interval 2, based on predictions of the decrease in the

maximum.
Tunable active filter.
Equivalent circuit for nodal analysis.

Max e. versus the tuning resistor RM for specifications
1<€i<6

defined around fo = 100 Hz indicating the active functions

(and hence active frequency points).

Max e, versus Ru for specifications defined around fo = T00
1€ik6

Hz for two cases (a) R1 = 12.446 k@, (b) R1 = 14 kQq.

. . °n
Two functions which define the minimax optimum. The point ¢

A

at which the linear approximation at ¢n takes the value of

v

n*
ei(¢ ) is indicated.
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