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Abstract

A unified approach to power system sensitivity analysis and
planning has been presented in Part I of the paper. The approach
utilizes a generalized adjoint network concept with complex adjoining
coefficients set to proper values which allow the required sensitivity
evaluation. Here, we present a unified study for consistent selection
of the adjoining coefficients where the restrictions imposed by the type
of system and the particular function considered are investigated. The
study, hence, justifies the use of the approach described in Part I as a

general network approach.
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I. TINTRODUCTION

Adjoint network approaches [1,2] have been successfully applied for
efficient sensitivity analysis and gradient evaluation of electrical
systems. In Part I of the paper [3], an approach to system sensitivity
analysis based upon a generalized adjoint network concept has been
presented. Although the approach has been applied to power system
sensitivity analysis, other electrical and analogous systems can be
handled as well.

For a particular system, the feasibility of obtaining the required
sensitivities depends entirely on the number and type of different
system elements, the function considered, and the selected adjoining
coefficients. Good understanding of the restrictions imposed due to
these factors allows proper formulation of the adjoint system.

In the first two sections, we explore some theoretical features of
the conjugate notation introduced in Part I of the paper and utilize
them to investigate consistent selection of the adjoining coefficients.
A special technique which allows fast and easy selection of proper
adjoining coefficients is presented in Section V. The more general case
of functional adjoining coefficients is introduced in Section VI. More
flexibility in controlling the adjoint system is afforded by exploiting
the functional adjoining coefficients.

Two electrical systems, namely a typical linear electronic system

and a power system [3] are used as examples throughout the paper.



II. PRELIMINARIES

In Part I of the paper, we have considered several forms of

Tellegen terms summed via the complex coefficients a, a, B, B, &, &, V
and G-together with a number of group terms adjoined to Tellegen sum via

the complex coefficients I, and T,, k denoting the kth group term.

k

Sensitivity expressions for a particular system can be derived by
suitable selection of these adjoining coefficients. Each system has, in
general, a number of element types. For each element b, and according

to its type, we have defined a set of element variables 2 describing

the practical state xb and control ub variables associated with it, Xy

and uy denoting two component column vectors, and

Also, we have denoted the basic variables associated with element b by

the vector

-
v
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>
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where Vb and Ib are the complex voltage and current associated with

element b, respectively, and * denotes the complex conjugate.

The first-order changes of both z and w_ are related by

~b b
T T b
sfb = sfb g , (3)



T denotes transposition and the matrix Mb has the partitioned form

’ (4)

b b b b .
where @11, @12, @21 and @22 are 2x2 matrices.

The element b of the adjoint network is defined either by equation

(31) of Part I, namely

:be bf

Tox = Myq fps * Mo £y o (5)

where fbi and fbv are given by (17) of Part I and ﬁbx is set according

to (23) of Part I, or by equation (39) of Part I, namely

C}

~

bi "bi ¥ %bv Ybv * %pe (6

where the 2x2 matrices ebi and E-V and the vector 6,_ are given by (40)

b b
and (41) of Part I and the adjoint variables % i and va are given by
'k ~
b
- = 6*
Wov b
A A
“bi T
P l\*
Iy,
_ J

The solution of the adjoint system (74) of Part I provides the adjoint
variables ?b' The derivatives (formal derivatives) of the function f
w.r.t. the control variables are calculated using (26) or (28) of Part
I, namely

o or g @)

du, ~ 3u,  -bu



or
df af T T . %%
— = [(— ) -7 1= , (9)
dTps uy, Tou” g,
where "u is given by (32) of Part I, namely
b 2 b =

M f.. + M

Mo1 i * Moo Fiye (10)

ﬁbu =
ITI. REMARKS ON THE CONJUGATE NOTATION

We have introduced and utilized the conjugate notation in Parts I
and II of the paper [3,4]. The wuse of conjugate notation has
facilitated the derivations and subsequent formulation of the equations
to be solved. 1In classical complex algebra, the variables of a system
of complex linear equations are defined independently [5], e.g., Xy, X5,
etc., and this is the case in real algebra. Since the use of conjugate
notation implies in some cases a set of complex variables and their
complex conjugates to appear in the same linear equations, a special
analysis is required to reveal the properties of such systems of linear

equations regarding, for example, rank, consistency conditions, etc.
Through Parts I and II of the paper, the application of conjugate
notation has been performed in a straightforward manner since the
assunption of consistency of (6) was made when defining the adjoint
elements. In this part, namely Part III, the consistency of (6) is
discussed for suitable selection of the adjoining coefficients. In
order to facilitate the consistency study performed in the following

sections, we state here the following theorems.



Theorem 1

Let ©, 0 <
and
50 % 80 5

defined as

and

have the same rank.

Proof

men' where
6=25+J15%
5=58+J5:
mxn . C 2mx2n
€ R . Then the two matrices © € (C
r -
0
¢ 4
- % *
] ]
L~ ~
~ - — N
(91 + 91) (?2 - 92)
ra
8 +8) (8 -8

Let 1* be the identity matrix of order &,

and define the two unitary matrices

LA .
9 :J‘I!'
1m J.m
A1
u =—
~L /5 1m _jm

QR

(12)

and 6 ¢ R2MX2N

(13)

)

(15)

(16)



and

Since U, and UR are nonsingular, hence [5]

L
r r
rank[HL ? ER] = rank[? ].
But
r c
Y& Yp=2,
hence

rank[6" ] = rank[e®] |

Theorem 2

Let 0, 8 ¢ C™™ given by (11) and (12), and let 6 € C"

where

881 +J%
and

RILCIRAN Y
90 8, € RV oand wp.ow, € RO
equations

Ow +

! @]

w* =0
has a solution w if and only if

rank[(ec. ec)] = rank[ec].

QWD)

n
and w € C ,

(18)

(19)

Then the system of complex linear

(20)



where

c < C2m

0 is defined as

~

c A 21)

'l

and € is given by (13).

Proof
Separating (20) into real and imaginary parts using (11), (12),

(18) and (19), we get

(91 + ?1) y1 + (92 - 32) yz = f1 (22a)
and
(8, + 8,) Wy + (8 = 8)) Wy = 8, (22b)
or, using (14),
o W o= er, (23)
where
¥
W2 (24)
w2
and
8
of 2 ) (25)
)



We define the nonsingular matrix

1 1™ o
ﬁRé‘—l =" 5" o], (26)
~ /2_ ~ ~ ~
0 0 2
hence
rank[UL(er, o") ERJ = rank[(er, er)],
where UL is given by (16). But
r .ry- c ¢
U (2 8 Ty = (s 60,
hence
rank[ (6", 8")] = rank[ (6%, 6%)1. (27)

Now, the system of equations (23) has a solution if and only if [5]
rank [(e", 6")] = rankle'],

hence the theorem is proved using (27) and Theorem 1 [ ]

IV. CRITERIA FOR ADJOINING COEFFICIENTS SELECTION
In this section, we derive the required conditions which (6) must
satisfy for proper definition of the adjoint system. First, equation
(6) must be consistent. The results of the previous section allow us

to state the following corollary.



Corollary

Equation (6)

- 10 -

is consistent if and only if

rank[(?b, fg)] = rank[(?b)].

where
_va Ebi
— A
8, = * - —* |
_gbv~ 5511
%
c A
o !
*
&
and
0 1
7 8
- 1 0
Proof
The conjugate of (6) is written as
—* % N *
i "bi = Sy Wpov * Op-
Since
A* oA
Wi T ] Wi
and
A* ~ A
ybv = 1 fbv’

(28)

(29)

(30)

(31

(32)

(33a)

(33b)
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hence

5 Ta. =0 Ta * (34)
“bi 2 "bi T Zbyv 1 Yoy * % 3
Equations (6) and (34) are written together as
- ~ C
% b = Op- (35)

When the variables @_ and the corresponding columns of g  are

b b
rearranged such that (6) has the same form as (20), the rank of Es is
preserved. Hence from Theorem 2, the corollary is proved ]

In order to uniquely define the adjoint elements with proper
relations between adjoint variables, we also require [3], in addition to
(28), that the system of four real equations (6) has rank 2. Hence,
from Theorem 1 and the previous corollary, the matrix 3; of (29) must be

~

of rank 2. In summary, the conditions which (6) must satisfy are

— c p—
rank[(?b, gb)] = rank[(gb)] = 2. (36)

Note that the elements of the matrices M?1 and M?Z and the complex

adjoining coefficients form the matrix Eg. The matrix Mb of (4) depends

solely upon the element-type modelling. Moreover, the vector gc
contains the derivatives of the function f Q.r.t. the states associated
with element b. Thus we require a proper selection of the adjoining
coefficients which satisfy (36) for a particular element-type modelling
and for a given function f.

Since the set of adjoining coefficients a, ;} S,.E. g, E} v and v
is common to all element types described in a particular system, we

expect that the more element types in a system, the more restrictions,

hence, the more difficulty there will be in selecting these adjoining
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coefficients to satisfy (36). On the other hand, the adjoining
coefficients rk and FL are only common to those elements within certain
group terms [3] which may include a few element types. Consequently, we
expect more flexibility in adjusting these coefficients to satisfy (36)
for certain elements.

Examples of element types of particular systems are shown in Tables
I, II and III. Tables I and II represent typical linear electronic
circuits. Two element types are described for each system, namely, the
node elements (e.g., source elements) and the line elements. One
representation of the power system [3] is shown in Table III in which
four element types describing the loads, the generators, the slack
generator and the transmission elements are considered.

A comparison between the electronic system of Table I or II and the
power system of Table III is of particular interest [2]. The state and
control variables associated with the source elements of an electronic

system are simply the basic variables w_of (2) which classify them as

b
either current sources (Table I) or voltage sources (Table II). In a
power system the situation is different. The state and control
variables associated with the source elements are nonlinear functions of
the basic variables Y which results in nonlinear load flow equations,
and also difficulty with respect to the consistent selection of the
ad joining coefficients as we shall see later on.

At the end of this section we state some important forms of

equation (6) which satisfy condition (36). As shown in Part I, equation

(6) has the form
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~“k Z —k T “k O —k C* ~ Sk
¢b Ib + ¢b Ib = wb Vb + wb Vb + wb . (37)
where k = 1, 2 denotes the first and second complex equations of (6),

respectively. It can be shown that each of the following conditions is

equivalent to (36).

Alternative Condition 1

~1 2 -1 -2 ™1 “2 -1 —2
¢b = ¢b’ ¢b - ¢b’ wb = \l’b, ‘pb - ‘Pb (383)
and
~S1 ~32
wb = wb . (38b)

in which the two complex equations of (37) are identical.

Alternative Condition 2

~1 2% 1 Yo%~ % 1 o

¢b:¢b’¢b=¢b!¢b:wb'wb=wb (39a)
and
~S1 SS2%
Woo= W T, (39b)

in which the first complex equation of (37) is the conjugate of the

second one.

Alternative Condition 3

~1 1% ~1  —1% 31
¢b = ¢b , wb = wb . wb is real (40a)

or

—
|

paiy
E

wSZ is imaginary (40b)

© 1
"
|
©
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and
"2 2% T2 % 3D .
by = by v Yy = ¥, » W is real (40c¢)
or
~2 2% =2 % ~32 . . .
0p = =8¢, » Y = —¥, and W is imaginary, (40d)

in which each of the two equations of (37) represents one real equation.

Observe, for example, that for a real function f and under
condition (9) of Part I, Table I of the same part shows a proper system
by conditions (40a) and (40c) for all elements while Table II of the
same part shows a proper adjoint system by condition (39) for the load

elements, slack generator, and transmission elements.

V. A SPECIAL CONSISTENCY CRITERION

In the previous section, we have derived the required conditions
for proper definition of the adjoint system to be solved. Since we are
searching for proper adjoining coefficients which satisfy condition (36)
rather than checking the condition itself, the form (36) may not be
adequate for direct use in selecting the various adjoining coefficients.

In this section, we state a special technique for selecting the
adjoining coefficients. The technique presented is based on a few
assunptions regarding the coefficients and hence it satisfies a somewhat
more restricted criterion than (36). The technique, however, allows
fast and easy selection of proper adjoining coefficients for different
systems of different element types.

We write (17) of Part I in the form
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" )
Ib
Tr—
fbi ‘b
fb = | -— = - (41)
Ty Yy
el
where we have defined
1 4.1 +T1 +D (4
p oo lp v 8 Iy + Dy 2a)
? 8o 1" I +D (42b)
b -t E Lyt Py
U eV 43V 4 (43a)
b - BV TV Yy T Pupe 3a
& A gyt V +D (43b)
b - BV VYt O 3
and, using (38) of Part I,
A K
Dib = I A, Nib’ (443)
K
- A —K
Dib = i Mok Nib, (44b)
A K
Dvb - -i xbk va (45a)
and
.4 e (45b)

Dvb = 72 Apg Yyp?

where Aok is given by (8) of Part I.

Under the assumptions

—_ %
EE =—aa #0 (46a)
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and
S *
vv -BB8 #£0, (46b)
one may write
- ~ _A* ~
Ib = Ai Ib + Ai Ib + Aib 7))
and
[ U +E U 4A
Up =By Up * Ay Up * Ape (48)
where
% _ *
AEY a-E§& a
Ai=_—-—_:*——————;, (493)
EE -—aoa
— A EE-aa
Ay == ——= (49b)
EE —aa
A, 47 A, D oD (49¢)
ib ~ “ib T i “ib ~ i “ib’ e
—* *
L (50a)
vv —BB
— v—_ a
R, 82 . (50b)
v -8B B
and
L) D E D
vb = “vb ~ Ay Dyp = Ay Dype (50¢)

Now, according to the element types used in a particular system,

the gross coefficients Ai’ Ai and Ai

b of (49) and Av’ AV and AVb of (50)
have to satisfy certain relationships to fulfil condition (36). The
more element types used to describe certain system, the more those
relationships will be.

The impact of using the gross coefficients is obvious. Instead of

dealing directly with the numerous coefficients a, 31 etc., while
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searching for a proper adjoint system representation, we only
investigate conditions on fewer gross coefficients. Moreover, in the

absence of group terms, Aib and Avb are automatically zero and only Ai'

Ai' Av and Av are left for study.

We illustrate the use of the gross coefficients by the following

examples.

Example 1
For the electronic system described in Table I, and using (41),

(47) and (48), equation (6) is written, for node elements, as

A .1, (51a)
aV. J
J
and
af -: _ ~ — ~% ~
;;?-- Ij = Ai Ij + Ai Ij + Aij (51b)
J

and, for line elements, as

af ~ ~
Yt ET; = It - Yt Ut (52a)
and
yr 2L %Y*% AT 4K +A. Y (AU +E U +h ) (52b)
taI*‘t'tt‘iIt"iIt*it't vy Uy - >
t
Now, for a real function f, we have
af _ , 3af (¥ (53a)
— = ( 5 )
3V av
J J
and
3f _ (af_ ¥ (53b)
ol ~ *
t 31

t
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so that (51) is consistent if
A, =0, A, = 1and A,, = O. (54)

Using (54), equation (52) is also consistent if

Av = 0, AV = 1 and Avt = Ait = 0. (55)

Under conditions (54) and (55), any of (51a) or (51b) can be used
to define the adjoint node elements, also, any of (52a) or (52b) can be
used to define the adjoint line elements.

In terms of the adjoining coefficients a, @, etc., it is obvious

from (49) and (50) that

—_— * — * —_— * — *
ca=a ,B8=8,E=8 andv =V, (56a)
) * and D * (56b)
ip = Dyp 314 Dy, = Dy

is sufficient to satisfy (36).
Note that (56b) is an alternative condition to (9e) of Part I,

namely,

*
Ty = I‘k for all k. (56¢)

Example 2

For the power system described in Table III, and following a
similar procedure to that of Example 1 for the different element types
of the system, it is a straightforward to show that, for a real function

f, condition (56) is also sufficient [4] to satisfy (36).
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Example 3
Consider, again, the electronic system of Table I. Let

f = vk, (57)

where Vk is a certain complex node voltage. With no group terms and

using (41), (47) and (48), equation (6) is written, for the node element

J £ k, as
0 =1 (58a)

and
0=1.=A.T.+A.T7., (58b)

which requires no restrictions on Ai or Ai, and for the node element k,

as
1 =1 (59a)

and
0=7 =A.71 +K 1 (59b)

which requires

A, = -A,. (60)

Also, for line elements, we write

0 = It - Yt Ut (618)
and
0=a ] +E I =Y (a0 +305) (6 1b)
= Ay T+ Ay T — YOAE A



- 20 -

which requires

*
Ath = Ath for all t. (62)
Hence
Ai = Av =0 (63)
and
A, = A . (64)
i v

A, =A =A, =& =0, (65)
i v i v
or, from (49) and (50),
EE=aa, (66a)
v'(:-:BE, (66b)
% _ *
E a=Ea (66c)
and
—* *
v B=vB . (66d)

Observe that any member of the family of adjoining coefficients

. In

satisfying (66) can lead to the required sensitivities of Vk

particular, the member
a =8 =1 (67a)
and
;=—8_=E=E=v=;=0, (6Tb)
or

T=v=1 (68a)
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and
o = E = B = E == v=0, (68b)
may be used. For the member (67), the adjoint system is defined, using

(58a), (59a) and (61a), as

Ij = 0 for j ¥4 k, (69a)
Ik =1 (69Db)

and
It = Yt Vt' (69c)

Ij =0 for j ¥4 k, (70a)
Ik =1 (70b)
and
~ *A
It = Yt Vt. (70¢)

As illustrated by the above examples, the technique described in
this section allows direct selection of proper adjoining coefficients
for a given system and for a certain function. In this respect,
sensitivities of some of the complex functions of practical interest can
be obtained directly by appropriate adjustment of these coefficients.

On the other hand, the adjoining coefficients play an important
role in the adjoint network formulation. The freedom acquired’ by
defining a family of possible adjoining coefficients can be utilized to
alter the modelling of the adjoint elements. In some cases, it is

possible to achieve certain modelling for a particular adjoint element.
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In the next section, more freedom in selecting the adjoining
coefficients is afforded by considering the more general case of

functional adjoining coefficients.

VI. FUNCTIONAL ADJOINING COEFFICIENTS
In the analysis so far, we have considered the case of constant
adjoining coefficients in (7) of Part 1I. Since these adjoining
coefficients are basically multipliers of zero quantities, the
restriction of constant adjoining coefficients can be relaxed. In
fact, the adjoining coefficients can be functions of the basic variables
w,_ of (2). Moreover, since

)

t(w) oh(w) = h(w) st(w) = O, (71)

where t(w) stands for any of the adjoint coefficients, w denotes a

vector of the basic variables W s and
h(w) =0 (72)

represents any of the terms (5) or (6) of Part I, the adjoining
coefficients are not required to be perturbed in (10) of Part I. Hence,
the sensitivity expressions derived so far are still valid even when the
adjoining coefficients are functions of the basic variables.

On the other hand, the adjoining coefficients can be also functions
of the adjoint variables W of (7). The case when the set of adjoining
coefficients a, Eﬂ B, E: E, E: v and v are functions of the adjoint
variables usually results in nonlinear adjoint equations to be solved.
The case when the adjoining coefficients r, and ;L are linear functions

k

of the adjoint variables is indeed of particular interest.
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We consider the case in which the adjoining coefficients rk and ;;

are linear functions of the adjoint variables &b contained in the kth

group term in the forms

T, = + I (b\;+b'g*+b£+b.?) (73a)
k = Yko YTkv 'b* Ykv 'b* ki ‘bt ki ‘b
beB
K
and
—_ _— —b ~ —be ~% —b ~ —be ~%
Ty = Yo * be gy Vo * My Vo * Mg Tp * Mg Ip)e (732)
Kk

where Bk is the set of elements forming the kth group term, and as

etc., are in general

indicated before, the coefficients Yo’ sz'

functions of the basic variables Wy .

It is straightforward to show that the forms (73) still lead to a
linear, although 1less sparse, adjoint system to be solved. In the
resulting form of adjoint system, the diagonal matrices °ij and vij'

i,j = 1, 2 of (64) and (T4) of Part I are replaced by the equivalent

e e .
matrices ?ij and Yij’ respectively.
In general, the matrices oij and Wij are no longer diagonal

matrices. The more adjoint variables appearing in (73), the more will
be the off diagonal elements of gij and Y?j'

Since the number and type of group terms to be considered in a
particular problem are entirely dictated by the type of the system and
the function f, we shall not proceed towards general derivations for

different systems and different classes of functions. Instead, we

illustrate by a simple example the concepts stated in this section.
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Example 4

Consider the simple 2-bus system of Fig. 1. The system consists of
a load, a slack generator and three transmission elements. Required
data in pu for the problem is shown in Fig. 1. Table IV shows the
currents and voltages of different elements resulting from the a.c. load
flow solution,

Suppose we are interested in the sensitivities of the complex load
bus voltage. The adjoining coefficients may be set according to the
special case described in Part II of the paper in which we may define

the two real functions

»
f,=Re {V,} = (V, +V,)/2 (74a)

and

£, = In {V,} = j(V: - v/2. (T4b)

2

The sensitivities of f1 and f2 are obtained in the same way

described in Part II. The adjoint matrix of coefficients and the RHS
vectors for both f1 and f2 are shown in Table V.
Alternatively, we may utilize the functional adjoining coefficients

to obtain the sensitivities of the complex function

f=vV (75)

directly, while altering the modelling of the adjoint system.

For simplicity, we let

g=E=v=3=o (76a)
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and

Ty = Ty = 0 for all k £ 1, (76b)

where we have considered the group terms

Vy =V, =V =0 (77a)
and

* * *

Vi -V, - Vg =0, (77b)

adjoined via coefficients r1 and F}, respectively.
With various adjoint elements modelled according to (5), it is a
straightforward to show that the consistent selection of the adjoining

coefficients requires, for example,

— — *

~ —
r, = -1, = 1/(gg -1)

1 1
and

- _ % %
F1 = -B I1 - g/(gg - 1).

Observe that the above selection of the functional adjoining
coefficients leads to modelling the load element in the adjoint system

as a voltage source in the form

V. = L(EE - DA

1 + Y5)].

3

The derivatives of the complex load bus voltage shown in Table VI
are calculated from (8) using the solution of the resulting simple

adjoint network.
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VII; CONCLUSIONS

We have presented a useful theoretical study which allows proper
selection of the adjoining coefficients described in the generalized
adjoint network concept presented in Part I of the paper. The freedom
acquired by exploiting both constant and functional adjoining
coefficients has been investigated so that complex function
sensitivities for different systems of different element types may be
evaluated via proper definition of the adjoint system,

The theoretical foundation of consistent modelling of different
adjoint elements has been established by deriving suitable consistency
criteria. These consistency criteria may be used to handle the more
general branch modelling of power networks as distinet from that of

typical electronic circuits.
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TABLE I

A TYPICAL LINEAR ELECTRONIC CIRCUIT WITH CURRENT SOURCES

b b
Element Type Symbol fb Eb !11 !12
~ '
v A
j IJ 1 0 0 0
Node Elements J
V* I* 0 1 0 Q
L‘]_. ;‘l
~ A ~ =
It Yt 1/Yt 0 1 0
Line Elements t
* * *
It Yt 0 1/Yt 0 1
— o/ -
Yt = It/vt is the admittance of line ¢t.
TABLE II
A TYPICAL LINEAR ELECTRONIC CIRCUIT WITH VOLTAGE SOURCES‘
Element Type Symbol X Mb Mb
yp ym Xb % ~11 212
Ij Vj 0 0 1 0
Node Elements J
I* V* 0 0 0 1
A
g "
1;1 Yt 1/Yt 0 1 0
Line Elements t
I* Y* 0 1/Y* 0 1
LY LY t
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TABLE III

A REPRESENTATION OF A POWER SYSTEM

b b
Element Type Symbol Xy Uy, !11 §12
rb S 1 0 0 */V
) L R
Load Elements %
v S* 0 / * 0
L L ! AP
) 2 * . 2
v \' 1 -V /v - /v
gl [IVg! Vg 0 32Q,/V g
Elements
Generator g *
I 2P 0 0 -V _/V
L8] g 1 g'Ve
r 9
IT rv 0 0 1 0
n
Slack
Generator n I* v* 0 o 0 :
() Lo
r ) ]
It Yt 1/Yt 0 1 0
Transmission
Elements t * * *
Et HE 0 1/Yt 0 1

Sm = Pm + ij is the power of element m, m can be %, g or n.
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TABLE IV

SOLUTION OF EXAMPLE 4

b I Vb

1 5.2623-35.5411 0.7352-j0.2041
2 -5.6705+j1.0706 1.0+j0.0

3 0.4082+j1.4705 0.7352-j.2041
y 0.0+j3.0 1.0+j0.0

5 -5.6705+ j4.0706 ~-0.2648-30.2041

TABLE V

ADJOINT SYSTEM OF EXAMPLE 4 WITH CONSTANT COEFFICIENTS

RHS Vector RHS Vector

Adjoint Matrix of Coefficients f = Re{V1} f = Im{V1}
[ 1.2972 - 6.0 9.1581 -20.0] 0.5) [0.0)
0.0 1.0 0.0 0.0 0.0 0.0
-26.8419 20.0 10.7283 - 6.0 0.0 0.5
_ 0.0 0.0 0.0 1.0_{ LO.(L L.0°04
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TABLE VI

DERIVATIVES OF V1 OF EXAMPLE

Associated Derivatives

-0.0348+30.0366

1.52U48-30.0462

-0.0311-j0.0462

0.0

-0.0080+30.0231

df
%

dS1

df
dV*
2

df

dY3

df

dYu

df
dY*
5

-0.0535-30.0794

0.7896+30.1579

-0.0203+j0.0213

-0.0022-j0.0127




- 32 -

bus 2 bus 1
Y_=6-720
I 5
2 14
(: :: }““‘F“"' 5
V. =1+3
27130 5,=5+i3
L
I 1
=9 Y 4 3* =4
Y4 i3] Y3 j2

AT ARTITTTT T T T T T T T T T T TR

Fig. 1 2-bus system of Example 4
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