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. Abstract

This paper investigates direct solution techniques for an
unfamiliar form of linear complex equations expressed in terms of a set
of complex variables and their complex conjugate. This complex form may
represent linearized power network equations.

The well-known Newton-Raphson method is described and applied,
with the aid of a novel elimination technique, in a compact complex

form, to the load flow problem described in power system studies.
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I. INTRODUCTION

The load flow problem [1] consists of determining power flows and
voltages of a linear power network for specified terminal or bus
conditions. Load flow calculations are performed in a wide variety of
applications including power system planning, operational planning,
optimal power flow analysis and sensitivities, outage security
assessment and stability.

Unlike the analysis of typical linear electronic circuits, in
which the equations describing the system are linear, the load flow
analysis comprises a set of nonlinear equations. The a.c. electronic
circuit analysis implies a solution of a set of complex linear equations
to be solved exploiting the advantages realized by retaining the complex
mode of the equations [2] to reduce the required computer memory by
about 50%. The a.c. nonlinear load flow equations, on the other hand,
are usually solved by iterative methods.

Recently, a variety of iterative numerical techniques for solving
the load flow problem have been described [1]. While Gauss-Seidel and
other nonderivative-based methods [1,3] have been described in the
complex mode the Newton-Raphson method [1,3,4], which is superior in its
quadratic convergence and ability to solve ill-conditionec problems, has
been basically described [4] in the real mode. The reason [1] for this
is that the complex load flow equations are nonanalytic and cannot be
differentiated in complex form. The Newton-Raphson method, however, can
be interpreted formally in terms of first-order changes of problem
variables} In this paper, we invoke this interpretation to describe the
Newton-Raphson method in the more compact complex mode, and we utilize

some theoretical derivations given in [5] to relate analytical aspects



of the resulting form of equations to those of other familiar forms.

We set aside one section of the paper to describe, with the aid
of a suitably developed notaticn, an elimination procedure which, in
conjunction with the well-known forward Gaussian elimination technique,
provides a suitable method for solving the resulting equations in
complex mode, directly. Modifications required to preserve the complex
mode in application to practical systems are also investigated.

In this paper, we use the cartesian coordinate system in
formulating the equations. It should be noticed that the Taylor series
expansion of the load flow problem in cartesian coordinates involves
terms up to the second order only, and the use of first-order variations
of the complex variables is equivalent, as stated in our paper, to
eliminating the last term of Taylor series. Our paper is concerned
mainly with the fundamental formulation and resulting eliminating
technique. All expected subsequent improvements regarding efficient

sparsity programmed ordered elimination [6], however, can follow.

ITI. PROBLEM FORMULATION
The power network performance equations [3] are written, using

thevbus frame of reference, in the admittance form

Il = I S
where
Tp=Xpy 3 Y, (2)

is the bus admittance matrix of the network,

vV, =V + jJV

M T M1 ~M2 (3)

is a column vector of the bus voltages, and

= I

I, = + 3 I (u)

~M1 ~M2



is a vector of bus currents. The bus loading equations are also written
in the matrix form

# *
M In = Sy

where EM is a diagonal matrix of components of V, in corresponding

E (5)

order, i.e.,

By ¥ = Yy (®)
v is defined as
17
1
v é . (7)
L

SM is a vector of the bus powers given by
A .
Su = Py + 39 (8)
and * denotes complex conjugate. Substituting (1) into (5), we get
* S*
Ev Ir Yy = Sy- (9)

The system of nonlinear equations (9) represents the typical load flow
problem.

We write (9) in the perturbed form

SV + B sV = sS
§ 6~M + 5 6~M = 5~M' (10)
* # ] # #*
where sVM. va and §S,, represent first-order changes of VM' VM and §M’
respectively,
S A %
K=k X1 an

and ES is a diagonal matrix of components of IM’ i.e.,

S (12)

[

v Iy
The form (10) rigorously represents a set of linear equations to be
solved in the context of the Newton-Raphson iterative method. The form

(10) and related forms will be used throughout the paper while bearing



in mind that the equation corresponding to the slack bus may be

eliminated.

ITI. NEWTON-RAPHSON ITERATION IN COMPLEX MODE
The familiar form of the Newton-Raphson iteration in the real
mode [3] is obtained by separating (10) into real and imaginary parts

and collecting the terms, appropriately, using the perturbed forms of

(3) and (8), to get

s -s s =S
€Ky o+ Ky (-K +K) 8V 8Py
= . (13)
s -s S =S
- (K + K ) (- Ky + K Vo 8Qy
where we have set
s s .8
K=K +JK, ()
and
-+, | (15)

The 2n x 2n matrix of coefficients in (13), n denoting the number of
buses in the power network, constitutes the Jacobian matrix of the load
flow problem.

On the other hand, equation (10) can be written in the consistent

form

—_ *
K> RS sV §S
- - sl B (16)
_S*% - S x| = .
K K $Vy 83y

It can be shown [5] that the matrix of coefficients of (16) has the same
rank as that of (13) and ﬁhe system of equations (16) is consistent if
and only if the system (13) is consistent.

Now, ﬁhe system of complex equations (16) is equivalent to the

more compact system ot complex equations



where we have defined
~ _S# # -
kS = ®5* - 5% (851 ¢S (18)
and
~S S# S -1 #
9 = GEM - § (E ) 6§M. (19)

In the jth iteration of the Newton-Raphson method in the complex

mode, we solve the system of equations (17), where

S £ B,
Ty = Yy - e (20)
sst = st K> yd (21)
~M 7 “M(scheduled) ~ . .M

and the matrices K° and K> are calculated at Vﬂ.

A trade off between the direct use of forms (13) and (17) must
take into account the sparsity of the matrix of coefficients. While the
matrix §S of (14) has the same sparsity as the bus admittance matrix
YT' the matrix of coefficients %S\of (17) is as sparse as the matrix

~

A
Ypp = Yp Yoo (22)

In other words, the advantage of the direct use of the compact nxn
complex matrix ES rather than the 2nx2n real matrix of coefficients of
(13) may be restricted by the relative sparsity of the matrices XT and
¥TT' the factor which obviously depends on the graph of the network. To
illustrate this point, we consider, in Fig. 1, three special structures

T ~TT
We remark here that in the analysis of typical linear electronic

for which the sparsity coefficients [7] of g and Y, . are compared.

circuits, a system of complex linear equations of form (1) is solved for

the unknown node voltages YM with known excitations I The conjugate

M
»
vector of variables VM 1s not involved in the set of equations. The

analysis, hence, does not imply the previous restriction and the use of



the complex mode is undoubtedly advantageous [2].

IV. THE CONJUGATE ELIMINATION TECHNIQUE

In the previous section we have defined the matrix is and used it
to transform the original problem (10) into the form (17). This
transformation enjdys the advantage of the compact complex-mode analysis
and, at the same time, provides a form (17) which is suitable for
ordinary méthods of solving a set of linear equations. 1In this section
we present an alternative approach to the problem. Instead of applying
the ordinary elimination methods to the more dense matrix of
" .coefficients g of (17), we use a special technique in order to handle,
directly, the original form (10).

In order to facilitate the derivations, we introduce the

following notation. First, we define the term

— — *
Lk b x Bk x, kL ox., (23)
1] 1] J 1 J 13 J

where kij and Eij stand, for example, for general elements of the
matrices KS and'gs. We call the set of elements a of {a,b} the basic
set and the set of elements b the conjugate set. Then we state the

following basic rules which can be easily verified.

Rule 1
— — *

{kij, kij} Xy = {kiJ, kij} X5 | (24)

Rule 2
(k, ., Kb x) = (ke Ko xh o= (6, KT} x (24)

ij° 137 7 ij° i3 J ij° 13

Rule 3

i {kij' Eij] xj = {u kij' u Eij} xj = {ki_j' I;(‘].J.} (U.X\].), (26)

where p is a complex scalar.



Rule 4

{k..,kij

ij } xj + U {klj'k

. . = k- . k . _k-. . k . X.o 27)
pgt Xy = TRy kg, Cky g kg 3 % (
The above notation may be exploited in developing suitable
methods for solving systems of the form (10). Here, we invoke this
notation to describe a technique which allows the forward Gaussian

elimination process to be directly applied to the form (10). The system

of equations (10) is written, using (23), as

n
I {kij' kij} xj = bi’ i=1, ..., n, (28)
j=1
*
where xj and bi are elements of x = GVM and b = GSM, respectively. Since
kij = 0, for i £ j, | (29)

equations (28) can be written as

n
{kii, kii} X; o+ j§1 {kij' 0} xj = bi' i=1, ..., n. (30)
J#i

We assume that the order of elimination [6] has been taken into account

by applying suitable permutations to (30).

At the first iteration, we write the first equation of (30) as

n
{k11- k11} X, + 'Z {k1j’ 0} xj = b1 (31
J=2
or, using (25),
E* * n * %
{ 11° k11} Xq + ji? {o, klj} xj = b1. (32)
(1)*
Multiplying (32) by My , Where
(1) A *
My z - k1i/kii (33)



and adding to (31), we get, using (27),

n
— (1)* * (1)* * _ (1)% =
{o, k”+u1 k11} X, + jfz {k1j’ My k1j} Xj = b1+u1 b1 (34)
or, using (25),

n

—* (1) (1) * * (1)
k . = b_.
{k11 + oy k11. 0} X, +jf2 {u1 15 k1j} xJ b1 + oy 1 (35)
@D

Multiplying the ith equation of (30), i = 2, ..., n, by My of

(33) and adding to (35), we get

n
P, 01 x, =M, (36)
) 15 J 1
J=1
where
n
(1) —=* (1)
Kypm = kg v 2wy 7 Ky (372)
i=1
n
(1 (@D .
k1j ‘Z i kij’ J=2y eeey n (37b)
i=1
and
b(1) = b* 2 (n b (38)
1 - i=1 i i’

Equation (36) together with equations 2, 3, ..+, N of (30) represent a

set of equations ready for applying the first iteration of a forward

Gaussian elimination to the matrix KS(1)

which is obtained by replacing
the elements of the first row of §S by the elements of (37). Observe

that we have evacuated the conjugate set of the first equation.

(m=-1)
ij

(m-1)

In general, at the mth iteration and with k and bi

denoting the current elements of KS and b, respectively, we replace the

elements of the mth row of KS by the elements

n

—%
kK™,
mm mm

(m) |, (m=1)
mi K

(39a)
m
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and
m) _ % (m) (m-1)
kmj = izm i kij s J=m+1, ..., n (39b)
and we replace bém'1) by
n
-1)% -
b(m) = b(m D + I ugm)bgm 1). (40)
m m . i i
1=m
where
(m) A (m-1)% -~
T L (41)

We shall call the special elimination process described by (39)-
(40) the conjugate elimination in which the coefficients of the
conjugate variables are successively eliminated. A tableau
representation of the;combined elimination process is shown in Table I
for n = 3, and corresponding numerical results are shown in Table II

where the solution of the arbitrary system of equations
*

X, - jx, + 2x3 + 2x1 =5

3 . * 3

3x1 - X, + Jx3 - X5 =3
*

2x1 + Jx, - x3 + x3 =0

is investigated. The backward substitution results in the solution

1
X = j2! .
- 0

V. COMPLEX FORMULATION FOR PRACTICAL SYSTEMS
In the system of equations of form'(10). it is assumed that all
buses other than thé slack bus are of the same type, namely a load bus
type for which the active and reactive powers are Kknown. In practice,
voltage-controlled or generator-type buses must be considered and
modelled appropriately. For generator-type buses, the magnitude of the

bus voltage and the active power are specified. This situation
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obviously impedes the direct use of the complex form (10). In the
following, we present a special technique of formulation which allows
the generator-type buses to be included while preserving the complex
mode of (10).

Consider the equation of (10) corresponding to a generator bus g.

We define the complex quantity

sg 4 P+ 3 1V, (42)
hence
650 = 6P 4 Jjs|v,|. (43)
g g g
Since
* *
2Pg = Vg Ig + Vg Ig, (4y)
then
* * * *
26Pg = vg 5Ig + Ig svg + vg aIg + Ig avg. (45)
Using (1), we write Ig in the form
I, - ~; Vs | (46)

T i
where Yg represents the corresponding row of the bus admittance matrix

¥T' hence
5T =yl sV (47)
g~ g M
Also, .
IV | = sV v 2 2 v evt L v sy v ). (48)
g g 8 g g g g g
Using (45)-(48) it is straightforward to show that 652 of (43) is
given by

~ — *
850 = k9T sv 4 0T &v*,
g 8 M g M

where ggT which replaces the row of KS of (10) corresponding to the

(49)

generator bus g has elements defined as

K 8y o s (50a)
gi ~ 'g gy’ B g
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and

KO ViV« (VY s Th/2, (50b)
, . gg g g g 8gg g
Yij denoting elements of XT’ and EET,which replaces the row of ?S of

(10) corresponding to the generator bus g, has elements defined as

.4y Y2, 5 4e (51a)
gi ~ g g3 "’
and
KoY 5v /v« (v, Yo + 1)/2. (51b)
g8 g g g 'sg ¥ g

The above formulation results in an equation of (30) for i = g of the

form

. k

k
{ gg

(52)

where bg stands for sgg.

In order to prepare the original conjugate tableau of (10) to be
suitable for applying the technique described in the previous

subsection, we multiply equation i, i#g, of (30) by the factor

08 _ %0 k. .. (53)

1 gi’ Tii

The sum of the resulting equations is added to (52) to obtain, putting
k=K

g8 = gg

?

(54)

_~—
~
—
>
+

R L o A |
~—
~
@]
——
=
1"
o

where

k + N My k b=1, 7, .., n (55)



- 13 -

and

e

(56)
1

g

i
i

+
It M3
=
o
o

Equation (54), hence, represents the gth equation of (30).

Note that IVgl of (42) could be replaced, e.g., [8] by |Vg|2-
Moreover, one could equally well replace the elements of GYM and 6Y;.
namely, GVi and GVI, i =1, ..., n by the relative quantities 6Vi/|Vi|
and GV:/IViI, respectively. In this case, the elements kij and Eij of

the ith row of the coefficient matrices are replaced by Ivjikij and

|Vj|E£j' respectively.

VI. CONCLUSIONS

We have presented a suitable approach for solving, in complex
mode, the load flow problem described for power system studies using the
well known Newton-Raphson method. The unfamiliar form of the resulting
complex equations has been directly handled by a new elimination
technique. Other similar forms of complex equations which are expresséd
in terms of conjugate pairs of variables may be handled. We have
synthesized appropriate complex variables comprising the practical
ad justable variables associated with voltage-controlled buses. Hence,
the complex mode of the resulting perturbed power flow equations is

preserved.
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TABLE I

THE COMBINED ELIMINATION TECHNIQUE

Iteration Type of
No. Basic Tableau Conjugate Tableau b Elimination
i b " " — ! Original
?! 2 23 22 _ 2 tableau
31 32 33 0 0 33 3
kg}) kgg) k§1) 0 0 0 b21)
3 - Conjugate
b K21 Koz Xo3 0 22 0 P R
_ elimination
k K b
31 k32 k33 0 0 33 3
k(1) k(1) k(1) 0 0 0 b(1)
! : ;3 ! Gaussian
1 0 k;;) ké;) 0 *ég 0 b;1) forward
(1 (1) _ (1) elimination
32 33 33 3
DD s o o
(2) (2) (2) Conjugate
22 23 2 . .
(1) (1) _ (1 elimination
32 33 33 73
k(1) k(1) k(1) 0 0 0 b(1)
R zg) 23) 22) Gaussian
2b 0 Koo k23 0 0 0 b, forward
(2) - (2) elimination
33 33 3
k(1) k(1) k(1) 0 0 0 b(1)
11 12 13 1 Con sugate
{
3a 0 k;g) kég) 0 0 0 béz)
(3) (3) elimination
° 33 0 3
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TABLE II

EXAMPLE OF ELIMINATION TABLEAU

Iteration Elements of b
No. Basic Tableau Conjugate Tableau =
=J 2 2 5

0 -1 j -1 J
J -1 1 0

J5 0 0 -3
1 =2/7 J -1 j1o/17
-3j3/7 -1 1 6/7

J5 0 0 -3
2 12/7 j9rs2 0 jous7
0 -17/8 1 0

- J5 0 0 -3
3 12/7 ja/2 0 jaursT
0 -225/136 0 0




*——o—o—o
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(a) Simple chain

(c) Simple tree

(b) Simple star

Fig.

® node

branch

Sparsity Coefficient

Network
Y Yrr
(a) 1 - (3n - 2)/n° 1 - (5n - 6)/n2
(b) 1 - (3n - 2)/n° 0
() 1 - (3n - 2)/n° 1 - (6n - 8)/n°

n = number of nodes = order of ZT or ZTT

1 Sparsity coefficients of YT and YTT for simple networks
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