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ABSTRACT

In this paper sufficient test conditions for identification of
component values of linear analog circuits are investigated. Tests
under consideration are assumed to be performed at a single frequency
and consist of voltage measurements using different current excitations.
Based on the fact that it is sufficient for this identification to
perform nodal voltage measurements using all possible independent
current excitations a systematic way to eliminate some unnecessary tests
is proposed. A simple method for checking whether a reduced number of

tests is sufficient for the identification is then formulated.

INTRODUCTION

Recently, there has been considerable interest in fault diagnosis
for analog circuits (e.g., [1-9]). One of the possible approaches uses
fault simulations and constructing a fault dictionary of mainly
catastrophic faults (e.g., [9]). However, looking for so-called "soft
faults" authors usually consider the identification of actual component
values.

The solvability of the all parameter identification problem was
initiated by Berkowitz [1]. His approach was mostly based on current
measurements. The use of voltage measurements only was investigated by

several other authors [3-5]. They formulated appropriate equations
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which can be used to calculate component values based on sufficient
number of independent measurements. How to arrange for the least number
of independent measurements, however, has not been known so far. This
problem is studied in this paper in some detail.

Tests under consideration consist of voltage measurements using
different current excitations. The tests are performed at a single
frequency, so the most one can expect is to determine the values of
passive admittances and control coefficients of controlled sources.
Repeating the identification at different frequencies enables one to
find the component values provided that there is a unique dependence of
them on the frequency response. Thus, in this paper we are interested

in determining the unknown nodal admittance matrix Yn of the equation

=17, ‘ (1)

where Vn is the vector of nodal voltages measured and ES is the vector
of applied nodal current excitations. We assume that the component
admittance values can be found from Xn, i.e., that there exists a unique

solution to the system of equations

?j y = Zj' j=1,2, «e., n, (2)
where y = [y1 Yo eee yp]T is the vector of component admittances, Xj
is the jth column of zg and Ej is an appropriate matrix corresponding to
the known network topology and consisting of 0, -1 and +j values. The
assumption means, for instance, that there are no parallel elements such
as passive admittances or current sources controlled by the same
voltage. As is well known, such elements are not solvable, so if they
occur we usually treat them as a single component. Finally, note that
the existance of the unique solution of (2) depends only upon the

network topology.

GENERAL SUFFICIENT CONDITIONS
Consider the ith test as one which consists of nodal voltages V;
measured when a known current vector ISl is applied. Equation (1) holds

Si

for every test, i.e., for vectors V; and I i=1, 2, ..., each time

Wwith the same matrix Yn' Taking n tests we can write a single matrix



equation
_ S
o Ve = It (3)
1 .2 n, . ) S
where Y§ = [Vn Vn coe Vn] is nxn matrix of voltages measured and I_ =
[IS1 5 2 e ESn] is nxn matrix of consecutive test excitations. From
(3) we find the unknown matrix zn as
=1 .S
eV It )

provided that V_ is nonsingular. As a consequénce of equations (3) and
(4) the following theorem gives general sufficient conditions for the

identification.

Theorem 1 If a given linear network can be described by the nodal
equation (1) and the test excitations are chosen in such a way that ES
is a nonsingular matrix then Xt is also nonsingular and the solution (4)
exists.

Proof of the theorem follows from equation (3) since n = rank I, £

S
~t
rmkztin.

Thus, in order to identify all component values we may arrange for
n independent current excitations, measure all nodal voltages and then
apply equations (4) and (2). This approach, however, can be redundant.
In the next section we shall discuss the problem of eliminating some

unnecessary tests.

TEST GENERATION
One of possible choices of independent excitations is to apply a

unit current consequtively to all n nodes, i.e., we may consider

ID = 1. (5)

This together with (4) give us the very important relation

-1
Yt =Y (6)

~1

which imposes certain relations between elements of the matrix Vt. For

~

instance, if Y is symmetrical (as for reciprocal networks) then Ve is



-4 -

so. In general, Y has a particular (usually sparse) form corresponding
to the known network topology, hence there are certain constraints to

the elements of its inverse. There are three types of these

constraints:

(1) Vij * 0 (or Aji = 0), ’ (7
for nonincident nodes (Aji denotes the appropriate minor of V ),

(2) yij = yji (or Aji = Aij)’ . (8)
for passive branches,

(3) yik + yjk = yki + ykj
and/or Yim * Y = Vi * Ymj® (9)

for voltage controlled current sources.

The constraints (7)-(9) are known, so we should take advantage of
this in order to eliminate unnecessary measurements. Since the
constraints are independent their total number is equal to the number of
elements of Xt which can uniquely be determined based on remaining
elements. However, they cannot be chosen arbitrarily. From the other
side what we intend to do in order to perform the least number of tests
is to eliminate whole columns of Xt' In the following we propose a
systematic way which enables us to indicate tests sufficient for
component value identification. The mehtod is based on the assumption
that all voltages measured as well as all components have nonzero
values.

Equation (6) rewritten in a slightly different form

Ve o

b = 1 (10)

can be considered as n systems of equations

T .
Yt Xj = Sjv J=12, ..., n, 11

where Sj denotes the jth column of unit matrix. Note that coefficients
of each equation in (11) are taken from only one measurement test and
also that unknown elements of Xj correspond to the jth nodal cut-set
branch admittances.

Let us suppose that, for certain j, Y has a number, say [ S

~

elements of zero value. Since the soluticn of (11) is unique we do not
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need to know the elements of n-k1 columns of Vz corresponding to zero-

value elements of y Therefore, eliminating them we obtain a reduced

~J°

system (11) having n equations and k, unknowns. Then we can also

1
eliminate exactly n—k1 equations (tests). The resulting system has to

contain the jth equation for which the right hand side equals 1.
Otherwise, if we did not choose the jth equation the resulting system
would be homogenious and consequently, since the solution is different
from zero, singular.

Now, suppose that we have chosen exactly k, equations, including

the jth equation. 1In order to check whether this subsystem is solvable

T

or not we can employ the fact that a subdeterminant of Ve is different

from zero if and only if the complementary subdeterminant (obtained by

removing the rows and columns chosen) of the transpose to the inverse of
T
!t' i.e., of zn’

of this determinant depends on particular values of unknown elements of

is different from zero. Although the particular value

Zn it can be "structurally" (i.e., dependently on zero elements) either
of zero or nonzero value. Thus, using this criterion one can indicate
the groups of k1-1 tests which together with the jth test are not
sufficient to determine the unknown elements of Zj' Any other group of
k1 tests (including the jth test) is topologically sufficient for this
identification. In other words, except very particular values of Xn
(e.g., some elements have zero values, although they are assumed to be
different from zero) the corresponding submatrix of !z is nonsingular.

The simplest situation occurs when zj has only 2 nonzero elements.
Then, assuming that all voltages measured are different from zero (e.g.,
the network is not weakly connected) any test (equation) can be chosen
together with the jth equation.

One of possible choices of k1 independent equations is that that we
consider the tests corresponding to the excitations at all nodes j1, 32'
ey jk_1 which are incident with the jth node. This is simply the same
result as that of Trick et al. in [4]. However, if we intended to use
such tests at every cut-set we would eventually have to consider all
nodal excitations as in Theorem 1. In fact, what we actually want to
find are some other excitations which can replace all or part of the
excitations at nodes j1, j2, cees jk—1‘

In some cases the nonzero elements of yj can be dependent. For

ar
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instance, this is the case when no admittance exists between the jth and
the datum nodes. Then we can eliminate one more test out of k1—1 tests
chosen, ‘

Based on one of proper groups of k1 tests we are able to identify
all admittances of the jth cut-set, so although we do not need, for the
time being, to indicate which group has been chosen we can consider
these elements as known. Then, consider another column Zz such that it
contains one of the elements of Y We now know not only all of n-kj,
zero elements of M but also that nonzero admittance Yom which is common '
with yj As before after eliminating n-k, columns of V. corresponding
to zero-elements we can properly select k2 equations (including the 2%th
equation). Since Yom is known and is different from =zero it can be
shown that after dropping the &th equation we obtain k2-1 independent
equations with k2—1 remaining unknowns. This is quite an important
result: knowing at least one of elements of a cut-set we do not have to
use the direct excitation of this cut-set in order to solve for
remaining elements. The circuit interpretation of this 1is the
following. The value of Y em as well as the voltage across this element
are known. Thus, after finding the current we can replace yﬂ'm by an
independent current source and then express it as a combination of nodal
current excitations. Doing so with all currents of the jth cut-set we
eliminate the jth node. Repeating this for all k independent
excitations at the jth node and all incident k-1 nodes we now express
them as linear combinations of k-1 excitations. They are dependent from
the remaining network point of view and, in particular, the th
excitation (test) can be detérmined as a linear combination of the jth
excitation (test), which is already chosen, and some other ones.

As before, we do not want, for the time being, to indicate which
group of k2-1 equations has been chosen. However, it is desirable that
these k2—1 equations are included in one of group of k1 equations
considered in the first step. If this is not satisfied we have to
augment them.

Using this approach we proceed with the subsequent columns of !?
and finally we can decide which equations (tests) may be chosen in order

to identify all elements of Yn'

The above discussion is also valid in ény case when equation (1) is
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based on a system of independent cut-sets instead of nodal cut-sets. In
particular, it holds for any fundamental system of cut-sets (generated
by a certain tree). Given a tree, Yn and Xt represent voltages measured
across the tree branches and the unit matrix of (5) corresponds to unit
excitation at terminals of tree branches, each at a time. The vector zj
corresponds to jth cut-set admittances. As a conclusion from our
considerations we can formulate the following theorem.

Let us choose a sequence of independent cut-sets Y1s Yoo e Ypo

Let ?1, ?2. oo ?n be reduced cut-sets defined as
i-1
Yy =Y, and Yi:yi—kL-J1 Yiee

Let Bi denotes the set of indices of cut-sets determined by independent

voltages (e.g., tree voltages) corresponding to all elements of ¥s-

Finally, consider a set of test indices a such that card a > max (card

Bi).

Theorem 2 Tests o are sufficient for the identification of component
admittances if there exist a; € a, card a; = card 31, such that
det Y (ai|ei) #0 for i =1, 2, ..., n, where pa (ailei) denotes the
submatrix of Xn obtained by removing a; rows and B columns.

It is to be noted that the choice of independent cut-sets as well
as their sequence is crucial for better selection of tests. Now, we

give an example of implementation of Theorem 2.

EXAMPLE

Consider a simple resistive active circuit shown in Fig. 1.
8 V1

¢ 8 -0
Fig. 1 An active circuit example
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Let us choose the sequence of cut-sets v, = 11,2}, v, = 12,3,51, Y3
= {4,5,6} based on the tree {1,3,4}. The reduced sequence is ?1 =
{1,2}, ?2 = {3,51}, ?3 = {4,6}, so we find B,y = {1,2}, B, = {2,3} and B

= {1,3}. Based on the matrix

3

g1+8, -85 0
L P 8o+83785 &5
we find that tests a = {1,2} are sufficient for the identification

provided that g5 £0 and,g6 # 0. Simiarly we can check that tests o =
{1,3} are sufficient provided that g2 4 0 and g5 4 0.

CONCLUSIONS

Sufficient test conditions for identification of all component
values are investigated in this paper. It is shown that measuring nodal
voltages using all possible independent current excitation is sufficient
for this identification. Then a systematic way to eliminate some
unnecessary tests is proposed. However, the choice of a sequence of
cut-sets is crucial for this elimination, i.e., the solution may be or
may not be optimal. The results are summarized in Theorem 2 which gives
a simple method of checking whether a reduced number of tests is
sufficient for the identification. This is illustrated by a simple

active circuit example.
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