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Abstract

The well-known Lagrangian approach, traditionally described in real
form, for calculating first-order changes and gradients of functions of
interest subject to equality cohstraints is.generalized and applied in a
compact complex form. Hence, general complex functions and constraints
can be handled directly while maintaining the original complex mode of
formulation. The theoretical foundations of the approach are stated.
An application to power network sensitivity analysis and gradient

evaluation is presented.
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I. TINTRODUCTION

In sensitivity calculations for electrical networks [1-5], the
first-order change of a function of both system state and control
variables is required to be expressed solely in terms of first-order
changes of the control variables. This expression 1is useful for
determining total derivatives of the function w.r.t. control variables.
The state and control variables (hence, their first-order changes) are
related through a set of equality constraints which may represent
network flow equations.

In the real form, the Lagrangian approach vhas been successfully
applied to power system analysis and design problems where Lagrange
multipliers obtained by solving a set of adjoint equations are used to
relate first-order changes of a real function to those of the control
variables.

In some cases, the set of equality constraints 1is described
basically in a compact complex form, e.g., the power flow equations in
electrical power systems. Moreover, first-order changes of a complex
function may be required. The application of the Lagrangian approach
[3] requires separation of real and imaginary parts of the equality
constraints as well as the function of interest which may alter the ease
and compactness of formulation.

The study presented in this paper exploits a compact complex
notation to describe and formulate the Lagrangian approach in the
complex form so that complex functions and constraints may be directly
handled.

The description and theoretical bases of the notation used, the

complex formulation of the Lagrangian approach and an important



application to power system sensitivity analysis and design are

presented successively in the paper.

ITI. THE CONJUGATE NOTATION
We denote by C and R, respectively, the field of complex numbers
and the field of real numbers. The vector space over C, of n-tuples
(c1, cees gn), T, ¢ C is denoted by c”. Similarly, R" stands for the

vector space over R, of n-tuples (Clm’ eeey T ), m=1, 2 and Tim € R.

nm
Also, we write

t =1

~ <1

+ J 52. (n
where ¢ is a column vector of components Ci given by
Ci = ;11 + j ciz' (2)

n .
51’ 52 € R ’ ;11, ci2 € R' 1 = 1’ 2’ e ey no

Formal Partial Derivatives

For a continuously differentiable complex valued function f on an

open set @ C ¢ (¢ possesses derivatives [6] w.r.t. all the variables

Zs 4 and ciz), we define the formal [7] or symbolic [8] bartial
derivatives
CLI O LN N L (3)
4 34 3ts
and
A, E )
t %4 3%

where, 3f/3c, 3f/ocz¥*, af‘/ac1 and af/a;2 are column vectors.
Note that in formal derivatives, the Cauchy-Riemann differential

equations may be written [7] as



o,

E*

First-Order Change in Terms of Formal Derivatives

We consider the nonsingular transformation

z, 1m0 z

2y . <
) n n ’

- *

L 3 :

where 1n’is the identity matrix of order n and

~

.n

n
J

j 1 .

He>

Equation (6) may be written in the perturbed form

6;1 1 1 [ 4

~ ~ ~

]
Nf—
=S
=

-

3 . "

%22 T

where § denotes first-order change. Note that
sg* = (sp)*.

The first-order change of f is given by
§f = ( %%— )T g, + ( L} )T ¥4

¢ ~1 9% ~2
or, using (8),

_ 1., 3f T 3f T .n 1., 8f T 3f T .no. 4
6f = 2[( 32~') - ( Y ) J 1 Sz + 2[( T ) o+ ( 32-) J ]65 .
21 22 21 22

Hence, from (3) and (4)
of \T of \T
§f = (= )" & ( —5) *,
Y4 ) 5

~ ~

Equation (12) expresses §f in terms of the variations in ¢

~

(5)

(6)

(7

(8)

(9)

(10)

(11)

(12)

and c¥

using the formal derivatives a3af/3z and 3f/az* of (3) and (4),



respectively.

Pure Real and Pure Imaginary Functions

For arbitrary g, if

T #* . —oT #*
uT; + uTc = u TC + Tc ’ (13)

~

where yu, E; u. and EJ are appropriate vectors of complex scalars, then,
by equating the real and imaginary parts of both sides of (13) and
subsequently equating the coefficients of T4 and Zs (since ¢ 1is

~

arbitrary), we get
H =y and;:u. (1w

For a pure real function f, we write

% *
sf = &§f = (sf) (15)
or.‘using (12),
* * * *
T s (2T o = (T o 4 ()T s, (e
13 - X4 - 13 . T =
~hence, from (13) and (14)
*
%% = ()7, (17)
~ X4

Also, for a pure imaginary function f, we write

* *
6 = - of = - (sD), (18)
or
* * * %*
CAENT v (2T o F o 2 (2T o (2T o, 9
g - a;* - 14 - aC* b

hence, from (13) and (14)



RemarkA'

We remark [7] that the terminology of formal derivatives arises
because of the possibility of obtaining them formally using the ordinary
differentiation rules. The use of the conjugate notation facilitates
the derivations and subsequent formulation of the equations to be

solved.

III. THE COMPLEX LAGRANGIAN CONCEPT
In this section, we formulate the Lagrangian approach in the
general complex case.

We consider, as before, a complex function f_of a set of complex

*
variables g and their complex conjugate % . We write

tx
T = ’ (21)
~ u

ey

where the variables ¢ have been classified as nx state variables ;x and

~ ~

n, control variables Ty The state and control variables are related
through the set of n, complex equality constraints

*
h(C,Z) =0 . (22)

Complex Perturbed Form of Function and Equality Constraints

The first-order change of f is written, using (12), in the form

(14 8¢
T T ~X T ST ~4
sf =L f f ] + [ f f ] ’ (23)
~CX ~CX * ~TU ~Tu *
8Ty : 8§y

— — ’ * *
where fcx' fcx’ €cu and fcu stand for af/agx, af/agx, af‘/aEu and af/agu,



respectively.

We write (22) in the perturbed form

. |
sh (z,z ) =0 (2y)
or
I %
Mo Boxd | o 2 U Bl 2 = 0 (25)
8§z, 8z,

—_ - T T T *T T T
where %CX' ?cx’ ycu and %cu stand for (aP /afx) , (8? /aEx) . (BP /aiu)

*
and (ahT/acu)T, respectively. Using the complex conjugate of (25), we

may write
X H;x sz du
= - , : (26)
—% % s *
Bex Hex) | %% dy
where
d 2y " ' (27)
S0 Tou 8wt Zou S5 - 7

Matrix Rank and Consistency Conditions

The following two theorems justify the analytical aspects of the
sets of complex equations of the form (26) expressed in terms of complex
variables and their complex conjugate.

Theorem 1

Let o, 6 € men' where

o=0, +] 92 (28)
and
9 = 91 + J 92, (29)



91, 62, 51, Eé ¢ "™, Then the two matrices 6 ¢ C2mx2n and @
defined as
e o
c
o &~ -
~ —% %
<] e
and

(6, +0) (8, -8,

1

(. +0) (o, -08.)

have the same rank.

Proof
Let 1* be the identity matrix of order & and

NI IR

and define the two unitary matrices

1m .m
a1 | ! J
UL =
~ V2 m .m
1 -J
and
F 1n 1n
A 1 - ~
UR = -
~ /5 .n .n
-J J
Since UL and UR are nonsingular, hence [9]
rank[U " U ] = rank[er].
L - =R -
But
r c
U8 %=¢%"

e R

2mx2n

(30)

(31

(32)

(33)

(34)



and & is given by (30).

Proof

Separating (37) into real and imaginary parts using (28), (29),

(35) and (36), we get

(8 + 8y) Wy + (&, = 0)) W, = 6,

1 1

hence
rank[er] = rank[ec] []
Theorem 2
Let @, 0 ¢ cmxn given by (28) and (29), and let 6 ¢ ™ and w e cn,
where
and
E = 51 + J :»12, (36)
61, 92 ¢ R" and w1, w2 € Rn. then the system of complex linear
equations
- ~
OW+oWwW =86 (37)
has a solution w if and only if
rank[(ec. ec)] = rank[ecl,
where 6% ¢ C2™ is defined as
0
o B, (38)
- )

(39)
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and
(8, + 8,) Wy + (8, = 8 W, = 5,
or, using (31),
Orwr‘=0r,
where
w1
2
w2
and
0
o 2 g
%
We define the nonsingular matrix
- =N
n N
= A 1 n .n
UR:'--.'-J J 01,
V2
0 0 2
- ~ ~ .-
hence
rank[UL (", o) ﬁh] = rank[@, 087)1,
where U is given by (33). But
r r c c
U, (o0s 8) Up = (o7, 0D,
hence

rank[(er, 0 )] = rank[(ec. 0°) 1.

Now, the system of equations (41) has a solution if and only if

(40)

(41)

(42)

(43)

(u4)

(45)
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rank[ (6", 6")] = rank(e'1,

hence the theorem is proved using (45) and Theorem 1 E]

Sensitivity Calculations

Now, we write (26) in the form

-1

8ty Hex B Aeaw B S
= - . (46)

* p— * - * *

S| Aax Hix Haw He 8%y

From Theorem 1, the inverted matrix in (46) has full rank if and only if
the system of equations (24) represent 2nx independent conditions.

Usihg (46), 8f of (23) is written in the form

E;u 'E;u Ty
T =T T —-T
8f = ¢ [ fcu f;u 1-1 A ] ! (47)
—# * *
8z
~TU  ~zu 2u
where
— %) - -
o 7T [, ¢
~TX  ~TX A ~X
= . (48)
_ * - _
HT H T A f
L~TX ~x ] |~ [ ~TX

" Hence, the total formal derivatives of f are given, from (47), by

af  _ T HT —
dgu - f;u - ﬁ;u 3 - g;u 3 (49)
and
—-— —d *T —
d_-F -8 a-HIY. (50)
dC ~zgu ~zu ~ ~ZzU ~
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The complex Lagrange multipliers A and % of (49) and (50) are obtained
by solving the set of complex adjoint equations (48). Theorem 2
provides the consistency conditions of the adjoint equations (48).

Note that in the real case when the function f and constraints h
are all pure real, the application of (17) results in the complex

— * — *
conjugate relationships icx =,€CX and %KX = %CX and (48) reduces to a

system of n, complex equations in the real variables (A + ). The

solution of this system of equations is then substituted into (49) and

%
(50) which form a complex conjugate pair since, from (17), fcu = fcu and

~ ~

* .
H;u = H;u' Observe that this conclusion agrees with the relationship
(17) when applied to the total formal derivatives of (49) and (50).

Note also that the conventional reduced gradients (w.r.t. real

control variables) can be obtained from the formal total derivatives

using the inverse relationships of (3) and (4), namely

. (51)
fur TR dg
~u
and
~u2 Eu dg
~u
where Cu = Cu1 + J Cu . In the case of a pure real function f, the

relations (51) and (52) reduce to

- 2re {%—f—- (53)
fu1 fu
and
gf = -2 m {gf- i (54)
Lu2 Lu

We have stated the Lagrangian approach in the complex form and

derived the corresponding adjoint equations to be solved for the
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Lagrange multipliers so that the required formal derivatives (49) and
(50) may be obtained. In the following two sections, we consider some
applications of the complex Lagrangian approach in power system analysis

and design;

IV. éPPLICATION TO POWER NETWORK ANALYSIS
The complex Légrangian approach described in the previous section
can be applied, for example, to power network sensitivity calculations.
The set of complex equality constraints (22) may represent the power

flow equations of the form
*

*
h=Sy -Ey Y Vy=0, (55)

where SM is a vector of the bus powers, VM

¥T is the bus admittance matrix of dimension nxn, n denoting number of

buses in the power network and EM is a diagonal matrix of components of

is a vector of bus voltages,

YM in a corresponding order.

The vectors - and Z, of (21) are defined as

4L (56)

Ty

and

R | (57)

where we have classified, for simplicity, the buses as load-type buses

of voltages V. and powers S. and a slack bus of voltage Vn and power Sn'

L L

We write (55) in the corresponding partitioned form
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EL §L EL 9 XLL XLN YL
= k- . z : (58)
hn S 0o v Y Y v

n ~LN nn n

where the symmetric bus admittance matrix has been partitioned into YLL’

T . . .
¥LN' XLN and Ynn of appropriate dimensions.
T

T * T T * .
The matrices 3h /ch, 3h /8Ex, 3h /acu and 3h /az;u are given,

~

respectively, by

h h
3~L 8 n
ahT aYL BYL
— = R (59)
3ty hT h
2 ah, ah
33 33
L n nj
~ BEE ah -
¥ %
ah! vy AV
== p (60)
afx 8~L 3 n
% %
i s, aan
r T
h
a~L ahr]
sh? S, 35
e = (61)
) hT h
~u 3~L P n
i aVn 3an
and
~ ahT sh
~L n}
—% —¥
ahT T
_.._.;" = hT N (62)
aEu a~L ahn
—¥ —¥
g avn aan

Using (58)-(62), the matrices H__, H__, H and H _of (25) are
~Tx' .rx' .gu ~zu

given, respectively, by
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*
- (E Y ) 0
Hoy -5 ot -, (63)
_ - O, Ly 0

H = ~ ~ . (64)
~TX 0 1
~ J
0 Er Y. )
T - (55)
9 Vn Ynn
and
B 1 0
H = ~ ~ . (66)
~Zu 0 I
= n

where the bus currents

I
, = | " (67)
- I
n
are given by _
Iy = Xz Uy (68)

For a given function f with the formal derivatives f;x and ?;x’ the
adjoint system of equations (48) is formed wusing (63) and (64) and
solved for the Lagrange mUltipliers A and . The total formal

~ ~

derivatives of f w.r.t. the control variables are then calculated from
(49) and (50) using (65) and (66).
L and Sn as the only control

variables 2y has been made for simplicity. We could equally well define

We remark that the choice of V

other control variables, e.g., line admittances represented in the bus
admittance matrix. Note also that the voltage-controlled buseS or

generator-type buses [3] can be included by defining complex conjugate
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pairs of state variables, e.g.,

g A :
Ty = Qg + 5g (69)
and of control variables, e.g.,
g A :
gy = Pg 3 Vgl (70)

where the generator bus power Sg is given by

S - P + j Q E
V - V t 6 ° i 2

The modification required to include other control and state variables

can be performed in a straightforward manner.

VI. CONCLUSIONS

We have presented the theoretical foundations of a useful algebraic
notation for sensitivity evaluation in the complex mode. The far
reaching consequences gained by using the compact conjugate notation
have been exploited in formulating the Lagrangian approach in the
complex form. ° First-order changes and formal derivatives of complex
functions of interest subject to general complex equality constraints
can be evaluated, directly, while Keeping the original compact complex
mode of formulation. An important application to power network
sensitivity analysis has been studied. In this application, the
first-order change and the reduced gradients of a general function are
evaluated subject to complex equality constraints representing the power

flow equations.
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