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Abstract

The well-known Lagrangian approach, traditionally described in real
form, for calculating first-order éhanges and gradients of functions of
interest subject to equality constraints is generalized and applied in a
compact complex form. Hence, general complex functions and constraints
can be handled directly while maintaining the original complex mode of
formulation. Applications in power network sensitivity analysis and

gradient evaluation are presented.
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I. INTRODUCTION

In sensitivity calculations for electrical networks [1-U4], the
first-order change of a function of both system state and control
variables is required to be expressed solely in terms of first-order
changes of the control variables. This expression 1is wuseful for
determining total derivatives of the function w.r.t. control variables.
The state and control variables (hence, their first-order changes) are
related through é set of equality constraints which may represent
network flow equations.

In the real form, the Lagrangian approach has been successfully
applied [3] to power system analysis and design problems where Lagrange
multipliers obtained by solving a set of adjoint equations are used to
relate first-order changes of a real function to those of the control
variables.

In some cases, the set of equality constraints 1is described
basically in a compact complex form, e.g., the power flow equations in
electrical power systems. Moreover, first-order changes of a complex
function may be required. The application of the Lagrangian approach
[3] requires separation of real and imaginary parts of the equality
constraints as well as the function of interest which may alter the ease
and compactness of formulation.

The study presented in this paper exploits the conjugate notation
[4] to describe and formulate the Lagrangian approach in the complex
form so that complex functions and constraints may be directly handled.

The description and theoretical bases of the notation used, the
complex formulation of the Lagrangian approach and some important

applications to power system sensitivity analysis and design are



presented successively in the paper.

IT. NOTATION
We denote by C and R , respectively, the field of complex numbers
and the field of real numbers. The vector space over C, of n-tuples
¢ C is denoted by Cn. Similarly, R" stands for the

(Cqe oees t) oy

vector space over R, of n-tuples (Elm’ eeesy T ), m=1, 2 and Tim € R.

nm
In the conjugate notation [4], a complex variable Ty

Tt v It ()

*
and its complex conjugate i replace, as independent quantities, the
real and imaginary parts of the variable. Hence, for a continuously
differentiable complex valued function f on an open set Q C Cn, we may

define the formal [5] or symbolic [6] partial derivatives
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where
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is a column vector of components ci of (1), i =1, 2, ..., n and

*
af /ar, of/ 3z af‘/az;1 and af/az;2 are column vectors.
The first-order variation of the function f can be expressed [4] as
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where § denotes first-order change and T denotes transbosition.

It can be shown that, for arbitrary ¢, if

T -—T #* oT _oT *
wr+pue = oy T (6a)

— L]
where p, u, u and u are appropriate vectors of complex scalars, then

u:u.and:=p. (6b)

~

For a pure real function f, we write

* *
§f = 8f = (s&f) , (7)
or, using (5),
T T *T *T
* * )
() sr e - R I A Ay s, (8)
z ~ T ~ z ~ T ~
hence, from (6)
af (3, (9)
T
~ 9T

Also, for a pure imaginary function f, we write

* *
§sf = - 6f = - (§) , (10)
or
af * ®T * *
R oot = - (2T e - M T s, A
¢ ~ ac ~ z ~ 14 ~
hence, from (6)
*
AL (12)
¢ T

We remark [5] that the terminology of formal derivatives arises
because of the possibility of obtaining them formally using the ordinary

differentiation rules. The use of the conjugate notation facilitates



the derivations and subsequent formulation of the equations to be

solved.

ITI. THE COMPLEX LAGRANGIAN CONCEPT
In this section, we formulate the Lagrangian approach in the
general complex case.
We consider, as before, a complex function f éf a set of complex

*
variables ¢ and their complex conjugate ¢ . We write

tx
= (13)
=z Ty '

where the variables ¢ have been classified as nx state variables ;x and

nu control variables Cu' The state and control variables are related

~

through the set of n_ complex equality constraints

h(g,c) = 0. (1)

The first-order change of f is written, using (5), in the form

GEX 6Eu
T =T T =T
§f = [ f;x fcx ] + [ Ecu fcu ] ’ (15)
# *
8ty 8ty

— — * *
wher , f , f and f stand f af/ 3 af/ 3 of /9 and 3f/3z ,
ere fo ~Tx' ~Cu ~Zu or 3f/ x’ Sx’ tu %y

respectively.

We write (14) in the perturbed form

sh (C.c*) =0 (16)



or
8y 8ty
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where gcx' gcx, ?;u and @Cu stand for (aP /BEX) , (a? /afx) , (a? /aEu)

*
and (aPT/agu)T. respectively. Using the complex conjugate of (17), we

may write
st - L N il st
2X | ~TXx ~TX ~TU ~Tu Zu
= - ' . (18)
* —% * —* * s *
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It can be shown that the inverted matrix in (18) has full rank if and
only if the system of equations (16) represent 2nx independent
conditions.

Using (18), &f of (15) is written in the form
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Hence, the total formal derivatives of f are given, from (19), by
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and

o # —

—5 =f - B x —H T Y. (22)
~Cu ~CU ~TU ~

dg,

The complex Lagrange multipliers A and A of (21) and (22) are obtained
by solving the set of complex adjoint equations (20).

Note that in the real case when the function f and constraints p

are all pure real, the application of (9) results in the complex

— * - *
conjugate relationships f = f and H = H and (20) is reduced to a
: ~TX ~CX ~TX ~CX
system of n. complex equations in the real variables (A + A). The

solution of this system of equations is then substituted into (21) and

— *
(22) which form a complex conjugate pair since, from (9), f;u = fcu and
— *

H = H_ .

~Cu ~Cu

We have stated the Lagrangian approach in the complex form and
derived the corresponding adjoint equations to be solved for the
Lagrange multipliers so that the required formal derivatives (21) and
(22) may be obtained. In the following two sections, we consider some
applications of the complex Lagrangian approach in power system analysis

and design.

IV. APPLICATION TO POWER NETWORK ANALYSIS
The complex Lagrangian approach described in the previous section
can be applied, for example, to power network sensitivity calculations.
The set of complex equality constraints (14) may represent the power
flow equations of the form

* * (2)
h=Sy -EyYp V=20, 3



where S is a vector of the bus powers, V., is a vector of bus voltages,

~M ~M

YT is the bus admittance matrix of dimension nxn, n denoting number of

buses in the power network and E, is a diagonal matrix of components of

V. in a corresponding order.

~M
The vectors z, and Z, of (13) are defined as
'}
. 4|t (1)
~ S
n
and
S .
T el | (25)
- \')
n

where we have'classified. for simplicity, the buses as load-type buses
of voltages VL and powers SL and a slack bus of voltage Vn and power Sn'

We write (23) in the corresponding partitioned form

*
EL ?L EL 9 XLL ELN YL

= % - * T [} (26)
hn Sn 9 Vn ZLN Ynn Vn

where the symmetric bus admittance matrix has been partitioned into ¥LL'

T . . .
¥LN’ ?LN and Ynn of appropriate dimensions.

. T T, * T T, * .
The matrices 3h /a;x, oh /a;x, ah /ar,u and 5h /a;u are given,

respectively, by

~ . T
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~
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e S
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T % %
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Using (26)-(30), the matrices H , H , H and H_ of (IT) are
~TX cu ~CUu

given, respectively, by

* .
- (EL XLL) 0
ch = x T , (31)
- (Vn ¥LN) Q,
3 (- diag {I,} 0]
H = - - ’ (32)
~TX
0 1
L ~ -
- ( 3 )‘1
0 - (E. Y
~ ~L _LN
ch = * (33)
~ 0 -V Y
_ ~ n nn_|J
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and
3 1 0°
H = = - ’ (34)
~zu 0 1
- n
where the bus currents
I
, = |" (35).
- I
n
are given by
Iy =t Y (36)

Hence, for a given function f with the formal derivatives fCX and

ch, the adjoint system of equations (20) is formed using (31) and (32)
and solved for the Lagrange multipliers A and -;. The total formal
derivatives of f w.r.t. the control variables are then calculated from
(21) and (22) using (33) and (34).

We remark that the chqice of YL and Sn as the only control
variables Eu has been made for simplicity. We could equally well define
other control variables e.g., line admittances.

Note also that the voltage-controlled buses or generator-type buses
[3] can be included by defining complex conjugate pairs of state

variables, e.g.,

B la +3 - (37)

A .
MRS NP (38)
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where the generator bus power Sg is given by
S =P + 3jQ (39)

and the genérator bus voltage Vg is given by

Vv = |V . 40
g ISILég (40

The modification required to include other control and state

variables can be performed in a straightforward manner.

V. THE ELEMENT-LOCAL LAGRANGIAN APPROACH

In this section, we consider an important application of the
complex Lagrangian concept stated in section III. This application is
concerned with the approach presented in [4] for sensitivity evaluation
of electrical networks. This approach utilizes Tellegen's theorem with
suitable extensions to obtain sensitivity expressions for the network
- elements which allow first-order changes and gradients of functions of
interest w.r.t. control variables to be effectively calculated.

For each element (branch) b, and according to its type, a set of
four complex element variables z is defined describing the practical

state x, and control u_ variables associated with it, x, and u_ denoting

~b ~b b .b
two component column vectors, and
X
~b
z, = ] . (41)
b

The elements of z,_ may constitute complex conjugate pairs and a slightly

different formulation from that of section III is considered here where

*
gb may contain elements of both 4 and T .

The first-order change of a general complex function f of all state
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vectors and all control vectors u, is given by

b ~b

[

5 = 5 (L ox. + f$

: b %% Gub), u42)

b <

where f and f denote the formal derivatives 3f/3x, and af/du_,
~xb ~ub b -b

respectively. The application of Tellegen's theorem results in the

identity
L (nyy 8% + np, 8u) =0, (43)

b

~ ~

where the 2-component complex vectors n X and Tou are linear functions

~ ~

of the adjoint network current variables Ib and voltage variables Vb and
their complex conjugate.

The adjoint network is defined by setting

= Ly
be fxb' (%)
hence, from (42) and (43)
=z (f. - n )7 su (45)
b ~ub ~bu ~b’
from which
df ~
RN e

Now, in the approach [4] described above, only two state variables

§b and two control variables Eb are defined for each element. The

function f must be expressed solely in terms of the xb and ub. In some

~

cases, however, the function f may be expressed basically in terms of

the Xy and uy, as well as other dependent variables fp which, by

The variables p, may be related

themselves, are functions of X, and u b

b’

to xb and Eb through a set of complicated equality constraints so that

the direct expression of Py in terms of Xy and u, may be difficult or
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impossible.
In the following, we show how the complex Lagrangian concept stated
pefore can be applied to handle any number of the complex dependent

variables p, in terms of which the function f may be expressed.

~b
We assume that the b variables e associated with element b are
related to the element variables Zy by the set of npb equality
constraints
h ) =0 u7)

b Zpr Ypr Pp) 70

~

and we denote by Gfb the change in f due to changes 1in Xy Ub and p

b’
hence

8f = ¢ 8f . (48)

Now, we apply the element-local Lagrangian concept as follows. We

write Gfb as

T T T
8fy = fyp 8% + Ty 89, + oy 80y (49)
where fpb denotes af/aeb. Also, we write ng as
shy = Hop 8xp + Hyp Suy + Hpo8ey, = 0, (50)

| T T T T T T
h
where ﬁxb’ gub and @pb stand for (agb/afb) . (apb/ag )" and (agb/agb) .

respectively. Hence

1

sg = - %pb (gx §x, + H 6gb), B1N

b b °*b © ~ub

where Hpb is a full rank matrix.
Substituting (51) into (49), we get

T T
+ (£p = b Hup?) SYp-

T T
§f, = (fxb_}, H )6§

b ob Hxb (52)

b
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where the element-local Lagrange multipliers Ap are obtained by solving

T
ﬁob iob = fpb' (53)

Equations (48) and (52) express, instead of (42), 8f. We therefore

define the adjoint network by setting

~ T
"ox = Syxp 7 Hyp Appe (54)
hence, from (43), (48) and (52)
~ T T
8f = é (fub ~ Mou ” Eub ipb) .GEb’ (55)
from which
df A T
ar - - 6
dub fub Ebu ﬁub ipb (56)

which is the required formal derivatives of f w.r.t. the complex control
variables Eb'
VI. CONCLUSIONS

The far reaching consequences gained by using the compact conjugate
notation have been exploited in formulating the Lagrangian approach in
the complex form. First-order changes and formal derivatives of complex
functions of interest subject to general cbmplex equality constraints
can be'evaluated, directly, while keeping the original compact complex
mode of formulation. Some important applications to power network
sensitivity analysis have been studied. The possibility of defining a
general number of states associated with a branch in the approach of [4]

has been afforded by describing an element-local Lagrangian technique.
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