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Abstract

A unified study of the class of adjoint network approaches to power :
system sensitivity analysis which exploits the Jacobian matrix of the
load flow solution is presented. Generalized sensitivity expressions
which are easily derived, compactly described and effectively used for
calculating first-order changes and gradients of functions of interest
are obtained. These generalized sensitivity expressions are common to
all modes of formulation, e.g., polar and cartesian. A first step
towards deriving these generalized sensitivity expressions is performed
here, in Part I, where we utilize a special complex notation to
compactly describe the transformations relating different ways of
formulating power network equations. This special notation and the
derived transformations are used in Part II to effectively derive the

required sensitivity expressions only by matrix manipulations.
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I. INTRODUCTION

Two kinds of analysis can be distinguished in power system
operation and planning studies. In the first kind, which implies the
load flow solution [1,2] of the power network, the system states are
obtained with the control variables fixed at particular values. The
solution obtained describes the power system steady state behaviour
associated with these particular values of the control variables. The
second kind of analysis deals with variations in control variables and
the resulting effect on either system states or, in general, on a
particular function of interest [3]. This analysis is usually referred
to as sensitivity analysis. The importance of sensitivity analysis has
been recognized [3-5] in power system operation and planning studies to
supply first-order changes of functions of interest and their gradients
required for effective optimization techniques.

The class of adjoint network approaches [4,6] incorporatipg the
method of Lagrange multipliers provides the advantage of using the
transpose of the Jacobian of the load flow problem as an adjoint matrix
of coefficients. When describing adjoint network approaches which
exploit the Jacobian of the load flow problem, the sensitivity
expressions for different elements are derived according to the modg\of
formulation used, e.g., polar or cartesian. Different forms of
sensitivity expressions have been presented for different studies. A
unttied sensitivity study for this class of adjoint network approaches
has not, however, been previously described.

The  impact  of the conjugate notation [7], which describes a
firstnordér changes of general complex functions in terms of formal

derivatives w.r.t. complex system variables provides a useful tool for
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describing a generalized adjoint network sensitivity approach, as
presented in %this paper, where generalized sensitivity expressions are
easily derived, compactly described and effectively used subject to any
mode of formulation. The adjoint matrix of coefficients is always the
transpose of the Jacobian of the original 1load flow problem and,
regardless of the formulation, these generalized sensitivity expressions
can be used.

The first part of the paper, namely Part I, presents the modes of
formulation while Part II of the paper deals with sensitivity analysis.
To illustrate the concepts and justify the relationship between the
different formulas derived, two examples of the simplest 2-bus sample
power system are employed throughout the paper. The formulas derived,
however, are general and can be directly programmed for a general power

system of practical size.

II. NOTATION
We denote by' C and R, respectively, the fiéld of complex numbers

and the field of real numbers. The vector space over C(, of n-tuples

(;1' cees Cn)' Ci ¢ C is denoted by C". Similarly, R" stands for the

vector space over .R, of n-tuples (;1m' cees Cnm)’ m=1, 2 and Cim ¢ R.
Also, we write

- T
S rd o

where % is a column vector of components Ci given by

~

QD)

t =t + 3¢

i i1 (2)

i2’
t .t e, ¢ L. eR, i =1,2 nand j = "1
~10 ~2 ’ 110 i2 v - L  c° J' .

For continuously differentiable complex valued function f (which

possesses partial derivatives w.r.t. all the variables E1 and f?) on an



-4 -

open set @ C ch (8], we define the formal [9] (or symbolic) partial

derivatives

%g 2 %%T - %?; )/2 (3)
and

Mo g%T ‘3 i%; /2, (4)

where * denotes the complex conjugate and af/ag, af/ac*, af/az;1 and

af/ac are column vectors. Note that in formal derivatives, the

2

Cauchy-Riemann differential equations may be written [9] as

2—f*- = 0. (5)

~

~

We consider the nonsingular transformation
’ (6)

where 1n is the identity matrix of order n and

4N (7

Equation (6) may be written in the perturbed form

6;1 1n 1n X4
b 1 ~ ~ 2
= = . (8)
2 .n .n
822) - e
Note that
Sc* = (§z)*, (9)

The first-order change of f is given by

af T
§f = ( v ) 651 + ( — )" 8¢

=1 ~2

(10)



or, using (8),

_ 1., 3f (T af T .n 1., 3f T af T .n %
6f = 2[( EET )= 33; ) J ] GE + 2[( 327-) + ( 33; ) J ] GE » (1)

T denoting transposition. Hehce, from (3) and (4),

f f
af:(%)Ta“(—a—-—)T

2 ¥ Sp¥*, (12)

~

Equation (12) expresses &f in terms of the variations in ¢ and z* using
the formal derivatives 3f/3z and 3f/3c¢* of (3) and (4), respectively.

We remark [9] that the terminology of formal derivatives arises
because of the possibility of obtaining them formally using the ordinary
differentiation rules. The use of the above notation, called [7]
conjugate notation, facilitates the required derivations and provides

compact formulation of equations and sensitivity expressions.

III. BASIC FORMULATION
The electric power network can be represented by a system of node
equations in the form
Yo Vv = Iw (13)
where

Y

-~

+JY (1)

~

T = Y19 T2

is the bus admittance matrix of the power network,
| YM = YM1 + ] YM2 (15)
is a column vector of the bus voltages, and

v = Ing + 3 Inp (16)

is a vector of bus currents.

We write the bus loading equations in the matrix form

o s¥
M IM - ~M' (17)
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where E

M is a diagonal matrix of components of VM in corresponding

~

order, i.e.,

oo ]

M vV = YM, (18)

~

1}

where v is given by

up

. (19)

1 <

L1
and SM is a vector of the injected bus powers given by

Sy 4 Py + J Qy- (20)

Substituting (13) into (17), we get
s*
M T oM

*
EM ZT v 21

The system of nonlinear equations (21) represents the typical load flow
problem, whose solution is required.

The system (21) may be written in the perturbed form

S -8 * S* E* )
§ GYM = 5~M - Ey GZT YM’ (22

~

, * * * *
where GYM’ GYM' GSM and 6¥T represent first-order changes of YM’ YM' §M

and YT’ respectively,
S A %

8 gy 1y (2
and ES is a diagonal matrix of components of IM' i.e.
_._S -
5 v o= EM' (24)
We write (22) in the form
s _ *
5 sYM + ES 5YM = gs. (25)
where we have defined
S A * #*
? = 6§M - EM 6ZT YM. (26)

*
Note that for constant YT' dS of (26) is simply GSM and (25) rigorously
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represents a set of linear equations to be solved in the well-known
Newton-Raphson iterative method.

The form (25) must be adjusted for practical considerations. 1In
practice, one bus is selected as a slack bus of specified voltage.

Hence, the equation of (25).corresponding to the slack bus is replaced

by
T —T * *
kn GYM + kn 6YM = GVn. 27)

~ ~

where we have assigned the last bus, namely the nth bus, as a slack bus,

En = 9 (28)
and
r— —
0
_ 0
En = . . (29)

Observe that in the load flow solution, the equation corresponding to
the .slack bus may be eliminated.

Moreover, a power system usually contains voltage-controlled buses
or generator-type buses. Consider the equation of (25) corresponding to

a generator bus g. Let

s 4 Py + 3 IVl (30)
hence
~%
GSg = ch -] legl. (31)
Since
2P =V I* + V* I, (32)
24 g 8 g 8 i
then
: * * * *
26Pg = Vg ch + Ig Vg + vg 8T, + Ig §Vg - (33)

Using (13), we write I8 as



where yz represents the corresponding row of the bus admittance matrix

hence

Yo
T T
GIg = Zg 5YM + YM GZ . (35)
Also,
5|V sV vaV2 2 (v syt o+ v sV 2|V ) (36)
gl = 80 Vg T g Ylg T g % g!’" 3

~%
Using (33), (34), (35) and (36), it is straightforward to show that 5Sg

of (31) is given by

652 = E; GYM + té GVM + Vg VM Sy /2 + Vg VM 622/2. (37)

where

A * *T % L

Eg = (Vg/2) Zg + [Zg YM/2 - JVg/(2|Vg|)] Mg (38)
and

K & (v s2) yr e Iyt V2 - 3V /IV, D] (39)

~8 g ~8 ~g ~M g g ~8
and where u_ is a column vector of unity gth element and zero other

~8
elements. Using (37), the equation of (25) corresponding to the gth bus

is replaced by

KL sV, + KL sV = d (40)
-8 M~ g " M~ "g’
where
d =68P - js§|V | -V T ay /2 - v T ay*/z. (41)
g g g g M g .M g

We write (25), including (27) for slack bus and (41) for generator

buses, in the fbrm'

- ® ‘
E 6YM + 5 GYM =d. (u2)

. * *

Note that the elements of 6VM and GVM' namely, avi and cvi, i= 1,...4n
*

can be replaced by the relative quantities 6V1/|Vi| and 6V1/|Vi|,

respectively. 1In this case the élements k.j and E.. of the ith row of

the coefficient matrices K and K are replaced by iV |k. . and |V,

k. .
ij NAE

’



-9 -
respectively. Note also that we could equally well specify |Vg|2
instead of |Vg| for a generator bus. In this case |Vg|2. replaces |Vg|

in (30) as a control variable and the required modifications for

subsequent derivation can be performed in a straightforward manner.

IV. MODES OF FORMULATION

In the previous section, we have considered the complex formulation
of power system equations. We shall exploit this forﬁulation to derive
compact forms of sensitivity expressions. In this section, we
investigate, via suitable transformations, the relationship between the
complex formulation and other formulations. This investigation provides
the possibility of formulating the adjoint equations to be solved in the
same mode as the original 1load flow problem. Hence, the available

Jacobian of the load flow may be used in solving the adjoint system.

Transformation for Rectangular Formulation

We define the transformation matrix

*
L, L. TR L
L2 =4 , (43)
~ * 2 .n n
L, L, -
hence
1n jl’l
wH-T - N (uy)
L noy

n denoting the number of buses in the power network. It follows, using

(6) and (15), that



— ar

IS B I | Y
-l (u5)
Yz (Lo L2|m '
hence

r N
VM1 Rl IRV
el el (46)
5 5
17 B (e R | MY

Using the perturbed form (46), it is straightforward to show that

(42) can be written in the form

(Ky + K)o (=K, + KD [8Vy, o
= ’ (47)
-y + K)o (K o+ K {8V, -4
where we have set
and
g = 81 + J 92 . (50)

The 2n x 2n matrix of coefficients in (47), denoted by Kcrt'

constitutes the well-known Jacobian matrix of the flow‘ problem in
rectangular form. Moreover, writing (42) in the form
_ [
[K K] = d, (51)

sV
M
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it follows that

*
Ly Ly
K X1 = (k* K4 . (52)
T -7 *
Ly Ly
where Kq and Kq are formed directly from the Jacobian of (47) as
q _ = . -
§ = (51 + 51) + J(E2 + 52) | (53)
and
| = . ‘ =

Observe that (52) relates the Jacobian of the complex formulation

(42) to the Jacobian of the rectangular formulation (47).

Transformation for Polar Formulation

For polar formulation, we set

V= |Vl L85 1= 1, oaey o, (55)
where Vi are elements of VM' and we define the vectors
r =
1V,
|v| & (56)
LVl ]
and
- =
84
s 41 . . (57)
_ ®n_
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Then, we define the transformation matrix

L.LY

Ls  Ls
P4 <l (58)
- L L

v v

~ ~

* * .
where EG' LG’ Lv and Ev are diagonal matrices whose elements represent

*
the formal partial derivatives aci/avi. aai/avi. alvi|/avi and

#*
a|vi|/avi, respectively, hence

A .
56 = diag {Lsi} (59)
and
A .
EV = diag {Lvi}, (60)
where
Lai = =j/(2 V) (61)
and
*
Lvi = Vi/(2|Vi|) . (62)
The inverse of LP is given by
EG Ev _
ah! = : (63)
% ~%
S
~ ~% o~ ~
where Ls, LG, I_.v and Ev are diagonal matrices whose elements are the

* *
partial derivatives 3V,/36;, AV, /3685, aV;/3|Vy| and aV./3|V,],

respectively, hence

§6 $ aiag (L) (64)
and
E 4 diag {E .}, (65)
-V vi
where
L = jV. (66)

§i
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and
Lvi = Vi/lvi| . | (67)
Similarly to (46), we may write
L L) (v
88 §
- ~8 -8 M .
= . L* V* . (68)
SIY‘ v v 6~M

Using the perturbed form (68), it is straightforward to show that

(42) can also be written in the form

— —
P P B
¢ ®lfe] [ o
= ’ (69)
p Y
-K -K S| V| -d
L~2 ~2..JL ~J ;~2_J
where we have set
p _ P s P
SEBRRR (10
and
=P _ 4P . =P
E = 51 + J I.SZ ’ (71)

and where the matrices Kp and K are related to K and K through the

~

relationship
*
Ly L
(K X1 = kP &) o |- (72)
T -- L L
vV v

The 2n x 2n matrix of coefficients in (69), denoted by Kplr'
constitutes the well-known Jacobian matrix of the load flow problem in

polar form. Observe that (72) relates the Jacobian of the complex

formulation (42) to the Jacobian of the polar formulation (69), where KP

and kP

are formed directly from the Jacobian of (69).
At the end of this section, we illustrate the foregoing concepts by

two simple examples.
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Example 1
Consider, first, the 2-bus sample power system of Fig. 1 which
consists of a load bus and a slack bus. The solution of the load flow

equations (21) is given by

V1 = 0.7352 - j 0.2041
and
82 = 5.6705 + j 1.0706.
Note that 82 is the injected power at bus 2. The matrices 5 and ghof
(51) are given by
(8.0852 - j 12.0097) (-8.4934 + j 13.4802)
i 0 0
and
_ (-5.2623 + j 5.5411) 0
K = .
- 0 1

Hence, uéing cartesian coordinates, the matrix of coefficients of (47)

has, using (48) and (49), the form

(2.8229 -8.1493Y 17.5508 ~13.14802 |
Kcrt ) 0 1 0 0
~ | 6.4686 -13.4802 ~13.3475 8.4934
L o 0 0 1

which is the Jacobian of the load flow problem in cartesian coordinates

when the slack bus equations are included.

For the polar formulation, the matrices LG and Lv of (63) are given
by
- (0.2041 + j 0.7352) 0

0 J
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and

(0.9636 - j 0.2675) 0

1 35 snil ]
"

0 1

Hence, using (58), (63) and (72), the matrices kP and kP are given by

p (13.4802 + j 8.493Y4) (-13.4802 - ] 8.49314).T
K" =
~ 0 -
and
—_
K*¥ = ’
- 0 1
J
from which the matrix of coefficients of (69) has the form
13.4802 ~13.14802 -1.9745 -8.4934 |
Kplr i 0 0 0 1
- -8.4934 8.493Y 9.8031 -13.4802
| o 1 0 0

which is the Jacobian of the load flow problem in polar coordinates when

the slack bus equations are included.

Example 2
Now, consider the 2-bus sample power system of Fig. 2 which
consists of a generator bus and a slack bus. The solution of the load
flow equations (21) is given by
8§, .= -0.1995 rad,
Q, = 1.9929

and

52 = 4.2742 - j 1.7131.
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The matrices K and K of (51) are given by

~ ~

(2.3920 - 3 9.4199)  (-4.4300 + j 8.2864) |
o 0 0 |
and
| (2.1938 + j 8.4398) (=4.4300 - j 8.2861) ]
= 0 1 )

Hence, using cartesian coordinates, the matrix of coefficients of (47)

has, using (48) and (49), the form

[ 4.5858 -8.8600 17.8597 ~16.5729 |
ert 0 1 0 0
= 0.9802 0 -0.1982 0
o 0 0 1]

which is the Jacobian of the load flow problem in cartesian coordinates

when the slack bus equations are included.

‘For the polar formulation, the matrices EG and iv of (63) are given

by — =
~ (0.1784 + j 0.8822) 0
I LG =
and
8 . n
~ (0.9802 -~ j 0.1982) 0
LV =
- 0 1
— J

Hence, using (58), (63) and (72), the matrices kP and K’ are given by

16.5729 -16.5729
®P -
~ 0 ~j
and
. 0.9556 - j 1.0 —8.8600"]

K" = '
- 0 1 J



- 17 -

from which the matrix of coefficients of (69) has the form

(16.5729 -16.5729 0.9556 -8.8600]
0 0 0 1
Kplr -
~ 0 0 1 0
o 1 0 0
—

which is the Jacobian of the load flow problem in polar coordinates when

the slack bus equations are included.

V. CONCLUSIONS

We have utilized a special complex notation to effectively derive
and compactly describe transformations relating different modes of
formulation of power network equations. These transformations are
necessary to derive generalized power network sensitivity expressions
which are common to all ‘modes of formulation. Hence, the Jacobian
matrix of the load flow solution may be directly used. The derived
transformations reléte both cartesian and polar forms to the basic
complex form and include all types of buses in practice. Flexibility of
different definitions of practical variables in the equations has been

discussed.
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bus 2 =6—3 bus 1 ——5_s
I Y12 6-320 Sl 5-j3
=1.0/0

L TR TR T T T R T ETETEEE EETET T ETETETETETETETETTT T

Fig. 1 2-bus load-slack sample power system
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P =4
Ibus 2 ’ y12=6—j20 " bus 1 4————-@
V,=1.0/0 |v}=0.9
Y0733 ¥10732

AT E TR TR RO TR T

Fig. 2 2-bus generator-slack sample power system
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