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Abstract

Generalized sensitivity expressions for’ calculating first-order
changes and gradients of functions of interest in different power system
applications are derived. We utilize the special complex notation and
the transformations between different modes of formulation described in
Part I of the paper to compactly derive the required sensitivity
expressions. These generalized sensitivity expressions are common to
all modes of formulation, e.g., polar and cartesian, common to both real
and complex functions and common to all real and complex variables
defined in a particular study. The Jacobian matrix of the load flow
solution by the Newton—Raphsqn method is used ﬁo define the adjoint

system of linear equations required to be solved.
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I. INTRODUCTION

Sensitivity analysis in power system studies [1] attempts to
determine (or to estimate) the effect of variations in control variables
defined in a particular study on performance functions of interest.
According to the type of study performed, variations in control
variables can be either pre-specified or post-determined. In
contingency studies, for example, the effect of pre-specified variations
in control variables such as line admittances and generator powers on
system states and other performance functions is determined. This
effect is usually estimated using first-order changes supplied via a
suitable sensitivity analysis.

In power system studies seeking optimal solutions [2] subject to
system constraints, e.g., the economic dispatch and minimum loss
problems, post-determined variations in control variables from the base
case or a starting point are required. These variations are obtained
using suitable constrained optimization techniques to which the
gradients of performance functions as well as constraints are supplied.
These gradients must be calculated in an efficient way using a suitable
sensitivity analysis.

A first step towards a generalized édjoiﬁt network approaéh to
power system sensitivity analysis and gradient evaluation has been
accomplished in Part I of the paper. Different modes of formulation
have been described and transformations to a standard complex mode have
been derived.

The  standard complex mode of formulation utilizes the conjugate
notation to compactly describe the perturbed power network equations.

The complex mode will be used to derive the generalized sensitivity



expressions in an efficient, straightforward and compact way. With the
aid of the transformation formulas derived in Part I, expressions
relating the solution of adjoint systems corresponding to different
modes can be derived. Hence, the user may solve the adjoint system
exploiting the Jacobian of the load flow already available and then
obtain the required first-order changes and derivatives of real or
complex functions from the generalized sensitivity expressions derived

in this part.

II. BACKGROUND
In part I of the paper, we have shown that the set of linear
equations to be solved in the well-known Newton-Raphson iterative method
can be written compactly in the complex form

SV

M
[K K] =d , (1)
- -
Yy
where
K=K, +JK,, | (2)
K=K +J3K, ' (3)

are n x n complex matrices, n denoting the number of buses of the power
network,

V, =V .+ 3V

~M ~M1 ~M2 (4)

is a column vector of the bus voltages, & denotes first-order change, ¥
denotes the complex conjugate and
d=d, +3jd (5)

~1 2

13 a vector containing perturbations of control variables of the power

system,



Using cartesian coordinates, (1) has the form

o | S d
K°r = , (6)
Vo -4

t which constitutes the

where the 2n x 2n matrix of coefficients Kcr
Jacobian matrix of the load flow problem in rectangular form is given
from (47) of Part I.

Using polar coordinates, (1) has the form

648 ‘d1
1lr - -
kP = , (7
§| V| -d, |

where & and | V| are vectors of phase angles and magnitudes of V, of w)
and the 2n x 2n matrix of coefficients gplr which constitutes the
Jacobian matrix of the load flow problem in polar form is given from

(69) of Part I.

ITI. SENSITIVITY CALCULATIONS
In this section, we derive the required sensitivity expressions
using the compact complex form (1). We exploit the relationships_
derived in the previous section to provide flexibility iﬁ solving the

resulting adjoint system of equations in other modes of formulation.

Standard Complex Form

We write (1) in the fdrm

K K \' d

~ ~ 6....M ~
= . (8)

* * * *

K K sV d



It can be shown [3] that the matrix of coefficients of (8), denoted by

K CmPp

, has the same rank as that of (6) and the system of equations (8)
is consistent if and only if the system (6) is consistent.
For a real function f, we may write, using (12) of Part I,

sV

M
~ A* ~
6f = b y 1] v ef, (9)
~ ~ * [o]
GYM
where we have defined
u é—:%— (10)
~ M
and used
*
g\f; = ( af* ) . (11)
~M 3V ‘

Gfp denotes the change in f due to changes in other variables in terms

of which f may be expliditly expressed. Hence, from (8)

— -1
K K d

~ ﬂ* ~ ~
§f = [uT u T] + &f (12)
~ o~ —* * * p
K K d
or
d
~ A* ~
st = VI v + §f (13)
~ ~ * (o]
d
where
T —*T\[ 7 ~
K \') n
= (14)
—T  *T || ~» ~%



or, simply

>

(15)

—
=~
=~
—
1]
1 E

Hence, the first-order change of the real function f and corresponding

gradients can be evaluated by solving (14) and substituting into (13).

Cartesian Coordinates

Similarly to (9), we may write, using the rectangular formulation

np g, | DML
§f = [Er u ] + 5fp . (16)
Vo
where we have defined
. 4 %g_ (17)
- M1
and
~ A af
B == . (18)
~S aYMZ
Hence, from (47) of Part I
N 4
§f = [V Vo] + 6 (19)
~r s -4 o
2
where
a ko' ek [
t1t0 AR r

. ()

N — T
(KK (=K 4K ) v

~l ~3



Observe that the matrix of coefficients of (20) is the transpose of the

Jacobian matrix of the load flow problem in rectangular form (6).

Theorem 1

(a) The solution vectors Vr and Ys of the adjoint system of equations

(20) are given by

Vi = 2 Re{Y}
and
Y.S = 2 Im{Y} .

~

where V is given from (14),

A

(b) The RHS vzactors u_ and gs of the adjoint system of equations (20)

~

are given by

wo=Low, +Lyug,

where ff is given by (10) and L, and L, are given by (43) of Part I.

Proof

Comparing (13) and (19), and using (5), we get

~

Y = (Vr + ] YS)/2 . (21)

~

From (21), the first part of the theorem is proved. Now,
multiplying (20) from the left by the transpose of L9 of (43) of Part 1

and using the relation



=T - T qT _q*T .
Ky + K)o -, + K K™ K T3
2 = . (22)
7 3T = T =qT q¥*T .
(=K, + K" (K, + Ky) K™ K T3
it follows from (52) of Part I and (21) that
T =*T|[| T T\
K K v Lo Lol
= , (23)
—T *T ~* *T *TI°
K K v Ly LM
hence, from (14)
A T T -
» E1 EZ Pr
~%| = L*T L*T ~ (24)
|4 ~1 ~2 Us
or, simply
M
~ r
TR
AL @5)
Us

The relationship (25) coﬁld also be derived by applying, formally, the
chain rule of differentiation uSing the definitions (10), (17) and (18).

Observe that equation (21) relates the sélution of the adjoint
system (20) to that of (15), and equation (25) relates the RHS of (20)

to that of (15).



Polar Coordinates

Using the polar formulation, we may write

88
of = [yl il + sf (26)
I L °
where we have defined
4 af | 27)
~0 38
and
Lo af 2
uy i (28)
Hence, from (7)
d,
§f = [V V'] + &f (29)
~8 ~V -d o
2
where
PT PT . ~
Ki % Vs Usl|
. = . (30)
—PT . —=PT o ~
51 _52 !v Hy

The matrix of coefficients of (30) is the transpose of the Jacobian

matrix of the load flow problem in the polar form [4].

Theorem 2

(a) The solution vectlors and Vv of the adjoint system of cquations

P <<

(30) are given by

YG = 2 RG{Y}
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and

~

where V is given from (14).

(b) The RHS vectors {1

g and @v of the adjoint system of equations (30)

are given by

Ho=Llgug v Long o

where {I is given by (10) and Lg and L are given by (59) and (60)

of Part I.

Proof

Comparing (13) and (29), and using (5), we get

Y = (V6 +J Yv)/2 . (31)

~

From (31), the first part of the theorem is proved. Now, multiplying
(30) from left by the transpose of Ep of (58) of Part I and using the
relation

PT PT PT P#*T

Ky K5 KooK T

2 - , (32)
—] ] —_ —p ¥
i B ol ol

it follows from (70) of Part I and (96) that

T —*T| ([ 7 T | T -
S5 Bs Ly || v
= . (33)
— * ~ * 0
KT K T v L T L T u
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hence, from (24)

4 Ly L || ¥
I ) I | (34)
4 Ly Ly Yy
or, simply
u
~ ~6
w=t oL B (35)
D~ ~G ~V ~ '.
My

Again, the relationship (35) could also be derived by applying,
formally, the chain rule of differentiation using the definitions (10),
(27) and (28).

Equation (31) relates the solution of the adjoint system (30) to

that of (15), and equation (35) relates the RHS of (30) to that of (15).

Remarks

We remark that using (21) or (31), the adjoint system can be
formulated and solved in a convenient mode, preferably the same
formulation as the original load flow problem, while the first-order
change of f and corresponding gradients may be derived compactly using
the adjoint variables g. On the other hand, the relations (25) and (35)
allow the use of more elegant formal derivatives which, in many cases,

facilitate the formulation. For example, consider the function

2

. _ * *
£ = olVy = V% = oV VDV -V, (36)

]
where Vi and Vj are the ith and jth components of VM' respectively, and
o is a real scalar or variable. Note that f of (36) may represent, for

example, the power loss in line ij. For the polar formulation, ﬁv and

-~

Hg of (30) are calculated as follows. The ith and jth components of ﬁ&



and ﬁv.are given by

Bgy = ol-2 (|Vi[ cos §, - Ile cos Gj) |Vi| sin 6,
. _ . v ’
+2 (V.| sin 6, |Vj| sin Gj) |V, | cos 6i]
Mgy = ol 2 (JV,| cos 8, - |Vj| cos Gj) |le sin cj
-2 (|V,| sin &, = |V,| sin §.) |V,| cos 5.7,
i i J J J J
Wy = ol 2 (IViI cos &, - IVJI cos Gj) cos 8§,
+2 (|V,| sin &, - |V,| sin §.) sin §.]
i i J J 1
and
Uys = ol 2 (JV,| cos 8, - |Vj| cos Gj) cos §
-2 (|V;]| sin &; - le| sin Gj) sin Gj].

All other components are zero. On the other hand, one may calculate

i o ]

* *
w, -V,
1 J

CE
n
Q
.
-

* *
-V, = V)
1 J

0

— -

and use (34) to calculate g and gd’ where (Isz)"1 is the transpose of
(I:.p)_1 of (63) of Part I. In this example, the derivation of the formal
derivatives is clearly easier.

We also remark that other forms of power flow equations can be
handled in a similar way . The previous theorems can be easily
generalized for other formulations provided that transformations similar

to (43) and (58) of Part I are defined.

We illustrate the foregoing concepts by t{he two simple examples



considered in Part I.

Example 1

- 13 -

For the first system as shown in Fig.

solution is given by

and

1 of Part I,

0.7352 - j 0.2041

the load flow

52

So

is the injected power at

The Jacobian matrix of

(8.0852-3j12.0097)

[K K] =

0

bus 2.

5.6705 + j 1.0706.

the complex form (1) is given by

(-8.4934+13,4802)

of the cartesian form (6) by

and of the polar form (7) by

[ 2.8229

crt 0

6.4686

0

13,4802
0

KPLr -
~ -8.493Y

0

—

(-5.2623+j5.5411) 0

0 1
-8.4934 17.5508 -13.4802 |
1 0 0
-13.14802 -13. 3475 8. 14934
0 0 1 J
-13. 4802 -1.9745 -8.4934 ]
0 0 1
8. 4934 9.8031 -13. 4802
1 0 0 N

Now, consider the function

f = |V1I2:V

From (10),

0.7352 + jO.2041
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and (15) has the solution

0.0562 + j0.0892

r<<>
"

1.6788 + jO.0

Also, for the polar formulation, we have from (27) and (28)

~

g = O
and
2|V, 1.5261
ﬁ = = ,
v 0 0
and (30) has the solution
~ 0.1123
VG =
- 3.3577
and
~ 0.1783
VV =
~ 0

~

Note that the V_ and Vv obtained for the polar formulation and V satisfy

§
(31).

Example 2

For the second system as shown in Fig. 2 of Part I, the load flow

solution is given by

84 = -0.1995 rad,
Q, = 1.9929
and
52 = 4,2742 - 31.7131.
The Jacobian matrix of the complex form (1) is given by
« 7] 2.3920-39.4199) (-4.4300+j8.2864) (2.1938+38.4398) (-4.4300-38.2864)

0 0 0 1
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of the cartesian form (6) by

crt

and of the polar form 7 by

Kplr _

Now, consider

From (10)

(14,5858 - 8.8600
0 1
0.9802 0
o0 0
[16.5729 -16.5729
0 0
0 0
L 0 1
the function
-1
f = 61 = tan
R '-j/(2v1)'
= =
~ 0

and (15) has the solution

1 <>
"

17.8597
0

- 0.1982

0.9556

[0.1101 - jO.5u445

0

[0.0302 - j0.02881

0.2673 + jO.5

-16.5729—
0

0

Also, for the polar formulation, we have from (27) and (28)

and

Ec[

1 O

1

0

|
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and (30) has the solution
~ 0.0603
v=[ }
~8 L o.5346

~ —0.0577
Vv = .
~v 1.0

Observe that the obtained VG and Vv for the polar formulation and V

and

satisfy (31).

IV. GRADIENT CALCULATIONS

In the previous séction, we have derived the adjoint systems in
different modes of formulation and investigated the relationships between
the corresponding excitation and solution vectors. In power system studies
such as contingency analysis, the first-order change of f is of prime
interest. The first-order change &f can be calculated from (13), (19) and
(29). On the other hand, the derivatives of f w.r.t. control variables are
required to be calculated, for example, in planning studies.

In the following, we consider the buses to be ordered such that
subscripts &¢=1, 2, ..., n  identify load buses, g = n +1, ..., n  + nG

L L L

identify genérator buses and n = n, + nG+1 identifies the slack bus.

L
The vector d of (1) is now partitioned into subvectors associated with
the sets of load, generator and slack buses of appropriate dimension in the

form

(37)
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where dL has elements dz given from (26) of Part I by

d st oyt T (38)
g T80 T Yy M 8y

YI representing the corresponding row of the bus admittance matrix ¥T' dG

*
has elements dg given by (41) of Part I and dn is 6Vn from (27) of Part I.

Also, the vector V of (13) is partitioned correspondingly in the form

A

~ 1V
Y = Y.G . (39)
'}
n

Note that the above formulation leads to expressing the vector g solely
in terms of variations in control variables, the gradients in terms of which

. can be obtained by writing (13) in the form

~ "~ ~ T
LT T at
8f = V) dp o+ Vg dp+ Vpd) + G 8

*¥T
SHT # TET % i 3f *
+ YL gL + YG SG + Vndn + (—5-5) 6& . (40)
The first term of (40) is given, using (38), by
n
~ L ~
\' T d = z V d
~L 2L L L
. 1=1
5 "Lon ., |
= ¢ (V 8)- ¢ 3 (V V V §Y ), (41)
g =1 L L =1 m=1 g m Lm

where Yzm is an element of YT' which is assumed, for simplicity, to be a

symmetric admittance matrix, or
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o *
(v v v , (42)
[ T ) cyzo)

|
n o s

=1

where yzm denotes the admittance of line gm connecting load bus g with bus m
(=2, g or n), and yzO is the shunt admittance at bus &. The second term of

(40) is given, using (41) of Part I by

~ n—1 ~
o 4=z d
- = g:nL+1 g 8
n-1 -~
=z V (6P - 38|V _|)
g=n +1 g
L
n-1 n %
- I : V_Re {V V sY 1} 43)
g=n +1 m=1 g g m-&n
L
or
I\T n-1 ~ n-1 n ~ *
YG SG = _z ' (5Pg-35|vg|) + _Z § V_Re {Vg(Vm—Vg) Gygm}
g=n +1 g=n.+1 m=1
L L
mzg
1'1—1 ~ *
- 1 V Re {V_V_ sy .}, (4y)
g:nL+1 g g "o

where ygm denotes the admittance of line gm connecting generator bus g with
bus m (=%, g of n), and ygo is the shunt admittance at bus g. The third
term of (40) is given, using (27) of Part I by

~

~ *
V d =V §v . (45)
n n n n
The fourth term of (40) is simply the first-order change of f due to changes
in other variables p in terms of which the function f may be eXplicitly

expressed.
Equations (42), (44) and (45) provide useful information for gradient

evaluation since they provide direct expressions w.r.t. the control

variables of interest. The derivatives of the function f w.r.t. the control
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variables are obtained as follows, where we temporarily assume that p does

not contain such control variables.

Load Bus Control Variables

From (42) and its complex conjugate, the derivatives of f w.r.t. the

*
demand SQ and Spv at load bus & is given by

df Sk
i VL (46)
2
and
Qﬁi =V . 47)
2
ds
2

Generator Bus Control Variables

From (44) and its complex conjugate, the derivatives of f w.r.t. the
real generated power Pg and the voltage magnitude |Vg| at generator bus g

are given by

ar . y* (48)
ds g :
g
and
A=v , (49)
g
dS

~

Sg is given by (30) of Part I, namely

S =P + j |V | . (50)

Slack Bus Control Variables

From (45) and its complex conjugate, the derivatives of f w.r.t. the

*
slack bus voltage Vn and Vn are given by

~ %
%"-;— = v (51)
n
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and

df o :
——¥‘= Vn . (52)
an

In practice, the phase angle of the slack bus voltage is set to zero as
a reference angle. Hence, the slack bus has only one effective real control

variable.

Line Control Variables

The derivatives of f w.r.t. line control variables yij\ can be obtained
from (42) and (44) and their complex conjugate as follows. For Yoot

between load buses & and &, we have from (42) and its complex conjugate

df W vV v v W -V (53)
dy ~ = “p oa T ot el ')
¥}
and
daf ok Bl ~ % * *
d_;_ - (VR, VR, - Vf,\ VR,\) (VR,\ - VZ) . (5”)
You

For Y0 between load bus & and ground, we have from (42) and its complex

conjugate
df ° *
— ==V V Vv (55)
dyzo [ A}
and
~ *
—(lg— = - V* v Vv . (56)
dy [ A
20

~ For ygg‘ between generator buses g and g , we have from (44) and its complex

conjugate

' *
Vo) (V= V) (57)
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and
df ~ ~ * *
dy. . Vg1 Vg = Vg1 Vg g 8 '
gg
where
vm = Vm1 + vm2 (59)

and m is a bus index. For ng between generator bus g and ground, we have

from (44)

~ #*
af _df _ _v v v . (60)

dy * gl g '8
g0 dng

For yng between load bus £ and generator bus g, we have from (42) and (44)

and their complex conjugate

df 2 ® o ¥
—_— = (V__ V_ -V vV -V 61
dy, g1 Vg =V V) Wy = Vg (o1
g
and
daf o * * *
— = (V_ - -V) . 62
: (vg1 Vg = Yy v, g) (62)
ymg

~ For ynn between load bus & and the slack bus n, we have from (42) and its

complex conjugate

~ *
ddf =V V(U V) (63)
yzn 2 2 2
and

df _ ~ % * *

- VoV, ) (64)
y

en

Finally, for ygn between generator bus g and the slack bus n, we have from

(44) and its complex conjugate

v v (W V) (65)
Vgn 81 8 g
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and

vV ey . (66)
gl 'g "'n"'g

Special Considerations

If p of (40) contains some of the above control variables, the partial
derivatives of f w.r.t. appropriate control variables must be added to the
expressions obtained.

When any of the control variables u_ is a function of some real design

k

variables we write

au

o = 1 Meyq (67)

s
where Tyi is the ith design variable associated with uy and Acki denotes the
change in Ti® Hence,

au
df _df _k (68)

doy; — duy 3ty

The control variables associated with other powér system components,
e.g.,jtrahsformers, which are represented in the bus admittance matrix ¥
can be easily considered. The corresponding sensitivity expressions may be
derived in a similar straightforward manner.

Equations (46)-(49), (51)-(56) and (60)-(66) compactly define fhe
required formal derivatives of the real function f w.r.t. complex control
variables. In practice, gradients w.r.t. real and imaginary parts of the
defined control variables are of direct interest. These gradients are
simply obtained from

ar_ ar_
= 2 Re {du } (69)
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and

df
duk

df
= =2 Im {5—1 , (70)
2 duy

where the compléx control variable u_is given by

k

up = Upg + Jj U5 - (71

Table I summarizes the derived expressions of function gradients w.r.t.

real control variables of practical interest.

Example 3

~

Using the values of V obtained, we have for the first system

ar =2V, =0.1123 ,
af  _ . o .
a - 2V, =0.1783 ,
df -
'av—"— = 2 V21 = 3.3577 ,
Vo1
df 22
5 = 2|V,|° Vv, = 0.1038 ,
10
4f 5 Re {V.V. (V.-V.)} = -0.0192
dG 171 Yo . '
12
and
df _ ook _
W, -2 Im {V,V] (V,-V )} = -0.0502 ,

where Gmm‘ and Bmm‘ denote, respectively, the conductance and susceptance of

line mm" connecting buses m and m", m =0 denotes the ground.
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Example 4

For the second system, we have

af o
o 2V, = 0.0603 ,
af .5
v - 2V, = =0.057T7 ,
df ~ '
A ov., - o0.53u6 ,
av,. 21
df
— = 0.0 ,
dB,
df _ . 3 * -
G— =2V, Re {V, (V,=V.)} = 0.0044
12
and
Af _ 59 m (v*V.} = -0.0108
dB 11 1'2 . .

The gradients obtained can be easily checked by small perturbations

about the base case values.

V. SENSITIVITY OF COMPLEX FUNCTIONS

In the previous sections, we have derived the required sensitivity
expressions and gradients for a general real function. The relationships
between different modes of formulation have been investigated and
expressions relating the RHS and solution vector of corresponding adjoint
systems have been derived.

The sensitivities of a general complex function can be obtained using
the previous formulas derived simply by considering the real and imaginary
parts separately. In this case, only the RHS of the adjoint system of
equations has to be changed. In other words.‘ only one forward and one

backward substjtutions are required for each real function, provided that
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the LU factors of the formed matrix of coefficients are stored and that the
base case point remains unchanged.

In this section, we show how the  compact complex formulation can be
exploited to formulate the adjoint system corresponding to a general complex
function and to derive the required sensitivities. The relationships
between different modes of formulation are again investigated for the
complex function case.

For a complex function‘f, we may write, using (12) of Part I

sV

M
T T
sf = [y 7] + §f . (72)
~ ~ % p
8V
where we have defined
& %g__ (73)
- M
and
P (74)
3V

Gfp being the change in f due to changes in other variables in terms of

which f may be explicitly expressed. Hence, from (8)

K X d
}\T e
sf = [nt 3% + of (75)
~ ~ —%* * * Y
K K d
or
d
st = v 1) +8f (76)
~ ~ * p
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where
SRS an
SR

which represents the adjoint system of equations to be solved. The

first-order change of the complex function f can be evaluated by solving
(77) and substituting into (76).
The relationships between the adjoint solution of different modes of

formulation are derived as follows. Let

f = f1 + J f2, (78)

hence
§f = &f, + sf2 , (79)
and let yl and Y; be the solution vector of the adjoint system (20) using

cartesian coordinates for the real function f1. Similarly, let Vi and Vi be

the solution vector of (20) for the real function f Hence, using (19) and

o

(76), one may write

~T =T * 1T ST L 02T ~2T
Vid+ Vid = (Yr dy - Y §2) + W dy = Yy 92)' (80)
hence, from (5),
Vel vy e e st s v e (81)
~ ~r ~S ~S ~r
and
V= s vz e v « v 2. (82)
~ ~r ~3S ~3 ~r

Equations (81) and (82) relate the solutions of the adjoint system (20) for

to the solution of (77) for the complex function f.

Similarly, let V; and Y1 be the solution vector of the adjoint system

\'
2 2
§ v

both f1 and f2

(30) using polar coordinates for the real function f1. Also, let V_ and V

be the solution vector of (30) for the real function fse Hence, using (29)
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and (76), one may write

()

°T T.* _ 1T ST ., 2T ~2T
Vid+ Vido = (Vem dy = Vo7 dp) + 3OV dg = VT dy), (83)
hence, from (5)
V= -v3ye .50« v3y e (84)
~ ~68 ~V ~V ~6
and
V=0l sv32 s v « vV e, (85)
~ ~6 ~V ~V ~6
Equations (84) and (85) relate the solutions of the adjoint system (30)
for both f, and f_, to the solution of (77) for the complex function f.

1 2

For gradient calculétions, we proceed as before and use the partitioned

forms (37), (39) and

1<) >
"
<

and we write (13) in the form

§f =V, d + V

dn + (33) GE
f .\T
(2—;) 8p.
ap -

(86)

(87)

The first, second and third terms of (87) are given by (42), (44) and

(45) respectively. The fifth term of (87) is given, using (38), by

nL n

ﬁT * (: ) L n ( * *) *

d = I V 6S + I r V. V (V -V Sy
~L < e=1 2 '3 2=1 m=1 L 2 m 2 Lm

m£e,
, % Vv V* *
- §1 g ' 'y Vg0t
2‘—

(88)
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Also, the sixth term of (87) is given, using (41) of Part I by

n-1 n-1 n

AT % 2 ) 2 *
Vid. = V (6P + J§|V _|) + z z V_Re{V_(V -V ) gy }
~G ~G g:nL+1 g & g g:nL+1 m=1 & g m & gn
m#g
n=1 *
- I V Re{V_V_ sy .} (89)
g:nL+1 g & g0
and the seventh term of (87) is given, using (27) of Part I by
S 2 (9
n dn = Vn GVn . 90)

Equations (42), (44), (45), (88), (89) and (90) provide useful
information for gradient evaluation of the complex function f w.r.t. the
control variables of interest. Under the assumption that o does not contain
such control Avariables, the derivatives of the complex function f are

obtained as follows.

Load Bus Control Variables

. *
From (42) and (88), the derivatives of f w.r.t. the demand Sm and Sl at

load bus g is given by

df _ <
i Vl (91)
L
and
22; = VR . ' (92)
dsz

Generator Bus Control Variables

From (44) and (89), the derivatives of f w.r.t. the generator control

variables are given by



df =
—_ =V (93)
~ g 3
ds
g
and
df -
" Vg (94)
ds
g

~

where Sg is given by (50).

Slack Bus Control Variables

From (45) and (90), the derivatives of f w.r.t. the slack bus voltage

*
Vn and Vn are given by

af v (95)
dqv
n
and
Le=v . (96)
av_

Line Control Variables

The derivatives of f w.r.t. line control variables yij can be obtained
from (42), (44), (88) and (89) as follows. For ylz‘ between load buses %

and ¢, we have from (42) and (88)

df ~ #* ~ *
Gy = Wy V= Vs V) (s = v (97)
e .
and
dr Z Z * * :
= - N N N - (
d'* = (Vl VE VQ Vm ) (VL Vl) . (98)
You
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For Y, 0 between load bus % and ground, we have from (42) and (88)
- df o *
-_— ===V VvV V (99)
4y, 0 L A
and
2 *
AL Yoo, (100)
dy L L R
20
For ygg.between generator buses g and g , we have from (44) and (89)
U VW - (e T WL - V) (101)
dygg‘ . € g g g g g g g g
and
A LW T, = (e + T T = v (102)
dy__« ~ 2 g g g g g8 g g
gg :
For ygo between generator bus g and ground, we have from (44) and (89)
df df 1,0 = *
_— = = - = (V I vyv . (103)
dy * 2 (Vg + V) Vgl 3
80 dyg

For ylg between load bus g and generator bus g, we have from (42), (44),

(88) and (89)

S AP R A I e T TR (104)
dyl g g 8 [} [} g
g
and
df 1 7 2 2 * *
10 _ _ ) 10

= [3 Wy + V)V =V V) (v - V) (105)
Yog

For Yen between load bus ¢ and the slack bus n, we have from (42) and (88)

A
dyln = Vz Vl (vn_VQ) (106)
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and

daf ad * %
==V Vo V-V (107)
dy L L

aLn

Finally, for ygn between generator bus g and the slack bus n, we have

from (44) and (89)

df 1y sV v (V) | (108)
dy 2 g g’ '8 n'g
gn
and
df 1,5 = L
= = (V vV =V . 10
g;g.— 2(g+g)Vg(Vn g) (109)
gn
Remarks

If p of (87) contains any of the above control variables, the partial
derivatives of f w.r.t. appropriate control variables must be added to the
expressions (91)-(109).

Equations (91)-(109) compactly define the required formal derivatives
of the complex function f w.r.t. complex control variables. The gradients

of f w.r.t. real and imaginary parts of the control variables are obtained

using
g _gde g (110)
k1 k du
k
and
d
— (4 4y, (111)
k2 k duk

where u, is given by (71).

Expressions of forms (110) and (111) can be directly obtained from

(91)-(109).
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Example 5

Now, we consider the first 2-bus system and the complex function
f=V, =V + J V12.
Using cartesian coordinates, the adjoint system solutions for V11 and V12

are given, respectively, by

~ 0.0883
Vo= ,
~ 2.3144 |

~ —
A1 0.1161
Vo= ,
~S 0.2041

- J

— 4 8—~
. 0.042
vf -
~ 0.1117

_ J

and

. -0.0187
v ,
~ 0.7352

hence, from (145) and (146)

0.0535 + j 0.0794

V =

- 0.7896 + j 0.1579
and

. [0.0348 - j 0.0366

V =

~ 1.5248 - j 0.0462

The derivatives of f w.r.t. control variables are calculated, using the

derived expressions, as follows. For 31,

—— =V, = 0.0348 - j 0.0366
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and

=V, = 0.0535 + j 0.0794 ,

hence, from (174) and (175)

df  _ . :
§p— = 0.0883 - j 0.0428

and
df _ 0.1161 - j 0.0187.
dQ1
For V2,
daf = .
av; = V2 = 1.5248 - J 0.0462
and
A =V, = 0.7896 + j 0.1579,
dv
2
Ihence, from (174)
9f . 5,318 4+ § 0.1117.
av
21
For y1o.
9f - v %V, = - 0.0311 - j 0.0462
dy 1 1
10
and
= - v,1? V. = - 0.0203 + j 0.0213,
910
hence, from (174) and (175)
df
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and
9f . 0.0676 - j 0.0109.
dB
10
For Yip0
9f 0 v* (ol = - 0.0080 i 0.0231
dy., -1 "1 27" = =Y +J 0.
12
and
2 * *
4L =V v, wy-vD) = - 0.0022 - j 0.0127,
44,

hence, from (174) and (175)

-df
dG12

- 0.0102 + j 0.0104

and

Eg_f_ - 0.0358 - j 0.0059 .
12 ~

VI. CONCLUSIONS

We have derived and tabulated generalized power network sensitivity

expressions useful for calculating first-order changes and gradients of

functions of interest. The use of these generalized sensitivity expressions

requires only the solution of an adjoint system of 1linear equations, the

matrix of coefficients of which is simply the transpose of the Jacobian

matrix of the load flow solution by the Newton-Raphson method in any mode of

formulation. These generalized sensitivity expressions are applicable to

both real and complex modes of performance functions as well as the control

variables defined in a particular study.
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TABLE I

DERIVATIVES OF A REAL FUNCTION f W.R.T. CONTROL VARIABLES

Control Variable

Description

Derivative

B
ge
g0
g0

Geg

18

demand real power
demand reactive power
generator real power

generator bus voltage
magnitude

real component of
slack bus voltage

conductance between
two load buses

susceptance between
two load buses

shunt conductance of
a load bus

shunt susceptance of
a load bus

conductance between
two generator buses

susceptance between

. two generator buses

shuht conductance of
a generator bus

shunt, susceptance of
a generator bus

conductance between a
load and a generator
buses

susceptance between a
load and a generator
buses

oA * ~
- =2 I V .V =V
m{ ( g1'g

-~ % ~ *
V-V VW -V)
2 Re{(vl , VoY, )( oV }

2 i Vv v Ho v 0
T AU N T Y

2A

- Vv

2 Ivll L1

2
2 |V£| V12

A %o *
V-V ., VONV =V
2 Re{(Vg1 g_vg Vg ) ( g g)}

*
LV OV =Y
g 1'g ) ( & g)}

2
-2 |V v
Vgl ® Vg,

SR e
2 Re{(V81Vg—VmV£)(V£—Vg)}

~ L 2ol
-2 Im{(Vg1Vg—VmVl)(V2—Vg)}




- 37 -

Control Variable Description Derivative
f ~®
Gzn conductance between a 2 Re{V V (Vn_vz)}
load and slack buses 1e
~ %
an susceptance between a -2 Im{VIVE(Vn—Vn)}
load and slack buses
~ *
-G conductance between a 2V Re{V _(V_-V )}
1
en generator and slack & g n 8
buses
B v *V
an susceptance between a -2 Vg1 Im{Vg n}

generator and slack
buses
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