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AUTOMATED NETWORK DESIGN WITH OPTIMAL TOLERANCES
J.W. BANDLER and P.C. LIU

Abstract A new approach to network design to obtain optimal parameter
values simultaneously with an optimal set of component tolerances is pro-
posed. An automated scheme could start from an arbitrary initial
acceptable or unacceptable design and under appropriate restrictions
stop at an acceptable design which is optimum in the worst case sense

for the obtained tolerances.
I. INTRODUCTION

It is the purpose of this paper to present a new concept in
the network design and tolerance selection problem. The concept of a
"floating and expanding polytope' suggests that the two procedures of
finding an acceptable nominal point and an optimal set of tolerances be
replaced by one automated scheme. Using a suitable nonlinear programming
technique, any arbitrary initial acceptable or unacceptable design may
be used as a starting point. The scheme would stop at an acceptable
design which is optimal in the worst case sense of obtained tolerances.
The most suitable objective function to be minimized would seem to be one
that best describes the cost of fabrication of the circuit, as suggested

by some authors [1-6]. Several objective functions have been investigated
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and the results are discussed.

II. THEORETICAL CONSIDERATIONS

The Tolerance Region

A point ¢ 4 [¢1 0y oo ¢k]T is a vector of k elements and
N
corresponds to the component values of the network. A nominal point

¢° g [¢° ¢g cue ¢§]T is a point associated with a set of nonnegative
N

1
tolerances ¢ 2 [e, e, ... € ]T > 0 such that the tolerance region R
s 1 €2 ko2 t
is given by
A o] o .
R, =<[2[¢i -e < ¢, < by vy, 1212, 00, k) (1)

Obviously, R_ is a polytope of k dimensions with sides of length

t

Zei, i=1,2, ...,k, and centered at ¢°. The polytope has 2k vertices.
4"

Each vertexwill be indexed from an index set H 2 {1,2, ..., Zk} such

that
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2 = ¢2'€2 ] i = ¢2j€2 ) 2 = ¢2+€2 o0y i = ¢2T€2 (2)
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A possible outcome of a circuit with a nominal design ¢° and tolerance ¢
N ~

falls somewhere in or on the polytope. Depending on the location of ¢°
N

and the size of e, a circuit with parameters ¢ may or may not be acceptable.
", 4"



The Acceptable Region

The following discussion refers to the frequency domain design
of linear, time invariant circuits but the results can be applied to
the time domain as well, Let the set of frequency points under con-

sideration be Q = {wl, Wos weey Wy W

u? Yue1 .» w_..}. Upper specifications

u+f

Su(wi), i=1,2, ..., uare assigned to the first u frequency points and
lower specifications Sz(“i)’ i = u+l, ..., u+g to the rest. Frequency
points that have both upper and lower specifications may appear twice in

the set. Let the response of the network at frequency we be F(¢ wi)'
ns

An acceptable region Ra is given by

) i =
R, ¢ {3|Su(wi) - F(i,wi) >0,i=1,2, ..., u,

(3)
F(9,05) - Sp(0;) > 0, j = utl, ..., u+g}

Obviously, a design {¢°,e} is an acceptable design only if Rt € R
NNy

a
A Theorem

It is impossible to test all the points in Rt to see whether
they are in the acceptable region Ra' In order to make the problem
tractable a number of simplifying assumptions could be made to obtain a
solution to the problem with reasonable computational effort. Obviously,
if Ra is convex and if all the vertices of Rt are interior or boundary

points of Ra’ then Rt c Ra' It can be shown that the assumption of

convexity is unnecessarily restrictive.



Theorem [1]: If the vertices of Rt are in Ra’ then th; Ra

if, for all j = 1,2, ..., k, the assumption that

82,620 = 6% 4 qu, er , (4)
Ny n nJ a
where o is a scalar and
1 0 0
u1 4 0f, u, 4 1y, ..., uy é 0
v b I . ~ .
0 1
implies that
o= 4%+ 20" - 6?) er, (5)
Ny N n,
for all ) satisfying ‘
0< A< 1 (6)

Under such assumptions, only the vertices of the palytope need
be tested to ensure that Rtg; Ra' It is easy to verify that the theorem
holds for k = 1 and 2. The proof of the theorem follows by mathematical
induction. A complete proof is presented by Bandler [1].

Other constrainté such as parameter constraints can be
considered. These constraints define a feasible region Rf. Then it is

required that Rt (- (Ra n Rf) = RC.



The Nonlinear Programming Problem

A function C1(¢°,e) to be minimized may be
LV

k o
;%

c,= 1 (7
i=1 si

where cs is a weighting factor. See, for example, Pinel and Roberts [4].

Other possibilities are [1]

k
¢4
CZ = z .t-;_ (8)
i=1 1
and
k
8
C;= ] c; log, —. 9
i=1 :

In (9) we would be minimizing the ratio of the volume of the polytope
defined by the space diagonal ¢° and the volume of the polytope defined
. 4"
by € if the c; = 1.
n
Let
Su(wj) - F(il,mj) for 1< j< u

g5 (6my) 2 (10)
o4 .
F(ol,w,) - S, (w,) for utl< j< u+t
AN ) 2] - -

for iell, That is, at each vertex ¢1, there are %2+u frequency constraints.
4V

There are 2k vertices for a polytope of k dimensions. A total of 2k(2+u)

constraints have to be considered. Other constraints can be added.1



A suitable method for solving the nonlinear programming

problem is to define [7]

u+f 2k
B(¢°,e,1) = C(6%) + e
LY N (6" ,)

j=1 i=1 13 "

(11)

and minimize B with respect to ¢° and € for appropriately decreasing
" N
values of r. Another more recent and efficient method of handling

constrained minimization is by the least pth optimization [8,9] of

) = max{C(¢ sE), C(¢ ,e) - (¢ o )1, 0. >0 (12)

1J 1J n

V(¢°,e,a

L VW ,J N,
For sufficiently large constant values aij’ the unconstrained minimization
of V with respect to 20 and i yields exactly the constrained minimum of
C. This nonlinear programming technique makes it possible to have any
initial starting point, acceptable or otherwise, as shown by Bandler

and Charalambous [8,9].

ITI. EXAMPLES

A Lowpass Filter

A normalized 3 component LC lowpass ladder network, terminated
with equal load and source resistances of 1 ohm, is considered. An
insertion loss of 0.53 dB in the passband 0 to 1 rad/sec and 26.0 dB
in the stopband (band edge is 2.5 rad/sec) is realized by a minimax design

without taking tolerances into account. The parameter values are



¢§ = L, = 1.6280, ¢§ = C = 1,0897 and ¢§ =L, = 1.6280, The chosen set

2

of frequency points is Q@ = {0.45, 0,50, 0.55, 1.0, 2.5}. S, = 1.5 dB
for the passband and Sz = 25 dB for thé stopband are assigned. Two
starting values ¢g = 2, ¢g =1, ¢§ = 2 and ¢? = ¢g = ¢§ = 1,5 with 1%
tolerances, have been studied. The first starting point is inside the
acceptable region.

The SUMT method using(ﬁ of (7) and c; = 1, i =1,2,3, yields
a solution of ¢g = 1.9990, ¢g = 0.9058, ¢g = 1,9990 and the corresponding
tolerances are 9.89%, 7.60% and 9.89%. Initially r = 1. It is reduced
by a factor of 10 after each cycle of optimization. The adjoint network
technique [10] and the Fletcher method [11] are used in the optimization
process. A total of 185 function evaluation's were performed to reduce
C1 from 300 to 33.38 for 6 complete cycles. 136 function evaluations
are needed to get the same results by the new nonlinear programming
technique. The constants aij’ i=1,...,8, j=1,...,5 are set uniformly
to 100. p is increased from a starting value of 10 to 1000 for two
cycles of optimization.

The SUMT method is not directly applicable with the second
starting point which is outside the acceptable region. The same optimal
point as before is reached with 105 function evaluations for one
optimization by the new method. p is 1000 and T is 100 for all i and j.

In contrast, if the nominal point is fixed, tolerances of

3.45%, 3.18% and 3.45% are obtained for the three components.



A Bandpass Filter

The bandpass filter shown in Fig. 1 was studied by Butler [2],
Karafin [3] and Pinel and Roberts [4]. An upper specification of 3 dB
for the passband and a lower specification of 35 dB for the stopband
relative to 0 dB at a central frequency at 420 Hz are assigned. See
Fig. 2. o ={ 360, 490, 170, 240, 700, 1000} in which the first two
frequencies are assigned to the upper sepcification and the last 4 to
the lower specification. The frequency point of 420 Hz is not included
as it is kept at zero. A constant Q is assumed for the four inductors
and, therefore, the four corresponding resistances are dependent variables.

Nominal values used by Pinel and Roberts and a 1/2% tolerance
for each component are used as a starting point, Parameter values are
scaled by normalizing with respect to the central frequency and the
load resistance such that the inductors and capacitors will have the
same order of magnitude to avoid ill-conditioning. Components L and

6, are assumed equal to ¢1 and ¢2, respectively, for the objective

4
function C2 and C;. Only 26 vertices are taken. Initially, the same
assumptions are made for the objective function Cl’ but because of
some violations a selection of the 28 vertices are subsequently taken.2

Using the SUMT method, initially, r = 1. r was reduced
successively by a factor of 10. The adjoint network technique and the
Fletcher method are again used in the optimization process. See Table I
and Fig. 2 for some results. No more than 10 min. on a CDC 6400 are needed
to obtain tﬁe regults for 26 vertices. Note that c; = 1, ts 8 100 ei/¢2
and the cost is I l/ti. There are no violations observed

i=1
for both the Monte Carlo and the worst-case analyses



at the specified test frequencies assuming 28 vertices. The relative
insertion loss, however, becomes negative in some instances in the
passband. The same assumptions were made as Pinel and Roberts [4]
that the component distribution is uniformly concentrated within 5%
of the extremes of the relative tolerances and 1000 simulations were

made for the Monte Carlo analysis.
IV. CONCLUSIONS

It has been shown that, by moving the nominal point, a set
‘of larger tolerances can usually be obtained, and that an arbitrary
initial design may be used to start the automated scheme. A drawback
of this basic scheme is, of course, that a large number of constraints
are used. Future work should, it is felt, be concentrated on methods
of reducing them. Some preliminary ideas of reducing the number of
constraints are currently being tested.2 A complete solution to the
problem is not claimed, however, it may be concluded that our approach

is a promising one in network design subject to tolerance considerations.
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FOOTNOTES

1
Selecting, on physical or other grounds, constraints which are likely

to be active at the solution to a nonlinear programming problem and
discarding the rest can result in faster solution times, as is well

known. Ultimately, all the constraints have to be satisfied.

2

The algorithm currently being used selects, for each vertex ¢) at a
N

particular frequency, another vertex ¢1 such that the signs of the
N

components of ¢t -¢° are all opposite to the corresponding signs of
4V N

the components of the gradient vector of the constraint evaluated
at ¢j and that frequency. This usually leads to a substantially smaller
N
number of constraints to be considered at each frequency during optimization.
Periodic updating of the selected vertices and restarting of the optimization

process is generally required.



TABLE I. RESULTS FOR THE BANDPASS FILTER

Karafin [3]

- O

i, G 5 Cs

1.824x10° 3.0142x10° 2.3206x10° 2.7682x10°
7.870x10°8 4.9750x10°%  6.3694x10%  5.2611x107%
1.824x10° 2.9020x10° 2.3206x10° 2.7682x10°
7.870x10"% 5.0720x10"%  6.3694x10"  5.2611x107°
4.272x107! 8.2836x10"}  6.0517x10"!  7.7895x107}
9.880x10"/ 5.5531x10"7  7.7708x10’  5.8726x107/
1.437x10°} 3.0310x10"1  2.1677x10"1  2.s5438x107}
3.,400x10”’ 1.6377x10"’ 2.2630x10”7 1.8981x10”/

3 , 3.32 6.99 2.29 7.67
5 , 2.41 6.52 11.26 6.53
5 , 3.30 6.97 2.29 7.67
3 , 2.41 6.55 11.26 6.53
2 , 1.14 4.36 3.30 4.33
2 , 1.89 5.69 3.02 8.10
3 7.80 6.80 6.61 5.85
5 2.07 5.25 4.40 2.71
2.60 3.45 1.34 2.06 1.46

-

-
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