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Abstract

We present a comprehensive comparison between the widely used
Lagrange multipliers and Tellegen's theorem approaches to sensitivity
calculations in electrical networks. The two approaches are described
on a unified basis, hence different aspects of comparison can be clearly

investigated.
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I. INTRODUCTION

Sensitivity calculations are performed routinely in electrical
network analysis and design to supply first-order changes and gradients
of functions of interest w.r.t. practically defined control or design
variables.

Two approaches, namely the Lagrange multiplier approach [1,2] and
Tellegen's theorem approach [3,4], are intensively used for sensitivity
calculations in both electronic and power networks. Methods based on
the two approéches have been described and applied [1-4] on an
individual basis. A combination between the two approaches has been
proposed in [5].

The material presented in this paper aims at investigating
relationships between the two approaches. This investiéation is
accomplished by employing common bases of description and analysis
through which the required aspects of comparison can be clearly stated.

We state the notation used and the basic formulation in section II.
In sections III and IV, we describe, on a unified basis, the aﬁplication
of the Lagrange multiplier and the Tellegen's theorem approaches to
sensitivity analysis of electrical networks. A comprehensivé discussion

of some aspects of comparison is then presented in section V.

II. BASIC FORMULATION

We denote by f a single valued continuous real or complex function

of nx system state variables f and nu control variables u which may be
real or complex, X and u are column vectors. We also denote by h a set
of nX real or complex equality constraints relating § tq u.

The first-order change of f is written as



§f = fT X + fT su, (1)
X - .u

where § denotes first-order change, T denotes transposition and fx and
fu denote 3f/8x and af/du, respectively. Also, the first-order change

of h is written as

sh = H 6x + H_ 8u = 0, (2)
~ X . ~u ~

~ ~

where H_ and Hu stand for (BQT/ag)T and (aQT/ag)T, respectively.

X

In the case of complex variables, x and u may contain complex

conjugate pairs [4] and fx, fu, H and Hu of (1) and (2) may represent

formal [5] partial derivatives w.r.t. the complex variables x and u.
When dealing with electrical networks, x and u may be classified

[4] into 2-component subvectors xb and ub, respectively, associated with

different element (branch) types, b denoting the bth branch. In

general, xb and ub constitute node branch variables xm and um and line

branch variables x, and u

t £ For example, xm may represent node voltages

in a typical linear electronic network. In this case the components of

*
X are, e.g., V and V or [6] V. and V , where V
m m m m m

m1 2

respectively, the real and imaginary parts of Vm.

and V are,
m.

1 2

~

In power networks xm and um are further classified [4] into vectors

~

associated with load (xz, ul), generator (xg, ug) and slack generator

(xn. un) branches.

~ ~

3

In general, we write

X = {fb} = {fm’ ft} (3)
and
b )= g uyd )

In the above formulation, we have assumed that the number of state or

control variables defined is 2n n_ denoting number of branches in the

B' B

network. This assumption is made to simplify the comparison between



{

Lagrange multiplier and Tellegen's theorem approaches performed in the
following sections. Both of these approaches can be applied [2,5] for

a general number of state variables.

III. LAGRANGE MULTIPLIER APPROACH
In this approach, we use (2) to write the first-order change &f of

(1) in the form
5F = (f - HY e su, (5)
u u -

~ ~ ~

where X is a vector of the nx Lagrange multipliers obtained by solving

the adjoint equations

B x = £ . (6)
X - X
Hence, from (5)
df T
qu - Loy A . (73

In practice. we solve the n, adjoint equations (6) for the Lagrange
multipliers } which are then substituted into (7) to obtain the required
'total derivatives of f w.r.t. control variables.

For use later, we now describe the approach in a slightly different
way. We employ the classifications of (3) and (4) to define the change

of an element-local Lagrangian term as

A, T T
Ly = O Hy ) sxp + O Hy ) ey, (8)

where

Ex = [E1x Ut En x] : (9)

B

and

oA Ho ] - G

u -t olu ot ~nBu '

. ' 3 ) p) 3
!bx and ﬁb“ being onpXe submatrices.



We also define

sL 23 5L, (1)
b
b

hence, from (2) and (8)

§L = 0. (12)
Using (8), (12) and
T T

§f = s (fbx afb + fbu Gfb) (13)

we may write, from (11)

| T T T T

§L = 6f - 3 [(fbx - gbx) 8x, + (fbu -2 ﬂbu) 53b1° (14)

b ~

Observe that when A of (14) satisfies (6), namely

T
ﬁbx ﬁ = fbx’ for all b, (15)
then (14) reduces to
_ T \T
§L = 6f - & (fbu - gbu 5) GEb’ (16)
b
hence, from (12)
68 = £ (f. - HL AT eu a7
~bu ~bu o -b
b
so that .
df T
du, fou = Hou 2 18

which is a form of (7).

IV. TELLEGEN'S THEOREM APPROACH
In this approach, the application of Tellegen's theorem results in
[4] the identity
8T = 0, (19)

where



8T = L 8T,, (20)
b
b
the element-local Tellegen term GTb is defined as
A AT AT
8Ty = Mpyx %p * Ny 8y (21)

and the 2-component vectors ﬁbx and ﬁbu are linear functions of the
formulated adjoint network current variables Ib and voltage variables

~

Vb and their complex conjugate. Hence, the ﬁbx and 7 u are related

through Kirchhoff's current and voltage laws formulating 2n real network

equations, n denoting the number of nodes (or buses) in the original

network. Using (13) and (21), we may write, from (20)
T AT

‘ AT T
§T = &f - s [(fbX - be) 65 + (fbu - Dbu) ng]. (22)
The adjoint network is defined by setting
Dbx = fbx’ (23)
hence (22) reduces to
. ~ T
§T = &f - é (fbu - Dbu) GEb’ (24)
from which
daf _ -
dub - fbu ~ Mou (25)

In practice, we formulate the adjoint network using (23) and solve the
2n adjoint network equations to get ﬁbu which are then substituted into
(25) to obtain the required total derivatives of f w.r.t. control

variables.

V. ANALOGY AND COMPARISON
In the last two sections, we have described both the Lagrange
multiplier and Tellegen's theorem approaches to sensitivity calculations

in electrical networks. In this section, we investigate the analogous



features of the two approaches and state a general comparison between
them.

First, we remark on the resemblance between the element-local
Lagrangian term GLb of (8) and the element-local Tellegen term GTb of
(21).

We also remark on the resemblance between equation (12) formed to
satisfy (2) and equation (19) formed by applying Tellegen's theorem. The
§f of (14) and (22) is expressed solely in terms of the control
variables via defining, respectively, the adjoint systehs (15) and (23).
The solution of the adjoint network is then used to obtain the total
derivatives df/d1~1b from (18) and (25), respectively.

In the Lagrange multiplier approach, the adjoint system of

equations to be solved for the adjoint variables (Lagrange multipliers)

A constitutes a 2n_., x 2n

B B matrix of coefficients. In general, when

other state variables are defined [2], the order of the matrix of
coefficients is determined by the total number of state variables
defined. On the other hand, the adjoint system of equations in the
Tellegen's'theorem approach represents a set of network equations and
constitutes only a 2n x 2n matrix of coefficients.

Tﬁe compactness of the adjoint system formulation in the Tellegen's
theorem approach is afforded in essence by realizing, when formulatingb
the adjoint equations, Kirchhoff's relations between the different
adjoint variables which constitute a fictitious electrical network.

Assuming that the effort required is divided into formulation and
solution parts of the adjoint system, we immediately see that the
Tellegen's theorem approach sweeps the major effort into the formulation

part and results in only ”n adjoint equations to be solved. In



contrast, the Lagrange multiplier approach requires almost nothing to
formulate the adjoint system which then constitutes n, adjoint equations
to be solved.

Note that if we formulate the vectors E and Y to contain all branch
current and voltage variables, respectively,  and consider [7] the

perturbed relationships

GE = gix‘sf + Eiu GE, (26)

§V = H §x + H su = AT sV 27
~ VX Vv - - M’

A ST =0 (28)

and (1), where A is a form of incidence matrix and VM contains node
(bus) voltage variables, it is straightforward to show that a vector N,

of (21), is given by

bu
« T T |
M= gvu }i M Eiu ﬁv’ ’ (29)

which contains all the %

where Ai and xv satisfy KCL and KVL, respectively, and the relationship

HT A+ H? x =1f . (30)
~vx 217 Lix v T o x _

VI. CONCLUSIONS

The two widely used approaches to sensitivity calculations in
electrical networks, namely the Lagrange multiplier and Tellegen's
theorem approaches have been described and compared. The description
has been performed on a unified basis where we have defined and
employed element-local terms in formulating the two approaches so that
different aspects of comparison are clearly investigated. The
resemblance in formulating the adjoint systems of the two approaches has

been discussed.
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