INTERNAL REPORTS IN

SIMULATION, OPTIMIZATION
AND CONTROL

No. SOC-254
A NEW METHOD FOR COMPUTERIZED SOLUTION OF POWER FLOW EQUATIONS
J.W. Bandler and M.A. El-Kady

October 1980

(Revised February 1981)

FACULTY OF ENGINEERING
McMASTER UNIVERSITY

HAMILTON, ONTARIO, CANADA







A NEW METHOD FOR COMPUTERIZED SOLUTION OF POWER FLOW EQUATIONS

J.W. Bandler, Fellow, IEEE

M.A. El-Kady, Member, IEEE

group on Simulation, Optimization and Control
Faculty of Engineering, McMaster University

Hamilton, Canada

SUMMARY

In this paper, we employ the concept of the
adjoint network simulation in the context of Tellegen's
theorem to describe a new technique for solving the
power flow equations and automatically supplying power
network sensitivities.

The load flow problem comprises the solution of a
set of nonlinear equations in the form

f(x) = u, (1)

where x denotes a vector of dependent variables (system
states) and u represents appropriate independent
(control) variables. In a gradient-type iteration
method, the form (1) is perturbed about a nominal point
x  at iteration k in the form

R axK = sk, (2)
where Hk Nk

k

RO =7 (3

- Jk Lk

is the Jacobian matrix of the Newton-Raphson method
k k+1 k k
E 4 - X, 69 =

- uk is a mismatch vector and § denotes

evaluated at iteration k, &x
u
~(scheduled)
first-order change.

The adjoint network simulation in the context of
Tellegen's theorem exploits the fact that (1)
represents electrical network equations rather than
general equality constraints. In the sensitivity
approach based on Tellegen's theorem, employing the
exact steady-state power model, the sensitivities of
properly defined network state variables with respect
to network control variables, at a base-case point, are
supplied via one adjoint simulation and repeat forward
and backward substitutions. This adjoint network
simulation involves the formulation of a set of linear
equations in the form

k "k s
Bl 8

S

where i denotes different state variables, ug is a
simple vector having at most two non-zero elemeﬁ%s and

Hk Nk

~T ~T
k
R = (5)
~T Jk Lk

~T ~T

is an adjoint matrix of coefficients. Once equations

(4) are solved for the adjoint variables 9?. at

iteration k, the sensitivities of the ith state
variable w.r.t. all the defined control variables can
be directly evaluated aﬁ(linear functions of the
corresponding elements of §..

Now, if we define thé network states to be the
elements of §k of (2) and the network control variables

to be the vector uk, then the sensitivities we obtain
from the adjoint network simulation are essentially the

elements of the matrix (131()'1 of (2).
equations (2) are readily solved.

Thence,

L8S 4L7

From the above description of the adjoint method,
it is evident that we have replaced the formulation and
solution of (2) in the Newton-Raphson method by the
adjoint formulation and solution of (4). This
replacement offers the following far-reaching
consequences. '

1. The adjoint matrix of coefficients Bﬁ of (5),
although of the i Same size and sparsity as the
Jacobian matrix R* of (3), is much simpler, mostly
constant, compriéing mainly line susceptances and
conductances, applicable to both the rectangular and
the polar formulations of the power flow equations,
totally free, however, from trigonometric function
evaluations and, above all, it permits approximate
(and decoupled) versions in both modes of formula-

tion by approximating few elements of Rf (and

discarding the matrices Nﬁ and {E).

2. The exact version of the method proposed enjoys the
same rate of convergence as the Newton-Raphson
method. The change from an approximate version with
strictly constant matrix of coefficients to the
exact one and vice versa, during the solution
procedure, 1is accomplished by kaltering only the
voltage-dependent elements of R . These elements
represent a relatively small pd?iion of the matrix

(mainly the diagonal elements of the matrices 55,

Nk, Jk and Lk).
e A ¢ T

3. Our method automatically supplies the sensitivities
of all the dependent variables at the load flow
solution without any additional adjoint simulation.

The paper includes the numerical results of
applying the exact version of the method and one of its
approximate versions to a 6-bus system as well as a
26-bus system (Saskatchewan Power Corporation). The
following table summarizes the results of the exact
(method I) and the approximate (method II) versions.
In the approximate version, a few iterations (3 for the
6-bus system and 2 for the 26-bus system) of the
decoupled version are performed and then the exact
version is applied, via updating the voltage-dependent
elements of the matrix of coefficients, to improve
convergence w.r.t. nonsaturated bus voltages. In the
table below we list Max{|sP|, |sQ|}, all values are in
per unit and k denotes iteration number. Starting flat
voltage profile is used.

6-Bus System 26-Bus System

K 1 11 1 11

1 0.554 1.208 0.837 0.881

2 0.295x107" 0.171 0.389x107 0.558

3 0.166x1073  0.26x107"  0.106x1073  0.490x10™2
4 0.663x1078  0.226x10™3 0.106x1078  0.487x107°
5 0.171x107 12 0.143x1077 0.134x10""" 0.825x107 "]
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Abstract - We employ an adjoint network concept
based on an augmented form of Tellegen's theorem to
describe a novel method for solving the load flow
problem. The method incorporates successive adjoint
network simulations with a sparse, mostly constant
matrix of coefficients, the majority of its elements
representing basic data of the problem already stored
in computer memory. Nevertheless, the exact version of
the method enjoys the same rate of convergence as the
Newton-Raphson method. Moreover, it automatically
supplies the sensitivities of all system states with
respect to adjustable variables at the load flow
solution without any additional adjoint simulation. An
approximate version of the method is also presented.
It partly employs very fast repeat forward and backward
substitutions with constant LU factors of a reduced
matrix of coefficients and is applicable to both the
rectangular and the polar formulations of the power
flow equations. Numerical examples are presented for
illustration and comparison.

INTRODUCTION

The load flow problem [1], being solved in a wide
variety of power system analysis and planning studies,
is tackled in this paper in a new and different way.
We employ the concept of the adjoint network simulation
in the context of Tellegen's theorem [2] to describe a
technique for solving the power flow equations.

We devote the first few sections to describing the
novel method and to illustrating its analytical
features in comparison with the Newton-Raphson method
[3]. We then illustrate the implementation of the
exact, approximate and decoupled versions of the
method.

This paper aims mainly at introducing the new
method and illustrating its analytical and general
computational aspects. The results of two (6-bus and
26-bus) test power systems are presented which, we
feel, amply serve the purpose of the paper.

PRINCIPAL NOTATION

n number of buses, also index of the slack bus
ng number of branches in the network

ng number of P, Q-type (load) buses

nG number of P, V-type (generator) buses

L =1, 2, .4, n, denotes a load bus

g = nL+1, e nL+nG denotes a generator bus

t = n+l, ..., nB denotes transmission elements

m = &, g or n, denotes bus number
Sm=Pm+jQm complex power at bus m
SM vector of bus powers

Vm=|Vm|(e complex voltage of bus m

Im current in branch m

YM vector of bus voltages

XT bus admittance matrix

f real vector of dependent variables

3 real vector of independent variables
J denotes v-1

k iteration count

§ denotes first-order change

* denotes the complex conjugate

distinguishes adjoint network variables
identifies vectors and matrices
BACKGROUND

The load flow problem comprises the solution of a

set of nonlinear equations of the form

* *

Ev I1 Yn = 3w (D
where E, is a diagonal matrix of elements of y in a
corresponding order. The set of equations (q) are
normally solved in either the rectangular or the polar
forms. When rearranging (1) for the unknown variables,
in the appropriate mode of formulation, the resulting
set of real equations is written in the general form

f(x) = u. (2)
The order of (2) is 2n-2 for the rectangular form and
2n-n_-2 for the polar form.

In a gradient-type iterative mgthod, the form (2)
is perturbed about a nominal point X at iteration k as

k k k
R™ sx = su, (3)
where K "
K H N
R = - - )
~ Jk Lk
: X X X : k
is the Jacobian matrix evaluated at iteration k, &x =
k+1 k nd 6 k _ u L : teh t
X -x a u = Y(scheduled) ™ is a mismatch vector.

The Newton-Raphson Method

In the Newton-Raphson method of solving the power
flow equations (NRM), the set of linear equations (3)
is solved at each iteration for the perturbed
variables



sxk = (Rk)-1 suk. (5)

The computational burden per iteration consists mainly
of evaluating the elements of the Jacobian matrix R,
calculating its LU factors and performing the
subsequent fogyard and backward substitutions. The
elements of R are voltage-dependent and have to be
updated and stored at each iteration. In the polar
formulatio% this k?:ask is reduced by discarding the
matrices N* and J of (4), in the Newton's decoupled
load flow [4] and eliminated in the fast decoupled loa
flow [5] by further approximations to the matrices H
and L~ of (4). This is done at the cost of the rate of
convergence,

The Tellegen's Theorem Method

l

The adjoint network simulation in the context of
Tellegen's theorem exploits the fact that (2) repre-
sents electrical network equations rather than general
equality constraints. In the sensitivity approach based
on Tellegen's theorem [6,7] employing the exact a.c.
power model, the sensitivities of properly defined
network state (dependent) variables with respect to
network control (independent) variables at a base-case
point are supplied via one adjoint simulation and
repeat forward and backward substitutions. In the
proposed application of this method to the power flow
solution, we, define the network states to be the
elements of x of (3) and the network control variableﬁ
to be theg vector u ., Hence, the sensitivities of X
w.r.t. y obtained from the adjoint simulation are
essentially the elements q{ the matrix (g ) of (5).
Therefore, the vector 8% of (3) cank be directly
calculated knowing the mismatch vector su .

Now, the adjoint network simulationh involves the
formulation of the linear equations

T K - bk, (6)
~ i ~i
where i denotes different elements of xk. b, is a
sjmple vector having at most two non-zero “elements and
T" is an adjoint matrix of coefficients. Equ@tions (6)
are to be solved for the adjoint variables gi and then

the sensitivities of x? w.r.t. the elements of g? are,

simply, linear functions of the corresponding elements

of gi'

From the above description of the adjoint method,
it is evident that we have replaced the formulation and
solution of (3) in the NRM by the adjoint formulation
and solution of (6). Hence both methods, when applied
without approximations, create the same sequence of
iterative solution points. Therefore, they have the
same rate of convergence. The evaluation of the two
methods must be on the basis of the computational eff-
ort and storage requirements involved in (3) and (6).

STRUCTURE OF ADJOINT EQUATIONS

In the following, we summarize the specific
structure of (6). Appendix A outlines the principal
steps in the derivation [6-8].

Following this derivation, the system of 1linear
equations (6) can be cast into the general, detailed
form [7]

ey G CB+w) -Bg ¥L1 §L1
Boo  (Bagm¥e2)  Go Cggr¥ar) o1 T
Br*fa)  Bg  Cu-f) G VL2 1o
0 aiagliyl 0 atastV Y|V | Igs

(7

where L and G denote load and generator buses,
respectively, subscripts 1 and 2 denote, respectively,
the real and imagin%{y parts of the quantities f

1
. R ' =G?
Vg. Y, = dlag{-SE/VE} and Y = dlag{Sg/Vg}.

v G The bus
admittance matrix of the network Y., with the minor
ad justments [8] to include phase—shigiing transformers,

has been partitioned in the form

Y Y
Y. = G, + jB, = ~LL  -LG . (8)
Ir = ir*t i Yy
6L GG
Also, in (7), Gy + jBy = diag{V } Y, and Go. + jBq.

= diag{Vg} ¥ .

The®form (7) is common to both the rectangular and
the polar forms of the power flow equations. The
elements of the vectors I, and [, which constitute the
RHS of (7) are given by Table I. Observe that each of
f and i has at most one non-zero component. The
solution of (7) is then substituted to obtain the

sensitivities of the dependent variables. The
expression for Gxi is given by
k AT k
Gxi = -0 63 ’ (9)

where ﬁu, which constitutes elements of (ljk)_1 of (5),
is given by Table II.

TABLE I

RHS VECTOR OF THE ADJOINT EQUATIONS

Mode of Dependent Element T Element T
Formulation Variable L &
2=m 2#m g=m g#m
\' -1 0 -V 0
Rectangular m 82
Vm2 j 0 Vg1 0
V| =V _|/V 0 0 0
Polar n L L
Om J/VE 0 1 0
TABLE II

SENSITIVITIES w.r.t. INDEPENDENT VARIABLES

Independent Corresponding Element
Variable of ﬁu
P R {G /v*}
2 el!,
~ *
Re{V_/V
Pg ef g/ g}
~ #
Im{V /V
Qz m{ 2/ m}
\ -Re{E vV o+ Q* I*}/ \'
l 8‘ g g g g I Sl

FEATURES OF LOAD FLOW ANALYSIS USING TELLEGEN'S THEOREM

The set of linear equations to be solved each
iteration, in the Tellegen's theorem method of solving
the power flow equations (TTM), is of form (7). The
adjoint matrix of coefficie&ts of (7) is much simpler
than the Jacobian matrix R of equations (3) to be
solved each iteration in the NRM. As is clear from
(7), the majority of elements of the adjoint matrix are
line conductances and susceptances representing basic
data of the problem available and already stored in



computer memory. Moreover, they are constants and do
not have to be updated at each iteration. Observe
that, in the case when no voltage-controlled buses are
considered, these constant elements represent all the
off-diagonal elements of the submatrices in (7). On
the other hand, the elements of the Jacobian matrix of
the NRM (the power mismatch version [1]) reflects
mainly partial derivatives of bus powers w.r.t bus
voltages. These elements are voltage-dependent. They
must be recalculated whenever bus voltages are altered.

It is to be noticed, however, that several forward
and backward substitutions are required (at least from
the theoretical point of view) in each iteration of the
TTM. In the NRM, only one forward and one backward
substitution is required.

The overall computational effort in any of the two
methods 1is, hence, evaluated based upon the whole
process of updating the matrix of coefficients,
factorizing it and performing the forward and backward
substitutions. From preliminary experience, we find
that the overall computational effort (not the storage)
of each method depends on the network size and
configuration, the mode of formulation and the number
of P,V-type buses considered. The TTM was found
superior for medium networks analyzed in the polar
coordinates with fewer voltage-controlled buses. For
large networks, however, the NRM, in rectangular (or
polar with rectangular evaluation of matrix elements)
coordinates, applied with sparsity utilization is
superior due to the increasing effort of performing the
forward and backward substitutions when applying the
exact version of the TTM. This general statement is
valid only when applying the two methods exactly. It is
not applicable, for example, when only some variables
or their sensitivities w.r.t. independent variables
(those which do not reach their saturation values) are
to be updated in each iteration of the TTM. It is also
not applicable to the decoupled versions of the two
methods as will be illustrated in subsequent sections.

As stated before, the form of the adjoint matrix
of (7) is common to both the rectangular and the polar
formulations of the power flow equations. Hence, our
formulation eliminates the trigonometric function
evaluations in calculating the voltage-dependent
elements of the matrix of coefficients when the polar
form is used. Observe that the trigonometric functions
are computationally more time-consuming than the simple
operations involved through the use of (7).

The number of equations of (7) is 2n-2. However,
in the polar formulation, the vector TGZ is zero from
Table I. Hence, the set of equations corresponding to
iGZ can be easily omitted by eliminating the variables
x
Vio+ This will reduce the order of (7) to 2n - n; - 2
while preserving the sparsity structure. Therefore, we
conclude that the adjoint matrix of coefficients has
the same size and sparsity as (but is simpler than) the
Jacobian matrix of the NRM in any mode of formulation.

It is important to remark that, in the proposed
method for solving the power flow equations, the
sensitivities of all the dependent variables (system
states) in the power flow equations w.r.t. bus control
variables are readily available at the load flow
solution without further adjoint simulation. The 2n-2
forward and backward substitutions, which would be
required to obtain these sensitivities by the Lagrange
multiplier approach [9], are already performed in the
TTM and the results are readily available. In
addition, the sensitivities w.r.t. line variables can
be obtained directly by substitution into appropriate
formulas [6,7] similar to those of Table II.

APPLICATIONS

Here, we illustrate the practical implementation
of the exact version of the TTM for solving the power
flow equations.

Algorithm
Step 1 Set k « 0.
k k 0
Step 2 Calculate u = f(x ), x 1is assumed.
Step 3 E%aluate those elements of the adjoint matrix
T  of (7) required to be updated.
Step 4 Using the LU factors of Ik, solve the linear
equations (6) for different i.
Step 5 From the solution of (6), evaluate the vector
n, of (9) using the expressions of Table II.
Step 6 Update the dependent variables using
k+1 _ k °T _k
xi = xi - Eu 63 ,
k k
§ = -
where u E(scheduled) u-.
Step 7 If convergence is attained stop, otherwise set

k + k+1 and go to Step 2.
Simple Example

Consider the simple 2-bus example [3] shown in
Fig. 1, which consists of a load (&=1), a slack
generator (n=2) and one transmission line (t=3).
Equations (9) have the form

1.8 + Yo 1.0 + L Gz1 §L1
-11.0 + Yoo 1.8 - Yo V!'2 {12
where w£1 + jwuZ = —Sl/Vm and, from Table I,

211 = =1, ELZ = 0 for sensitivities of Vz1:}

211 = 0, 222 = 1 for sensitivities of Vﬂ'2 '
where the rectangular coordinates have been used, 1 and
2 denoting real and imaginary parts.

busgn(=2) y _1.8-y11.0p.u. 25 g P
§,=.22+j.08

V=1.2100

Fig. 1 2-bus sample power system

Table III shows the results obtained at successive
iterations. The initial value of V, is 1 + jO. It can
be shown that these results are identical to those
obtained by applying the NRM. The value of VL at the
solution is 1.2013 - j0.0151.

Applications to Test Power Systems

In this paper we consider two power systems (6-bus
and 26-bus) to illustrate the analytical and general
computational aspects of the method introduced. The
detailed data of the 6-bus system is shown in Appendix
B. For the structure and the line data of the 26-bus
system (Saskatchewan Power Corporation System), the
reader is referred to [10]. Table IV shows the
operating bus data used. The net injected powers are
shown.

Table V shows the principal results obtained by
applying the exact version of the TTM to both power
systems. Polar coordinates with starting flat voltage
profile have been used. All values shown are in per
unit. The computations have been performed on a CYBER
170 computer. As illustrated before, the results of
Table V are identical to those obtained by applying the
NRM.



TABLE III

TABLE V

EXAMPLE OF LOAD FLOW SOLUTION USING TTM RESULTS OF EXACT TELLEGEN'S THEOREM METHOD
Iteration Quantity 6-Bus System 26-Bus System
Quantity
1 2 3 4 Largest Initial |&P| 2.2824 2.80000
Mismatches | 8Q] 0.7373 8.9999
-8 -8
P -0. . . .
§ . 0.1580 0.1155 0.0044 0.0000 Largest | 8P| 0 ll63x10_8 0 106)(10-9
Mismatches | 8Q| 0.663x10 0.985x10
&QL -2.2300 0.7056 0.0270 0.0000
av, /dP,  -0.0183  -0.0129  -0.0140  -0.014p 'O Of Iterations 4 4
av - - - -
E1/dQ% 0.1121 0.0681 0.0737 0.0739 To numerically illustrate the construction and the
sV 0. B _o. -o. use of equation (7), the reader is encouraged, using
21 2528 0.0495 0.0020 0.0000 the data of Appendix B, to verify that the adjoint
trix of coefficients of (7) has, at a point close to
dv, /dP -0. -0. -0. -0.0732 T2 y
22 L 0.0732 0.0732 0.0732 0.073 the load flow solution, the specific structure shown in
Table VI. Using the explicit expressions of Table I
dv, _/d 0. .012 .0120 . ’
22 Ql 0120 0.0120 0.01 0.0120 for the polar formulation, the RHS vector and the
v _ corresponding solution of (7) for updating, e.g., the
s 22 0.0151 0.0000 0.0000 0.0000 dependent variables |V,|, 6, and 6. are shown in Table
VII. Finally, the” diréct substitution in the
TABLE IV expressions of Table II leads to the sensitivities of
these three dependent variables shown in Table VIII.
BUS DATA FOR 26-BUS SYSTEM Note that, since polar coordinates are used, the
size of adjoint equations could have been reduced, as
indicated before, by the number of generator buses. We
Bus m ' o P Q have tabulated the results at a point close to the load
m m m m flow solution because of their particular importance
regarding load flow sensitivities.
; : _ -g.gz '8'31 THE DECOUPLED VERSIONS OF TELLEGEN'S LOAD FLOW
3 : : :g‘ig :g.;Z The implementation of the exact version of the
5 _ _ _0'43 _0'11 TTM, although possessing the quadratic rate of
6 _ _ -o'uo _0'10 convergence of the NRM with a simpler, mostly constant
7 _ _ _1'11 _0'27 matrix of coefficients, may not be practically
8 B _ _0’23 —0.06 justified for very large power networks due to the
9 - _ -0.67 _0'21 increasing computational burden per iteration. As in
10 _ _ _1'02 _0'27 the NRM, where efficient decoupled versions have been
1 _ _ —O'N3 _0.14 successively developed [4,5], the TTM can also be
12 _ _ _0'u3 _0'12 applied in decoupled and approximate forms as
13 - B 0’0 0.0 illustrated in this section.
1; - : 8‘8 g’g Primal Formulation
]? : : :S'g; :g‘g? In order to facilitate the subsequent derivation
18 1.07 _ 2.80 O'O and illustration of the decoupled forms of the TTM, we
19 1:05 _ 1'u5 0'0 first rearrange (7) to be in the form
20 1.0 - 2.80 0.0 k k “k “k
21 1.02 - 1.10 0.0 L | I (10)
22 0.89 - -0.56 0.0 Jk Lk ;k - ;k '
23 1.0 - -0.04 0.0 ~T =T ~ ~
gg :'8 : _8°2g 8'8 where the subscript t is to distinguish the formulation
26 1'01 0.0 0'0 0'0 of the TTM from that of (4) of the NRM. The vectors

Transformer tap (a ) between buses m and m'
—mm

313,06 = 1-03

350,21 = 0-97»
24,3 = 0-98,
Bus Types

n = 17,

= 0.96, a

826, 16
815'1 = 0.89, a
35'21 = 0.99, a
ng = 8

2,10 = 1+93
13 =0.98
5.5 = 1.03

PUSIEY SN ~k
€, f', 2 and d are related to corresponding vectors

8t (7) by

~ ~ ~ ~

v ~ (v 1 ~ 1
N P L B B e P L el T
Veo Va1 L2 Te1

hence, the submatrices of (10) are given by

) Bg ' G+t S
1] - ’

~T :
9 dlag{ng}

S ARSI
0 diag{vg1}

(

1T
1

(12)



TABLE VI

ADJOINT MATRIX FOR 6-BUS SYSTEM NEAR LOAD FLOW SOLUTION

2.9085 0 0 -1.1765 -2.3529 11.6900 0 0 -4,.7059 -9.4118
0 3.3490 -0.5882 -0.5882 -1.1765 0 20.5097 -2.3529 -2.3529 -4.7059
0 -0.5882 1.2179 -0.3922 0 0 -2.3529 8.67u44 -1.5686 0
4.7095 2.3548 1.5698 -8.1347 0 1.5169 0.7585 0.5057 -2.1239 0
9.8259 4,9130 0 0 -13.3536 2.2911 1.1455 0 0 -4.0767
-16.5453 0 0 4.7059 9.4118 4.1503 ) 0 -1.1765 -2.3529
0 -23.4119 2.3529 2.3529 4,705 0 7.6314 -0.5882 -0.5882 -1.1765
0 2.3529 -11.7178 1.5686 0 0 -0.5882 3.8802 -0.3922 0
0 0 0 -0.5389 0 0 0 0 0.8661 0
0 0 0 0 -0.4748 0 0 0 0 0.9253
TABLE VII
ADJOINT RHS AND SOLUTION VECTORS FOR SOME DEPENDENT VARIABLES
Variable |V3| Variable o Variable o
Element No.
Solution Solution Solution
RHS Vector Vector RHS Vector Vector RHS Vector Vector
1 0 -0.0204 -0.0446 0 -0.1894
2 0 -0.0106 0 -0.0284 0 -0.0730
3 -0.9542 -0.0174 -0.3310 -0.1140 0 -0.0410
4 0 -0.0260 0 -0.0574 0 -0.1490
5 0 -0.0200 0 -0.0440 1.0 -0.2342
6 0 -0.0164 0 -0.0160 0 ) -0. 1492
7 0 -0.0184 0 -0.0164 0 -0.0494
8 -0.2990 -0.1174 1.0566 -0.0376 0 -0.0360
9 0 -0.0162 0 -0.0356 0 -0.0928
10 0 -0.0102 0 -0.0226 0 -0.1202
TABLE VIII (G, . -y ) G, (B, . +y ) B,
J§= ~L; ~L1 (5 LG | and Li= ~L§ ~L2 & LG .(13)
DERIVATIVES OF SOME DEPENDENT W.R.T. - +¥ - Brr=-¥~,)
INDEPENDENT VARIABLES ~GL ~06°-G1 ~GL ~66 G2
Observe that, in the formulation above, and under
the assumption of flat voltage p&ofile,kthe off-
Dependent Variable diagonal elements of the matrices HT and LT comprise
Independent line susceptances while those of the matrices N$ and gf
Variable |V3| 63 95 comprise line conductances. Upon neglecting the
matrices yﬁ and gf w.r.t. §$ and Ef. a decoupled
P1 0.026681 0.058622 0.246249 structure of the TTM similar to that of NRM is
obtained.
P, 0.016034 0.033200 0.087446
Features of Decoupled Versions of TTM
P3 0.057311 0.132854 0.055239
We state some of the pioneering features of the
Pu 0.030046 0.066205 0.172132  decoupled versions of the TTM and the main aspects
which may be exploited in developing improved decoupled
P5 0.021688 0.047554 0.253086 versions.
Q1 0.000512 0.001132 0.001696 (i) The decoupling principle is applicable in the
TTM to both the polar and the rectangular
02 0.015022 0.007596 0.026717 formulations of the power flow equations. This
can lead to the construction of more efficient
Q3 0.118208 0.001969 0.024564 decoupled versions in the rectangular
formulation where the trigonometric function
|Vu| 0.194810 -0.008082 0.173629 evaluations are totally eliminated (updating
power mismatches without approximation). In the
|V5| 0.079778 0.056708 -0.088893 NRM, the decoupling principle is valid in the

polar formulation only.



An approximate version with strictly constant
matrix of coefficients can be reached in the TTM
by approximating few elements. This is clear
from the structure of the matrix of coefficients
in {10) where most of its elements are already
constant.

(ii)

(iii) The symmetry of the matrices in the decoupled
TTM can be attained via some approximations
regarding the modelling of the phase shifters
[81. This wusually leads to more efficient
computations [5].

(iv) The structure of (10)-(12) developed in the
context of Tellegen's theorem provides valuable,
explicit information about the degree of
approximation in the decoupled versions of both
NRM and TTM. The voltage-dependent elements
(the ¥ matrices) in (10) are mainly diagonally
added to the constant G and B matrices. This
may be exploited in constructing a hybrid
exact/decoupled version in which the exact
version is to be applied at the final iterations
to improve the convergence w.r.t. certain bus
voltages. This procedure will be followed in
one of the approximate versions presented in the
next section. It also has the advantage of
providing more accurate sensitivity information
at the load flow solution.

APPLICATIONS OF THE APPROXIMATE TTM

Neglecting the ¥ matrices in (12) and (13) and

- k k k

assuming flat voltage profile the matrices QT. HT. QT,

and }k are reduced to constant matrices. Hence, we

reach Ta constant matrix of coefficients of (10) in the
form

Bir B % S
0 1 0 0
R = ~ ~ ~ ~ . (1)
St %6 B B
S %c Ba Bac

As pointed out before, the off-diagonal block matrices
of R may be discarded. This leads %to a decoupled
version with two sets of equations to be solved at each
iteration.

Applications to Test Power Systems

results of one approximate
version are presented. A few iterations (3 for the
first system and 2 for the second system) of the
decoupled version are performed and then the exact
version is applied, via updating the voltage-dependent
elements of the matrix of coefficients, to improve
convergence W.r.t. nonsaturated bus voltages.

In Tables IX and X, we list the results of this
approximate version (method C) as well as the results
of a fast decoupled version (method B) of the NRM with
no adjustments to the matrix of coefficients. The
corresponding results of the exact TIM are also shown
(method A). All values are, again, in per unit.

In our paper, the

CONCLUSIONS

We have presented a method for solving the power
flow equations. The method utilizes an adjoint network
concept in the context of applying Tellegen's theorem
to the power model. Our approach, hence, is novel
since it does not belong to any of the existing
techniques of load flow analysis.

TABLE IX

RESULTS CF DIFFERENT VERSIONS FOR 6-BUS SYSTEM

Iteration No.

1 2 3 4
A 0.167 0.127x107" o.9u8x1o'u o.u63x1o‘8
MAX B  0.205 0.167 0.116x10"  0.251x1072
6P y _3
cC  0.201 0.171 0.220x10""  0.105x10
A 0.554 0.295x10""  0.166x1073 0.663x107%
-1 -1 -1
MAX B 1.221 0.843x10” "  0.287x10" " 0.133x10
| 5Q| B B 3
c  1.208 0.601x10""  0.260x10' 0.226x10
A 0.463x10~" 0.367x10""  0.2u4x10"* 0.109x1078
MAX B 0.836x10"' 0.583x1072 0.233x1072 0.835x1073
le |
V' ¢ 0.833x107" 0.558x102 0.397x1072 0.312x107"
A 0.698x10™" 0.649x1072 0.u434x10™" 0.185x1078
MAX B 0.118x107 0.413)(10‘1 0.480x10™2  0.140x10™2
le | _
8" ¢ 0.156x10"" 0.388x10"" 0.946x10™2 0.681x107"
Very Accurate Solution
A B c
Max{|P|, |6Q|}  0.171x10"'2 0.476x10™° 0.171x107 2
No. of Iterations 5 18 343
Method Code
A Exact TTM e, 4 81V
B Fast decoupled version ee 4 ]

C Approximate version of TTM

The exact version of our method enjoys the same
rate of convergence as well as the size and the
sparsity of equations as the Newton-Raphson method,
while employing a much simpler, mostly constant matrix
of coefficients. With minor, valid approximations,
this matrix of coefficients reduces to a constant
matrix that has to be factorized only once for several
iterations.

The novel method and its approximate and decoupled
versions are all applicable, directly, to both the
polar and the rectangular forms of the power flow
equations. The matrix of coefficients, which is
totally free from the trigonometric functions, is
common to both forms.

Our method automatically supplies the
sensitivities of all the dependent variables at the
load flow solution without any additional adjoint
simulation. Incidentally, the method provides a
direct, efficient technique of obtaining a row of the
inverse Jacobian matrix via solving (7) once.



TABLE X

RESULTS OF DIFFERENT VERSIONS FOR 26-BUS SYSTEM

Iteration No.

1 2 3 4
-1 -4 -8
A 0.271 0.116x10""  0.591x10 " 0.106x10
MAX B 0.546 0.584 0.554x10"" 0.673x10""
| 8P| - =
c  0.881 0.558 0.329x107°  0.u87x10
A 0.837 0.389x10"" 0.106x1073 0.985x10™7
MAX B 0.548 0.657x10" " 0.500x10"  0.828x1072
| 8Q] 2 =5
C  0.566 0.191 0.490x10™°  0.367x10
A 0.528x10"" 0.272x1072 0.818x10™° 0.103x107)
MAX B 0.931x10"' 0.340x1072 0.112x10”" 0.653x1073
ey -1 -1 -3 -6
C 0.932x10""  0.140x10”  0.805x107°> 0.922x10
A 0.596x1o'1 0.462%1072 0.181x10-u 0.256x10™
MAX B 0.615x1o'1 0.216x1o‘1 0.915x1o'2 0.512x1072
legl -1 -1 -2 -5
C 0.826x10"" 0.744x107" 0.116x107° 0.131x10

Very Accurate Solution

A B C
-12 -8 -11
Max{| 8P|, |&Q|} 0.892x10 0.565x10 0.825x10
No. of Iterations 5 29 2+3
Method Code
A Exact TTM e, s 81V
B Fast decoupled version ee 4 86

C Approximate version of TTM

We have tabulated all the formulas and the
expressions necessary for direct programming of the
method. We have also included a summary of the main
derivation steps.

The method presented, whether applied in the
exact, approximate, decoupled forms or combined with
other versions of the Newton's load flow, is believed
to provide a novel, very promising phase of power

network analysis.
APPENDIX A

DERIVATION OF ADJOINT EQUATIONS

Starting with the basic form of Tellegen's theorem

z (IbVb - vbIb) = 0, (A1)

b

where the summation is taken over all branches of the

network, Vb and Ib denoting, respectively, the complex

voltage and current associated with branch b, we add
the complex conjugate of (A1) and take the first-order
change of the resulting form (the perturbation is
theoretically justified using the so-called conjugate
notation [8]) to get

Vel
- bG b) =0,

1 1h6V: - VeI
z ( bsv + Ibsvb - Vbs

b

(A2)

b b

where only the variables of the original network have
been perturbed. Equation (A2) is written as

£ (£F sw) = 0, (A3)
b b
b
where
Ap oA % ~ A% T
£, = [Ib Ib -Vb -Vb] (Al)
and
A * T
fb = [Vb Vb Ib Ib] . (A5)
We now define
X
LI R (26)
- u
~b
where x and u  are two-component vectors describing,
respectively, the state (dependent) and control
(independent) variables, of practical interest,
associated with branch b. Hence, in terms of be and
su, equation (A3) is written as -
A ~T
: (npy 8%p + Mpy 890 = 0 (AT)
where
~T ~T ~ ~
ne, = fo Mooand nloo= DK, (A8)
Mb and Kb are Ux2 Jacobian matrices relating swb to sz
(6Yb = @b ng + §b GEb). The specific structures of @b
and gb are directly known once the variables Xy and Yy

are defined. For example, the independent variables

associated with the load branch & are
P (v I* V*I )/2
+
ooy (A9)
j(VI -VI
3¢ L8 L l)/z

and the dependent variables using polar coordinates are

*1/2
IV | (VV)
x, 4 LB - a oxt . , (A10)
8, tan™ [J(V,=V))/(V +V )]

*
hence, by formal [8] differentiation (e.g., (BPn/BIl) =
VL/Z, (ael/avm) = —j/(2vz), etec.) we get

T
(afl i} LIVl 0y Py Q]
w0 ¥ ® T
=4 oalvy VoI 1]

V* I‘ %
E/(zlvll) -j/(2Vz) JL/2 _JIL/2

*
V@IV, @V 1,2 31,72
= | . vk L . (A1)
0 0 V2 3V, /2
0 0

V /2 =3V /2

The inverse of the matrix of (A11) is



* T
au’ sV V. I I.] M
~% [ N
5 = T = T (812)
K
) a[|VL| o, P, Q,‘] K,
or
j 0
V£/|VL| JVE 0
* *
VIV =3 0 0
M, = and K, = * | - (A13)
LIV, 3T AP
WAL, T 1V i/V
L/, 1 =3 PR

The matrices M and K for other branch types can be
obtained in a similar, straightforward manner. The
independent variables for generator g, slack n, and
transmission lines t are defined as

Vgl [V, 1 G

s & u n and u
~8 P ~n 0 ~t B
g n t

t

nue

» (A14)

ne

where G, and B_ denote, respectively, the conductance
and susceptance of branch t. The corresponding
dependent variables can be defined appropriately
according to the mode of formulation (rectangular or
polar).

We now classify the branches into bus-type
(source) branches denoted by b = m and 1line-type
branches denoted by b = t. Hence, (A7) is written as

Z(n;x
m "~ - t - m "~ - t

~T ~T ~T
sxm)+z(3tx 6xt) = _Z(nmu sum)—z(gtu ‘S‘ft)‘ (A15)

Since the sensitivities of line quantities are of no
interest in the present application, we set

~

= 0.

N, =0 (A16)

Moreover, for the sensitivities of the dependent
variables associated with the ith bus, we set

My = 0o mE 1

we o) L)

for the first and second elements of Xi0 respectively.
The adjoint currents and voltages also satisfy
Kirchhoff's laws, namely

(A17)

and

(A18)

I
(o4 oA |5 =0 (A19)
It
and
~ T~
By = (h20)
where [1 | A ] is the reduced incidence matrix of

dimension n X h

(n buses, ng branches) whose elements
Y,. are given by

1]
Yij =1 if branch j is incident at bus i and oriented
away from it,
Y.. = =1 if branch j is incident at bus i and oriented
ij X
towards it and
Yij =0 if branch j is not incident at bus i,
1 denoting the identity matrix of ‘order n, {m' }t' Ym
and Yt are vectors of the adjoint variables im' ft’ Vm

and Vt' respectively. In these equations we have
selected the direction of the adjoint source branch
voltage to be the same as that of the corresponding
adjoint bus voltage.

. The adjoint structure (7) results from direct
manipulations of equations (A19) and (A20) and the
relations (A16)-(A18) written (using (A4), (A8) and
(A13)) in terms of the adjoint currents and voltages.
For more details, these straightforward manipulations
have been outlined, step by step, in [6] and [8].

APPENDIX B

DATA FOR 6-BUS POWER SYSTEM

Bus Data
P Q, |V, | /e,
Bus Bus Type 1 1 1 ‘1
Index i (pu) (pu) (pu)
1 load -2.40 0 - /-
2 load -2.40 0 - /-
3 load -1.60 -0.40 - -
y generator -0.30 - 1.02 /-
5 generator 1.25 - 1.04 /-
6 slack - - 1.04 /o
Line Data
Number
Branch Terminal Resistance Reactance of
Index t Buses Rt (pu) Xt (pu) Lines
7 1,4 0.05 0.20 1
8 1,5 0.025 0.10 2
9 2,3 0.10 0.40 1
10 2,4 0.10 0.40 1
1 2,5 0.05 0.20 1
12 2,6 0.01875 0.075 Yy
13 3,4 0.15 0.60 1
14 3,6 0.0375 0.15 2
Load Flow Solution
Load Buses V1 = 0.9787 /-0.6602
V2 = 0.9633 /-0.2978
V3 = 0.9032 1-0.3036
Generator Buses Qu = 0.7866 By = -0.5566
05 = 0.9780 b = -0.4740
Slack Bus P6 = 6.1298 06 = 1.3546
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