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ABSTRACT

This thesis presents a new methodology for describing adjoint
network approaches to sensitivity calculations performed in various
power system analysis and planning studies. Difficulties observed by
previous workers regarding the exact modelling of some power network
elements are overcome by proper techniques employed with special complex
notation. A generalized version of the Tellegen's theorem-based
approach is developed which provides the required sensitivities based on
the exact a.c. load flow model for any chosen set of real and/or complex
variables of practical interest. A theoretical consistency study is
performed to allow proper modelling of adjoint elements for direct
treatment of general complex functions. A simplified version with many
desirable features is described for real function sensitivities. It
employs a simple adjoint network. General sensitivity expressions
common to all relevant power system studies are derived and tabulated.
A new method for solving the load flow problem using Tellegen's theorem
is described with several advantages claimed. A special elimination
technique is used to describe the Newton-Raphson method for load flow
solution in a compact complex mode. A complex version of the Lagrange
multiplier approach is developed and applied to allow a general number
of complex dependent variables to be defined in a particular problem. A
generalized version of the class of methods of sensitivity calculations
which exploit the Jacobian matrix of the load flow analysis in

formulating the adjoint equations is developed. Generalized sensitivity

iii



expressions common to different modes of formulating power flow
equations, e.g., cartesian and polar, are derived and tabulated for
direct programming use. A unified comprehensive comparison between the
Lagrange multiplier and Tellegen's theorem approaches  to sensitivity

calculations in electrical networks is presented.
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1

INTRODUCTION

In the context of steady-state computer-aided power system
analysis and planning, functions of system variables are routinely
defined in various studies to incorporate cost criteria, security
assessment, reliability indices, etc. The system variables are related
through a set of equality constraints representing, for example, power
flow equations. Inequality constraints may also be defined to indicate,
for example, physical limitations on practical variables.

The ratio between a small change Af in a function f which may
denote a dependent variable and a related small change Auj in an
independent variable uj indicates the sensitivity of f with respect to
uj. This ratio is generally a function of other system variables. It
is very valuable in numerous power system analysis and planning
problems. Using the Taylor series expansion, which relates Af to
increasing powers of Auj, the change in f may be calculated to any
degree of accuracy.

First-order changes of functions of interest play a very
important role in sensitivity calculations not ohly because they are
relatively easy to calculate but also due to their direct contribution
to gradient evaluations required by most optimization techniques used in
different planning studies.

The use of second-order sensitivities, although requiring more



elaborate calculation, also finds applications in investigations of the
sensitivity of a function w.r.t. certain variables at an optimal
solution represented by a stationary point of the function w.r.t. these
variables.

This thesis employs a suitable notation and proper techniques to
develop, unify, describe, improve and compare methods of evaluating
first-order changes and gradients of functions of interest subject to
equality constraints which may represent power flow equations. The term
sensitivity calculations is used to indicate both first-order changes
and gradient evaluation.

In Chapter 2 important approaches to sensitivity calculations in
power system analysis and design problems are classified and generally
described. Their contribution to solving some practical problems is
outlined. The material presented in this chapter provides an adequate
background for some of the studies presented in the subsequent chapters.

In Chapter 3 a generalizedL version of the Tellegen's
theorem-based approach is developed. Using a special complex notation
and proper techniques, the difficulties encountered in treating exact
component models of power networks are overcome. This generalized
version provides a methodology for handling complex functions.
Sensitivity expressions which are common to all relevant power system
studies are derived and tabulated.

A special class of the family of adjoint systems of Chapter 3 is
considered in Chapter 4. A simplified version possessing many desirable

features is described where a simpler adjoint network is obtained.



Sensitivity expressions for this simplified version are derived and
tabulated for direct programming purposes for a wide variety of real
functions.

The material presented in Chapter 5 provides a useful theoretical
investigation for consistent definition of the adjoint system which
provides complex function sensitivities, directly, as in typical
electronic circuits. A unified study for consistent selection of
arbitrary adjoining coefficients introduced in the generalized version
of Chapter 3 is presented where the restrictions imposed by the number
and type of elements of the network as well as the function considered
are investigated.

In Chapter 6, some new concepts are introduced and utilized for
presenting and studying several special topics in the context of complex
analysis of power networks. A new Tellegen's theorem-based method for
solving the load flow problem is proposed. This method employs a simple
and mostly constant adjoint matrix of coefficients and enjoys the same
rate of convergence as the Newton-Raphson method. Using a special
complex notation, the Newton-Raphson method for solving the loéd flow
problem has been interpreted formally in terms of first-order changes of
problem variables and, hence, described in a compact complex form using
a special elimination technique. The Lagrange multiplier approach
described and applied in the real case is formulated in the complex mode
to handle general complex functions and variables. Applications to
power system sensitivity analysis are presented.

A unified study of the class of adjoint network approaches to



power system sensitivity analysis which exploit the Jacobian matrix of
the load flow solution is presented in Chapter 7. Generalized
sensitivity expressions common to different modes of formulating the
power flow equations, e.g., cartesian and polar are easily derived,
compactly described and tabulated and effectively used for both real and
complex forms of performance functions as well as control variables
defined in a particular study.

" A comprehensive comparison between thé commonly used Lagrange
multiplier and Tellegen's theorem approaches to sensitivity calculations
in electrical networks is presented in Chapter 8 where the two

approaches are described on a unified basis.



2

SENSITIVITY CALCULATIONS IN POWER NETWORKS

2.1 INTRODUCTION

Techniques for evaluating first-order changes and derivatives of
performance functions subject to power network equations have been
described in the context of applications in optimal 1load flow and
planning problems (Sasson and Merrill 1974).

In this chapter, important methods of sensitivity calculations in
power system analysis and design problems are classified and described
in general. The notation used and the modes of formulation which
contribute to developing a successful sensitivity approach are
presented. Applications to soﬁe practical power system problems are

also discussed.

2.2 EFFICIENT TECHNIQUES FOR SENSITIVITY CALCULATIONS
2.2.1 Requirements for a Successful Sensitivity Approach

Due to the inhéfently large size of power networks with various
branch types, simplicity of derivation and formulation, flexibility in
modelling different components of the power system and efficiency in
computations represent basic requirements for a successful sensitivity

approach,



2.2.2 General Survey

Some techniques (Fischl and Puntel 1972, Irisarri, Levner and
Sasson 1979, Puttgen and Sullivan 1978, Wu and Sullivan 1976) address
the previous requirements by approximating the a.c. load flow model
describing the steady state behaviour of the power system. Other
methods (Bandler and El-Kady 1979, Bandler and El-Kady 1980a, 1980b and
1980d, Dommel and Tinney 1968, Fischl and Wasley 1978) employ the exact
a.c. load flow model. In some applications (Ejebe and Wollenberg 1979)
both exact and approximated models have been used. The elements of the
Jacobian matrix of the 1load flow solution are exploited in some
approaches (Bandler and El-Kady 1980f, Dommel and Tinney 1968, Fischl
and Wasley 1978) while the flexibility in modelling different power
system elements provided by using suitable network theorems is gained in
others (Bandler and El-Kady 1980a, Clements and Ringlee 1977, Puttgen

and Sullivan 1978).

2.3 NOTATION

The different interpretation of the variables used to describe
various power system components in equations poses a difficulty in
choosing a suitable notation which facilitates the derivation and
subsequent formulation of equations and expressions employed (Peschon,

Piercy, Tinney and Tveit 1968).

2.3.1 State Variable Notation

The most successful notation used in describing the power flow



equations and other physical constraints and interpreting the
relationships between different variables is the state variable notation
(Bandler and El-Kady 1980g, Dommel and Tinney 1968, Pechon et al. 1968)
commonly used iﬁ control theofy. Throughout the thesis this notation,
which contributes significantly to an easier understanding of the
equations, will be used.

The control or design variables are denoted by the column vector
u of nu components. We also denote by the nx - component vector x the
state variables or the dependent variables to be determined by solving

the set of equality constraints, denoted by b(x,u) = 0, describing the

steady-state behaviour of a particular power system.

2.3.2 Classification of Independent Variables

In the literature, the vector u may be either classified further
(Bandler and El-Kady 1980a) into subvectors associated with different
bus and line branches in the power network or restricted (Dommel and
Tinney 1968) to represent only the practically controlable variables,
e.g., the real power Pg at = generator bus while some other variables,
called fixed parameters, are assigned other symbols.

In general, we shall use u to denote the independent variables to
be specified in the equations describing a particular system. We may
classify E and f' whenever necessary, into appropriate subvectors

associated with different power system steady-state component models

(Sullivan 1977).



2.4 GENERAL FORMULATION
2.4.1 Power Flow Equations

Most of the literature in the area of power system analysis and
design employs the real mode of formulation to describe the power flow
equations and to derive, subsequently, the sensitivity expressions
required in a particular study.

The power flow equations (Van Ness and Griffin 1961) are
basically expressed in the complex form

*
'
m

(Y .Vm)zsm,m=1., ooy N, (2.1)

ml

n ™M

1

where Vm is the mth bus voltage, Ymi is an element of the bus admittance
matrix (Stagg and El-Abiad 1968), Sm = Pm + ij is the mth bus power, P
and Qm denoting, respectively, the injected real and reactive powers, J
= /:7, n denotes the number of buses and * denotes the complex
conjugate.

The variables in (2.1) are, generally speaking, functions of the
state x and control u variables of the system. Equations (2.1), whether
written in the rectangular or in the polar form (Van Ness and Griffin
1961), are usually separated into real and imaginary parts in solving

the load flow problem.

2.4.2 The Real Mode of Formulation
The real mode of formulation has been suggested upon the
application (Van Ness and Griffin 1961, Tinney and Hart 1967) of the

well-known Newton-Raphson method, which is superior in its quadratic



convergence and ability to solve ill-conditioned problems, to the
solution of the load flow problem. The reason (Stott 1974) is that the
Newton-Raphson method is a derivative-based method and, mathematically
épeaking, the complex load flow equations are nonanalytic and cannot be
differentiated in complex form. See Bandler and El-Kady (1980e).

The subsequent sensitivity calculations have been automatically

performed in most of the literature in the same real mode.

2.4.3 First-Order Changes of Functions and Constraints
In general, we write the first-order change of a continuous
function f in the form

n
X u

n

af

§f= 3z (—/3s8x,) + ¢ (=—su), (2.2)
i=1 it k=1 % *

where § denotes first - order change, X5 is the ith state variable and

uk is the kth control variable. We also write the first-order changes

of the set of equality constraints h(x,u) = 0 in the form

~ o~ o~

=O, j= 1,.-., nx, (213)

where hj denotes the jth equclity constraint.
The basic forms (2.2) and (2.3) are essential for the techniques
employed to evaluate total derivatives of f w.r.t. u by expressing §f

solely in terms of the Guk,
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2.5 METHODS OF SENSITIVITY CALCULATIONS

Excluding the method based on approximate explicit expression of
X in terms of u (Galiana and Banakar 1980) there are basically three
methods for eliminating §x from (2.2) and (2.3): the sensitivity matrix
method, the adjoint or Lagrange multiplier method and the methéd based

on Tellegen's theorem (Tellegen 1952, Director and Rohrer 1969a, 1969b).

2.5.1 The Sensitivity Matrix Method
In the sensitivity matrix method (Dommel and Tinney 1968, Peschon

et al. 1968), the sensitivity matrix S is defined by

A an’ 7.7 an’ T

= - —_ —_ 4
[( 5% )] ( U )7, (2.4

~ ~

S

where (ahT/ax)T and (ahT/au)T are the Jacobian matrices of h w.r.t. X
and u, respectively. Hence, from (2.3)
§x = S 6u, (2.5)

where 6x and Su are column vectors of Gxi and Su, respectively, of

(2.2). Substituting (2.5) into (2.2), we get

_ af T af T
§f = [a—+§ ﬁ] 69, (2.6)
from which
df | af T af 2.7

The application of the sensitivity matrix method requires nu
repeat solutions of a system of linear equations formed from (2.4) for
the elements of S. This task usually makes this method less preferable

(Dommel and Tinney 1968, Fischl and Wasley 1978) unless the sensitivity
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matrix is needed for other purposes.

2.5.2 The Method of Lagrange Multipliers

The method of Lagrange multipliers (Dommel and Tinney 1968) is
the most common one not only because it requires only one solution of a
set of linear adjoint equations (as compared with the sensitivity matrix
method) but also because it utilizes, in various applications, the
elements of the Jacobian matrix available from the basic load flow
solution.

The Lagrange multiplier method is commonly referred to for a
general set of equality constraints (Director and Sullivan 1978). When
the equality constraints represent power flow equations, the method may
be interpreted as an adjoint network method (Bandler and El-Kady 1980f,
Fischl and Wasley 1978).

The Lagrange multipliers are defined by

T

r 4 (%2—)'1 s, (2.8)
hence, from (2.2) and (2.3)
’ ah!
st = L2 - (=) ey, (2.9)
from which
9£=i£_i£)“ (2.10)

In practice, the set of 1linear ‘équations formed by (2.8) is

solved for the Lagrange multipliers XA and the first-order change and
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total derivatives of f are then calculated from (2.9) and (2.10),
respectively.

When the set of equality constraints h(x,u) = 0 represents the
power flow equations (2.1), the 2n x 2n matrix of coefficients (aQT /3%)
of (2.8) may constitute the transpose of the Jacobian matrix of the load
flow solution by the Newton-Raphson method. The exploitation of this
fact necessitates expressing f in terms of Xx which, in this case,
represents 2n bus quantities (the unknown variables in power flow
equations). Transformations are required to handle functions of other
variables, e.g., line variables. -

We remark that an extended vector X which contains all variables
of interest can be defined (Director and Sullivan 1978) so that general
functions of line quantities may be directly handled. 1In this case, the

size of the matrix of coefficients in (2.8) is determined by the total

number of states considered.

2.5.3 Method Based on Tellegen's Theorem

The method based on Tellegen's theorem exploits the powerful
features of the theorem to achieve both the compactness of the adjoint
system of equations to be solved and the flexibility in handling line
quantities.

Tellegen's theorem, see Fig. 2.1, which depends solely upon
Kirchhoff's laws and the topology of the network, states that

A

Ib Vb = 0 and i Vb Ib = 0, (2.11)

o™



o

[ —

[O——

[U—

J—

Je—

A ——

13

0
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b b
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b p) =

Fig. 2.1 1Illustration of Tellegen's theorem

where Ib and Vb are, respectively, the current and voltage of branch b

of the network and

~

.distinguishes the corresponding variables
associated with the topologically similar adjoint network. The
summations in (2.11) are taken over all branches. In addition to the
current and voltage variables, the inclusion of the power variables Sb

is required to accommodate the power flow model. Hence, we may use
v *
b~ b b’

Tellegen's theorem has been successfully applied to power system

S I (2.12)
analysis and design problems since Fischl and Puntel (1972). In the
beginning, the approximated d.c. load flow model was used. This found
applications in transmissioﬁ system planning problems (Fischl and Puntel

1972, Puntel, Reppen, Ringlee, Platts, Ryan and P.J. Sullivan 1973) in

which the d.c. model may be considered of sufficient accuracy. The d.c.



14

load flow model is, however, characterized by the restrictive
assumptions of neglecting transmission losses, excluding reactive power
flows and considering flat voltage profiles which make it inadequate
(Bandler "and El-Kady 1979) for other studies requiring a more accurate
model and more information.

Different versions of improved, approximate a.c. load flow models
have been successively developed for application to different power
system studies. The relatively difficult steady-state component models
in power networks impose an observed difficulty in applying Tellegen's
theorem to the exact a.c. load flow model. A proper methodology has
been required to overcome this difficulty.

In general, a method of sensitivity calculations based on
Tellegen's theorem incorporates the following steps. A perturb@d
Tellegen sum is formulated as

~T

ﬁT §Xx + n_ éu =0, (2.13)
X u -~ :

~ ~ ~

where the state x and control u variables are defined in accordance with
the power flow model considered and the vectors ﬁx and ﬁu are, in
general, linear functions of the formulated ad joint network current and
voltage variables. Hence, the ﬁx and ﬁu of (2.13) are related through
Kirchhoff's current and voltage laws formulating a set of linear network

equations to be solved for the unknown adjoint variables. The adjoint

network is defined by setting

Y
]

(2.14)

13>
"

t]

Q

X
-



hence, from (2.2) and (2.13), we get

_ o 3f AT
§f = ( U Eu) sU, (2.15)
from which
9 ~ .
H=ioa (2.16)

In practice, the adjoint network isAdefined for a given function
by (2.14) and solved for the variables ﬁu which are then substituted
into (2.15) and (2.16) to obtain first-order change and total
derivatives of f w.r.t. control variables.

The matrix of coefficients of the adjoint system of equations has
to be calculated at a base-case point. The LU factors of this matrix
may be stored and different functions can be treated by repeat forward

and backward substitutions.

2.5.4 Discussion

Based upon the foregoing description, we may conclude that the
Tellegen theorem-based method has the advantage over the method of
Lagrange multipliers regarding the flexibility of modelling the
different elements of the network. It has, however, the disadvantage
that the adjoint matrix of coefficients has to be calculated at a load
flow solution.

It is important to notice that when optimal solutions are
required upon altering one or more system parameters from the base-case
point;, the adjoint matrix of coefficients in both methods has to be

calculated at different iterations of the load flow solution included in
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each of the main optimization iterations towards the optimum.

The choice of a suitable method for sensitivity calculations
depends on various factors such as the kind of application considered,
the types of elements defined in the power system and the available

storage and facilities in computations.

2.6 APPLICATIONS OF FIRST-ORDER CHANGE

Efficient sensitivity calculations may be performed to evaluate
first-order changes of functions of interest corresponding to certain
variations in the control variables defined in a particular study.
These first-order changes are valuable in estimating the effects of
transmission system contingencies and ranking them (Ejebe and Wollenberg
1979, Irisarri, Levner and Sasson 1979), generation outages, device
mal functions and other defects expected in power systems operation which
may result in subsequent service deterioration.

In contingency analysis the changes in system performances, upon
sustaining some of the above contingencies, are calculated using the
d.c., the approximate a.c. cor the exact a.c. load flow model. As
illustrated before, the a.c. load flow models have the advantage of both
accurate contingency evaluation and inclusion of the reactive power
flows. Fig. 2.2 (Happ 1976) illustrates the contingency evaluation for

line or generator loss.
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Fig. 2.2 Illustration of contingency evaluation
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2.7 APPLICATIONS TO PRACTICAL DESIGN PROBLEMS

As stated before, sensitivity calculations are performed to
evaluate gradients of functions of interest subject to equality
constraints relating the state and control variables of the system.
These gradients may»be supplied to optimization routines employed in
different power system design problems.

In practice, functional inequality constraints as well as upper
and lower 1limits on the control variables must be considered in
optimization to reflect the physical 1limitations on different system

components.

2.7.1 Power System Design Problem
A typical power system design problem may be stated as the

general nonlinear programming problem

Minimize f(x, u) (2.17)
o
subject to
P(f. B) =0 (2.18)
and
g(x, u) >0, ' (2.19)

where the column vector §(§- E) represents ng inequality constraints.
Considering the general formulation of the problem (2.17)=(2.19)
with continuous real variables and assuming proper convexity, the
Kuhn-Tucker relations (Kuhn and Tucker 1951) provide a set of necessary
conditions which the solution must satisfy at the minimum of f.

Techniques of constrained optimization (Gill and Murray 1974, Wilde and
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Beightler 1967) are employed.

2.7.2 Comments

A wide variety of problems in computerized operation and planning
of power systems falls into the form (2.17)-(2.19). The type of the
objective function f as well as the existence and the nature of both
equality and inequality constraints depend on the study performed.

Several approaches have been described and successfully applied
to handle functional inequality constraints in many power system
problems. For example, some of fhe approaches (Carpentier 1973,
Peschon, Bree and Hajdu 1971) utilize the generalized reduced gradient
(GRG) method. Others (Sasson 1969a, 1969b, Fischl and Wasley 1978)
embloy penalty function methods. Features of both methods may be
incorporated (Wu, Gross, Luini and Look 1979).

In these approaches, the total derivatives (called the reduced
gradient) of a formulated objective function w.r.t. control variables
may be evaluated by methods of sensitivity calculations described

before,

2.7.3 The Optimai'Load Flow Problem

In the optimal power flow problem (Dommel and Tinney 1968), a
feasible power flow solution w.r.t. constraints on both control and
state variables is found which minimizes some cost criterion.

In general, the adjustable control variables assigned include the

real power Pg from generating plants available for adjustable dispatch,
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voltage magnitude ]Vg[ at P, V-buses, tap transformer and phase shifter
ratios and parameters of shunt control elements.

Some of the inequality constraints represent 1limits on the
capability of adjustable control devices, e.g., real and imaginary
transformer tap ratios, and other equipment capacities such as the
generating capacity. The others represent the system security
requirements which include line flow current and power constraiﬁts under
normal and contingency conditions. The violation of inequality
constfaints may lead to inadequate service due to component outages.

A number of problems can be defined by a different choice of the
objective function of (2.17) and constraints (2.18) and (2.19). The
economic dispatch and minimum loss problems (Dommel and Tinney 1968,
Happ 1977, Sasson 1969a), optimal load curtailment under emergency
conditions (Peschon et al. 1971) and VAR flow control (Sullivan 1972)

are examples,

2.7.4 Power System Planning Studies

Many power system planning problems can be formulated as
nonlinear programming problems in the form (2.17)-(2.19). The objective
function f, the design variables and the constraints are defined in a
particular planning stﬁdy to reflect economy, reliability, security and
efficiency requirements.

The power flow model which simulates the steady-state power flows
and voltages in the network under planning considerations is described

either exactly or approximately according to accuracy requirements.
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In automated power network design problems (Director and Sullivan
1978, Fischl and Puntel 1972, Puntel et al. 1973), for example, the
objective function f may be formulated to represent line overloading.
The control variables to be adjusted are line admittances representing
the required additions to Support the existing transmission capacity.
The inclusion of inequality constraints imposed on the design variables
by, for example, the right-of-ways may be included.

A contingency analysis may be required after designing a nominal
netwofk. In this kind of study, first-order changes of functions of
interest simulating line overloading due to assignedbparameter changes
and line or generator outages are employed in the adequacy checks.

‘Many other applications of the methods of sensitivity evaluation
described before can be identified in which either first-order changes

or total derivatives of functions of interest are concerned.
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APPROACH BASED ON TELLEGEN'S THEOREM:
A GENERALTZED VERSION

3.1 INTRODUCTION

In trying to apply the powerful features of Tellegen's theorem.to
power system sensitivity calculations, previous workers approximated the
a.c. load flow model to allow direct application of Tellegen's theorem.
Moreover, the theoretical possibility of obtaining sensitivities of
complex functions via one adjoint analysis as in typical electronic
circuits has not been previously investigated.

In this chapter, a generalized version of the Tellegen's
theorem-based approach is developed which, using a special complex
notation, overcomes the difficulties observed (Puttgen 1976) in treating
exact steady-state component models of power networks and provides a

theoretical basis for treating complex functions.

3.2 PERTURBED STEADY-STATE COMPONENT MODELS
3.2.1 Component Models of Typical Electronic Circuits

A simple, exact application of Tellegen's theorem is possible in
typical linear electronic circuits. This is essentially because of the
relatively simpler component models used. The steady-state component
models representing typical sources and passive elements are shown,

respectively, in Fig. 3.1 and Fig. 3.2. Observe that the current I,

22
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node m node m
Ib
+ branch b branch b
Vb Vb = constant Ib = constant
- | 0 =6Vb 61b=0
\ \
constant voltage source constant current source

Fig. 3.1 Modelling of typical sources in electronic circuits

+ It

Vt branch t
*—

L= Yo Vg

6It = Yt GVt + Vt GYt

Fig. 3.2 Modelling of typical passive element

voltage V and admittance Y variables appear 1in perturbed component
models as complex quantities. The conjugate of a complex variable does
not appear in the perturbed component model that might require

separation into real and imeginary parts in subsequent analysis.
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3.2.2 Typical Electronic Network Equations

In general, these simple models of network elements lead to a
compact set of complex linear equations, e.g., the nodal equations,
which is wusually solved in the complex mode without the need for
separating real and imaginary parts, which would require (Stewart 1973)
about twice the computer memory.

Basically, we can arrive at a compact set of complex 1linear
equations to analyze a network as long as the branch models have the

perturbed form

S
oy GIb =T SVb + wb, (3.1)
where Ib and Vb are branch current and voltage variables, respectively,
and 9% Tp and WS are coefficients associated with branch type.

3.2.3 Component Models of Power Networks

In power networks, the steady-state models of some components do
not fall into the perturbed form (3.1). Examples of modelling 1load
-branch and generator branch connected to a voltage controlled bus are
shown, respectively, in Fig. 3.3 and Fig. 3.4. Note that the complex
conjugate of the current and voltage variables are used to express

element models.
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*
Sg = Vl Il = constant IL
(SSL:O +
or branch % Vz
*
Vz §I = -I2 GVQ -

Fig. 3.3 Load branch modelling

[V _1/_8
P, |V | = constant E—¢
g’ g
§P =0
g
or

VosI + U 6l fev -1 sv
g gt g g T T g g g e
branch g

V| =
81Vl = 0
or

* \' v V*
0 = Vg § g + g § g

Fig. 3.4 Modelling of generator branch connected to P, V-type bus

3.2.4 Modelling of Power Transformers with Complex Turns Ratio

It is known (Sullivan 1977) that power transformers with complex
turns ratio (phase shifting transformers) cannot be modelled by an
equivalent mw-network using the ordinary passive elements of Fig. 3.2.
However, as shown in Fig. 3.5, a construction of an equivalent m-network
is possible using more general branch models. The model of Fig. 3.5

represents a member of possible constructions derived in Appendix A.
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Fig. 3.5 Modelling of transformers with complex turns ratio

3.2.5 General Perturbed Form of Component Models
In conclusion, we deal with power network component models of the

more general perturbed form

— * — * S
o, 8I. + o 8I =1t 8V _+ 1, 8V + W

p 8Ly + 0y 81y = Ty SV T SV + W (3.2)

and in this chapter and throughout most of the thesis we manage to use
both the theory and techniques which can handle these general element

models without approximation.

3.3 THE CONJUGATE NOTATION
In order to perform the sensitivity calculations based on the
exact element models of different power system components in a simple

and straightforward way, we employ a special complex notation described
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in this section.

3.3.1 Formal Partial Derivatives
We denote by C and R, respectively, the field of complex numbers
and the field of real numbers. The vector space over C, of n-tuples
(c1, cees cn), T, € C is denoted by e, Similafly, R" stands for the
- . = d R.
vector space over R, of n-tuples (E1m’ . Cnm)’ m 1, 2 an Cim €
Also, we write
L2y +J Lo (3.3)
where r is a column vector of components Ci given by

T: = C.

i1 * J Zio0 (3.4)

e R eR, i =1, 2, .., n.

RS SRS F

For a continuously differentiable complex valued function f on an

t1r 2

open set @ < Cn, we define the formal (Fuks 1963) or symbolic (Ahlfors

1966) partial derivatives

af p 3 _jaf (3.5)
19 9% P

and
of 4L jig— )/
af 4 (Bf 2 (3.6)
TR TE T ’

where 3f/az, af/ac¥, af‘/a;1 and af/ac2 are column vectors.
Note that in formal derivatives, the Cauchy-Riemann differential

equations may be written (Fuks 1963) as
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3.3.2 First-Order Change in Terms of Formal Derivatives

We consider the nonsingular transformation

Z4 1" 4
2 1 - - 2
-2 n n !
-1 3 *
% 3 s

n
where 1 is the identity matrix of order n and

~

8z, ™ Sz

I T s
-2 .n n

82 N B

Note that
Sc*® = (8r)*,

The first-order change of f is given by

o af T af T
§f = ( Y ) 8T, + ( T ) 8¢,
=1 22
or, using (3.10),
1 af T 3f T .n 1., 8f T ., of T
§f = =[( — - (= = ( =— —
2[( 351 ) ( 3;2 ) J ] 55 + 2[( 3;1 )+ 3;2 )

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

$"Tez*. (3.13)
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Hence, from (3.5) and (3.6)

=

) T T

af
8f = (=) 8§t + ( szib) 4

ey

(3.18)

Equation (3.714) expresses &f in terms of the variations in ¢ and

t* using the formal derivatives 3f/9dr and 3f/ac¥* of (3.5) and (3.6),

respectively.

3.3.3 Pure Real and Pure Imaginary Functions

It can be shown that, for arbitrary g, if

T —T % oT —e T ¥
HWwg+ptg =uw CcH+Huy T,

~ ~

— ® ——
where u, u, w and p are appropriate vectors of complex scalars,

For a pure real function f, we write
* *
§f = ¢f = (¢§f)

or, using (3.14),

* * *
(AT sp v (2T 5 2 ()T gy
BE ~ e ~ BE ~

hence, from (3.15) and (3.16)
*
g—f-<—‘“’-‘7—;).
¢ az
Also, for a pure imaginary function f, we write

* *
8f = = &f = - (§f)

*T

(3.15)

then

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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or

£ T * * * *
CAENT e (2T st o (T s L ()T e, a2m)
BE ~ ¥4 ~ aE - T -

~ ~

hence, from (3.15) and (3.16)

K S (3.22)

3.3.4 Remark

We remark (Fuks 1963) that the terminology of formal derivatives
arises because of the possibility of obtaining them formally using the
ordinary differentiation rules. The use of the conjugate notation
facilitates the derivations and subsequent formulation of the equations

to be solved.

3.4 AUGMENTED FORM OF TELLEGEN'S THEOREM
3.4.1 Tellegen Terms and Group Terms for A.C. Power Model

The expressions of (2.11) represent the basic form of Tellegen's
theorem. Since the Vb and Q of (2.11) satisfy Kirchhoff's voltage law

b
% ~% ~
(KVL), the Vb and Vb also satisfy KVL. Similarly, since the Ib and Ib
* ~%
of (2.11) satisfy Kirchhoff's current law (KCL), the Ib and Ib also
satisfy KCL. Hence, in addition to (2.11) the following valid

variations of Tellegen's theorem can be considered (Penfield, Spence and

Duinker 1970)
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~% V*
g Ib b= 0, (3.23)
v I* 0 4
g Vb p = O (3.24)
~ *
z Ib Vb = 0, (3.25)
b
~ *
z vb Ib =0, (3.26)
b
~%
z Ib Vb = 0, (3.27)
b
~ %
E vy I, = 0. (3.28)

Note that, in the case of identical original and adjoint networks, we
set Vb = Vb and Ib = Ib.
In addition to the Tellegen terms (2.11) and (3.23)-(3.28) we

also consider valid expressions in terms of certain groups of elements

in the form

D clg =0 (3.29)
beB
k
and
K¥*
z C =0, (3.30)
beB, P
k
*
where Cg and CE are complex functions of the variables Vb and Ib and

* *
their complex conjugate Vb and Ib’ and Bk is the set of branch elements

forming the kth group. An example of the group terms is the KVL for a

local loop of the network.



32

3.4.2 Extended Tellegen Sum and Adjoining Coefficients

The extended Tellegen sum is now written as

[ E v _ % % G — % ~ ®* %
i a IV + a Ib Vb - B b Ib -8B Vb Ib + £ Ib Vb + £ Ib Vb
G I* — \';* Ck — Ck*
—v VI -V I+ i Ty ok O * i Ty 2ok Cp 1 =0, (3.31)

where the Tellegen terms and group terms have been adjoined in an

appropriate sequence via the complex coefficients a, 3, B, B, &, E} v,

v, I, and

k k'
0 if b & Bk
Aok = . (3.32)
1 if b e B
k
Note that in cases where
T oza, (3.33)
—- *
B =8, (3.34)
— *
E = g 9, (3035)
— *
v = v (3.36)
and _ *
Ty = I‘k for all k, (3.37)

the extended Tellegen's sum (3.31) is a real quantity.

3.4.3 Perturbed Tellegen Sum
The sum (3.31) is written in terms of first-order changes in V

and I as
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[ i o E* v* G B Q* 1* f V* € E*
i o I GVb +a I s -8B b §I, -8B b 8 b * £ b 8 b * £ I GVb
V. sl VeI (X v+ T svr 4 cK. eI
N I e i T bk v b+ Cov Vb * “bi 8o
—x * — K* —y* * K* ¥ %
+ Cbi aIb) + i rk Abk(cbV svb + va 5Vb + Cbi slb + Cbi 5Ib)] =0
(3.38)
or
( E T ck T ck*) v
z [(a b + £ Ib + 3 rk Abk by + X rk bk Cbv 8 b
b K K
I 1 [ T =*y vt
+ (@ I+ & I+ ﬁ Ty *ox “bv i T 2ok “bv’ ¢V
8V -3y A CK T oA cKYy eI
+ BV = v VDT Ay Gy + 2T Ay Gy 8
K K
o G A I I T, A Ek*) GI*] 0, ( 9)
+ BV =V Ve i T Yok “pi * " Ty Apy Cpy) 81,0 = 0. (3.3
K k¥ =X g K K* K, ¥
U, 3C ,
where Cbu’ Cbu' Cbu and Cbu stand for aCb/aU, aCb /3 3 b/aU

* *
aCE /3U , respectively, u denoting v or i and U denoting V or I.

3.5 ELEMENT VARIABLES VIA BASIC VARIABLES
3.5.1 Element Jacobian Matrices

The perturbed Tellegen sum (3.39) has been written in terms of
first-order changes of Vb’ V:, I and I*. We shall call these variables

b b

the basic variables and denote them by the vector

S
V*
va A b

wos |-—| 2] . | (3.40)
i Iy
*
L_Ib...
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Now, for each element, and according to its type, another set of

variables called the element variables is of practical interest. The

element variables will be denoted by the vector z_ of four components

describing the practical state x_ and control u_ variables associated

with element b as

*b
zZ, = ,
~b Eb
where §b and Eb are two component vectors. §
terms of wa in the form
%y
82y = lsu | T JpdMpe
~b
where
T
5 4 (bt
b T " oaw

~

is a Jacobian matrix.

3.5.2 Transformed Form of Extended Tellegen Sum
From (3.42)

-1

§Wy = Jy 82y

b

~b

(3.41)

zb can be expressed in

(3.42)

(3.43)

(3.44)

A term of (3.39) associated with the bth branch is written in the more

convenient form

~T
£y Swyo

(3.45)
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where
— ~ —_ % k — k*—,
o I+ I+ Z Ty Mok Cov * L T Mok Cov
" % ~ —k — Ek*
£ o Ip+ 8 I +2 T Ay Cpy + 2T Ay Gy
~ ~bi A k k
fb = ——— = N (3.)46)
~ A 3\7 SV ez oA K 4T o ck*
Tov LA R . 'k bk bi T Tk “bk bi
IR ol T ¥
SN i T z T ‘ok Cbil
hence (3.39) is written as
°T
£, sw_=0 (3.47)
o ¥
b
or, using (3.44), as
AT o )
Dy Jp 8z, = 0 (3.48)
b
or
2 (THT £0T 2, = 0. (3.49)

b

3.6 TRANSFORMED ADJOINT VARIABLES AND NETWORK SENSITIVITIES

Let

Tpx

A

b Tbu

-1,T 7
(ib ) £y (3.50)

e

be transformed adjoint variables associated with the bth branch, where

Moy and Ny, are two component vectors. Then from (3.49)
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b ﬁg 82, = 0 (3.51)
b
or, from (3.41)
AT AT
é (Dbx 8Xp + N sEb) = 0. (3.52)

Now, for a general complex function f of all state vectors x and

all control vectors u, we set

_b
_ af
Moy = ax. (3.53)
~b
hence
s =z 2T ax, + (2T su )
b ~b -7 ~b -
_ of (T
=z [Eb §X, + ( o ) sgb]. (3.54)
b ~b
Then, from (3.52)
T AT
§f = z[( 2 au ) bu]aub (3.55)
b b
so that
df of ~
-_— s =7 . (3056)
de aBb ~bu
In the case when Uy is a function of some real design variables we write
aub
§u_ = g At (3.57)
~b i 8%pi bi’
where Cbi is the ith design variable associated with Uy and Acbi denotes

the change 1in cbi' In practice, Cbi represent, for example, the
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parameters of shunt control elements. From (3.55)

du
a~b . (3.58)
*hi

df 3f T T
= [( — )" - 4.1
dzpg AUy ~bu

Note that (3.53) defines the adjoint elements while (3.56) or (3.58)

provides the required gradients.

3.7 GENERAL ADJOINT FORMULATION

We define an adjoint vector analogous to wy of (3.40) as

o
vb
- Ebv A b
N el B B (3.59)
i T
~%
=y
and write the matrix (J:)T of (3.50) in a partitioned form
- MY Mo
(J_ ") = , (3.60)
~b Mb Mb
~21 22
where !?1, !?2, !21 and ygz are 2x2 matrices.

~

Using (3.46) and (3.60) the vectors n X and n

by of (3.50) are

given by

Mox = M1 Toi * Mo Doy (3.6M)
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and

S b 4 N
Mou = Mo1 Tbi * Moo Loy (3.62)

~

The vectors fbi and f_  are written in terms of w_ and w_ as

bv b b
£ = A° A ‘ (3.63)
bi T 2 Wei Ay Yy .
and
£ = 7w (3.64)
~bv ~v .bv v _bv? .

b - b — . — _
where Ai’ Ai, AV and Qv are 2x2 matrices. The elements of Qv and éi

consist of the adjoint coefficients o, a, £, £, B, B, v and V.

For the set of terms considered in Tellegen sum (3.31) the
b — b — .
A Ao Av and Qv are given from (3.46) by

~

matrices A

~

k - k¥ _*

b ﬁ I Yok Cov’Ip i k *bk Cov’Tb
3 = 9’ (3n65)
~i i _ ik
i Ty *bk %ov/Tp i Tk *bk va/Ib
_ «
r, = _ 1. (3.66)
A . :
K - K% %
E Ty Moy Cpi/Vp B Ty Ay G/
b K K
N (3.67)
~ —_ —k* *
i k bk Cbl/v i Ty Yok i’V
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and

A, = = . (3.68)

Note that if CE of (3.29) has the form

k

Cb = Vb Ib' (3.69)
where
Vb = iVb ' (3.70)
and
I, = I, (3.71)

the elements of A? and As consist solely of the adjoining coefficients

I and T.. Note also that V. = +1 in (3.65) and I. = +1 in (3.67) lead

k k b b
to corresponding zero matrices.
For use later we now define
k _ k - k¥
Nib = rk va + rk va, (3.72)
=k =k — —=k¥
Nib = Tk Cov * Tk Coye (3.73)
k _ k - k¥*
va =T, Cbi + T, Cpy (3.74)
and
W o= TK LT T (3.75)
vb k "bi k "bi- ‘
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Using (3.63) and (3.64), equation (3.61) is written as

~ ~

%i "bi = Cov Ybv * Sbr (3.76)

where the 2x2 matrices Ebi and Ebv are given by

Opi = My A4 (3.77)

and

— _ b —
Opv = ~ !12 Ay (3.78)

and the vector eb is given by

6 - Mb Ab W b Ab W

9 T Tox T 11 24 Tbi T M2 Ay Wpye (3.79)

Note that the choice of the coefficients a, E, etc., is subject to the

consistency of (3.76).

3.8 POWER SYSTEM ELEMENT VARIABLES
3.8.1 Notation

We consider the total number of branches to be n_, consisting of

B
nL loads, nG generators, one slack generator and nn = nB - nL - nG -1
other branch elements.
The buses are ordered such that subsecripts ¢ = 1, 2, ..., n

identify load branches, g = nL+1, oy nL+nG identify generator branches

and n = ng o+ ng + 1 identifies the slack generator branch. Subscripts t

=n+ 1, ..., ng are used to identify other branches.
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3.8.2 Element Variables of System Components

The element variables for a load are usually defined as

or, for example, as

u>

"ne

J - R,IR,J

-

~ ¥ 172
w, v,

-1 * *
tan [j(V -V )/(V +V )]
I L 2

RISV
VeIV Ty

VT v T /2
LJ(VEIR,— JLISL

LR

*
v

(3.80)

(3.81)

The element variables for a generator are usually defined as

tan 3OV -V )/ (v v ]
rran LJV=V )/ +Vo) IS

vt v 1Yy /2
IWe'g'g'g

¥ 172
(Vng)

(VW IVT)/2
g g g e =

(3.82)
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or, for example, as

v ) (v B

g g
- I I
z &) 8 = g . (3.83)
-8 2 vv*

v

Vgl g g

* * *
S +S VIWVTIT
L'g & L g8 g g

The element variables for the slack generator are usually defined
as
~ * %

P (VI 4V I)/2

nn nn
'(V*I V I*)/2

X Q Yt ™ 0 n
—_— = (3.84)
* 1/2

u 1Vl Vv,

"ue>

1N
"
1
l

R *
§ Ltan [J(Vn—Vn)/(Vn+Vn)]

-

or, for example, as

">

(3.85)

N

For other branches the element variables are defined according to
the element type. The element variables for a transmission element, for

example, may be defined as



L3

- ' - *
Re{It} (It+lt)/2
1.} (1 -1,y /2
B Xt \ Im{L, I
Z, = fm———] T | e————— = (3.86)
~t I,/ I*/V*)/2
Y Gy (T VLAV
I NI )2
L Bt ) LJ(It/Vt—It/ e
or, for example, as
1) I
* *
- Iy Iy
z, = = . (3.87)
Yt It/vt
* * V*
;YtJ L;t/ tJ

Real and/or complex element variables of any branch type can be
defined and classified in the same way. We shall only consider, without
loss of generality, the above most important branch types. Other branch

types can be treated in a similar straightforward manner.

We shall use z to denote 2z, 2z, Z, and z, of (3.80), (3.82),

~

(3.84) and (3.86), respectively. Also, we use Z, to denote Z

~ -~ ~

zZ , z
~g’ *n

and z_ of (3.81), (3.83), (3.85) and (3.87), respectively.

3.8.3 Standard Tabulated Expressions
Using the results of Appendix B the corresponding matrices é‘i

and Egv and vector eb for different power system elements are shown in

Table 3.1 for the set of element variables 2 and in Table 3.2 for the

~

~

set of element variables Zb'
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